xref: /netbsd-src/sys/arch/arm/include/cpufunc.h (revision 9fbd88883c38d0c0fbfcbe66d76fe6b0fab3f9de)
1 /*	$NetBSD: cpufunc.h,v 1.18 2002/01/30 00:36:32 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Mark Brinicombe.
5  * Copyright (c) 1997 Causality Limited
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Causality Limited.
19  * 4. The name of Causality Limited may not be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS
24  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
25  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26  * DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpufunc.h
38  *
39  * Prototypes for cpu, mmu and tlb related functions.
40  */
41 
42 #ifndef _ARM32_CPUFUNC_H_
43 #define _ARM32_CPUFUNC_H_
44 
45 #include <sys/types.h>
46 
47 #ifdef _KERNEL
48 #ifndef _LKM
49 #include "opt_cputypes.h"
50 #endif
51 
52 struct cpu_functions {
53 
54 	/* CPU functions */
55 
56 	u_int	(*cf_id)		__P((void));
57 	void	(*cf_cpwait)		__P((void));
58 
59 	/* MMU functions */
60 
61 	u_int	(*cf_control)		__P((u_int bic, u_int eor));
62 	void	(*cf_domains)		__P((u_int domains));
63 	void	(*cf_setttb)		__P((u_int ttb));
64 	u_int	(*cf_faultstatus)	__P((void));
65 	u_int	(*cf_faultaddress)	__P((void));
66 
67 	/* TLB functions */
68 
69 	void	(*cf_tlb_flushID)	__P((void));
70 	void	(*cf_tlb_flushID_SE)	__P((u_int va));
71 	void	(*cf_tlb_flushI)	__P((void));
72 	void	(*cf_tlb_flushI_SE)	__P((u_int va));
73 	void	(*cf_tlb_flushD)	__P((void));
74 	void	(*cf_tlb_flushD_SE)	__P((u_int va));
75 
76 	/*
77 	 * Cache operations:
78 	 *
79 	 * We define the following primitives:
80 	 *
81 	 *	icache_sync_all		Synchronize I-cache
82 	 *	icache_sync_range	Synchronize I-cache range
83 	 *
84 	 *	dcache_wbinv_all	Write-back and Invalidate D-cache
85 	 *	dcache_wbinv_range	Write-back and Invalidate D-cache range
86 	 *	dcache_inv_range	Invalidate D-cache range
87 	 *	dcache_wb_range		Write-back D-cache range
88 	 *
89 	 *	idcache_wbinv_all	Write-back and Invalidate D-cache,
90 	 *				Invalidate I-cache
91 	 *	idcache_wbinv_range	Write-back and Invalidate D-cache,
92 	 *				Invalidate I-cache range
93 	 *
94 	 * Note that the ARM term for "write-back" is "clean".  We use
95 	 * the term "write-back" since it's a more common way to describe
96 	 * the operation.
97 	 *
98 	 * There are some rules that must be followed:
99 	 *
100 	 *	I-cache Synch (all or range):
101 	 *		The goal is to synchronize the instruction stream,
102 	 *		so you may beed to write-back dirty D-cache blocks
103 	 *		first.  If a range is requested, and you can't
104 	 *		synchronize just a range, you have to hit the whole
105 	 *		thing.
106 	 *
107 	 *	D-cache Write-Back and Invalidate range:
108 	 *		If you can't WB-Inv a range, you must WB-Inv the
109 	 *		entire D-cache.
110 	 *
111 	 *	D-cache Invalidate:
112 	 *		If you can't Inv the D-cache, you must Write-Back
113 	 *		and Invalidate.  Code that uses this operation
114 	 *		MUST NOT assume that the D-cache will not be written
115 	 *		back to memory.
116 	 *
117 	 *	D-cache Write-Back:
118 	 *		If you can't Write-back without doing an Inv,
119 	 *		that's fine.  Then treat this as a WB-Inv.
120 	 *		Skipping the invalidate is merely an optimization.
121 	 *
122 	 *	All operations:
123 	 *		Valid virtual addresses must be passed to each
124 	 *		cache operation.
125 	 */
126 	void	(*cf_icache_sync_all)	__P((void));
127 	void	(*cf_icache_sync_range)	__P((vaddr_t, vsize_t));
128 
129 	void	(*cf_dcache_wbinv_all)	__P((void));
130 	void	(*cf_dcache_wbinv_range) __P((vaddr_t, vsize_t));
131 	void	(*cf_dcache_inv_range)	__P((vaddr_t, vsize_t));
132 	void	(*cf_dcache_wb_range)	__P((vaddr_t, vsize_t));
133 
134 	void	(*cf_idcache_wbinv_all)	__P((void));
135 	void	(*cf_idcache_wbinv_range) __P((vaddr_t, vsize_t));
136 
137 	/* Other functions */
138 
139 	void	(*cf_flush_prefetchbuf)	__P((void));
140 	void	(*cf_drain_writebuf)	__P((void));
141 	void	(*cf_flush_brnchtgt_C)	__P((void));
142 	void	(*cf_flush_brnchtgt_E)	__P((u_int va));
143 
144 	void	(*cf_sleep)		__P((int mode));
145 
146 	/* Soft functions */
147 
148 	int	(*cf_dataabt_fixup)	__P((void *arg));
149 	int	(*cf_prefetchabt_fixup)	__P((void *arg));
150 
151 	void	(*cf_context_switch)	__P((void));
152 
153 	void	(*cf_setup)		__P((char *string));
154 };
155 
156 extern struct cpu_functions cpufuncs;
157 extern u_int cputype;
158 
159 #define cpu_id()		cpufuncs.cf_id()
160 #define	cpu_cpwait()		cpufuncs.cf_cpwait()
161 
162 #define cpu_control(c, e)	cpufuncs.cf_control(c, e)
163 #define cpu_domains(d)		cpufuncs.cf_domains(d)
164 #define cpu_setttb(t)		cpufuncs.cf_setttb(t)
165 #define cpu_faultstatus()	cpufuncs.cf_faultstatus()
166 #define cpu_faultaddress()	cpufuncs.cf_faultaddress()
167 
168 #define	cpu_tlb_flushID()	cpufuncs.cf_tlb_flushID()
169 #define	cpu_tlb_flushID_SE(e)	cpufuncs.cf_tlb_flushID_SE(e)
170 #define	cpu_tlb_flushI()	cpufuncs.cf_tlb_flushI()
171 #define	cpu_tlb_flushI_SE(e)	cpufuncs.cf_tlb_flushI_SE(e)
172 #define	cpu_tlb_flushD()	cpufuncs.cf_tlb_flushD()
173 #define	cpu_tlb_flushD_SE(e)	cpufuncs.cf_tlb_flushD_SE(e)
174 
175 #define	cpu_icache_sync_all()	cpufuncs.cf_icache_sync_all()
176 #define	cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s))
177 
178 #define	cpu_dcache_wbinv_all()	cpufuncs.cf_dcache_wbinv_all()
179 #define	cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s))
180 #define	cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s))
181 #define	cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s))
182 
183 #define	cpu_idcache_wbinv_all()	cpufuncs.cf_idcache_wbinv_all()
184 #define	cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s))
185 
186 #define	cpu_flush_prefetchbuf()	cpufuncs.cf_flush_prefetchbuf()
187 #define	cpu_drain_writebuf()	cpufuncs.cf_drain_writebuf()
188 #define	cpu_flush_brnchtgt_C()	cpufuncs.cf_flush_brnchtgt_C()
189 #define	cpu_flush_brnchtgt_E(e)	cpufuncs.cf_flush_brnchtgt_E(e)
190 
191 #define cpu_sleep(m)		cpufuncs.cf_sleep(m)
192 
193 #define cpu_dataabt_fixup(a)		cpufuncs.cf_dataabt_fixup(a)
194 #define cpu_prefetchabt_fixup(a)	cpufuncs.cf_prefetchabt_fixup(a)
195 #define ABORT_FIXUP_OK		0	/* fixup succeeded */
196 #define ABORT_FIXUP_FAILED	1	/* fixup failed */
197 #define ABORT_FIXUP_RETURN	2	/* abort handler should return */
198 
199 #define cpu_setup(a)			cpufuncs.cf_setup(a)
200 
201 int	set_cpufuncs		__P((void));
202 #define ARCHITECTURE_NOT_PRESENT	1	/* known but not configured */
203 #define ARCHITECTURE_NOT_SUPPORTED	2	/* not known */
204 
205 void	cpufunc_nullop		__P((void));
206 int	cpufunc_null_fixup	__P((void *));
207 int	early_abort_fixup	__P((void *));
208 int	late_abort_fixup	__P((void *));
209 u_int	cpufunc_id		__P((void));
210 u_int	cpufunc_control		__P((u_int clear, u_int bic));
211 void	cpufunc_domains		__P((u_int domains));
212 u_int	cpufunc_faultstatus	__P((void));
213 u_int	cpufunc_faultaddress	__P((void));
214 
215 #ifdef CPU_ARM3
216 u_int	arm3_control		__P((u_int clear, u_int bic));
217 void	arm3_cache_flush	__P((void));
218 #endif	/* CPU_ARM3 */
219 
220 #if defined(CPU_ARM6) || defined(CPU_ARM7)
221 void	arm67_setttb		__P((u_int ttb));
222 void	arm67_tlb_flush		__P((void));
223 void	arm67_tlb_purge		__P((u_int va));
224 void	arm67_cache_flush	__P((void));
225 void	arm67_context_switch	__P((void));
226 #endif	/* CPU_ARM6 || CPU_ARM7 */
227 
228 #ifdef CPU_ARM6
229 void	arm6_setup		__P((char *string));
230 #endif	/* CPU_ARM6 */
231 
232 #ifdef CPU_ARM7
233 void	arm7_setup		__P((char *string));
234 #endif	/* CPU_ARM7 */
235 
236 #ifdef CPU_ARM7TDMI
237 int	arm7_dataabt_fixup	__P((void *arg));
238 void	arm7tdmi_setup		__P((char *string));
239 void	arm7tdmi_setttb		__P((u_int ttb));
240 void	arm7tdmi_tlb_flushID	__P((void));
241 void	arm7tdmi_tlb_flushID_SE	__P((u_int va));
242 void	arm7tdmi_cache_flushID	__P((void));
243 void	arm7tdmi_context_switch	__P((void));
244 #endif /* CPU_ARM7TDMI */
245 
246 #ifdef CPU_ARM8
247 void	arm8_setttb		__P((u_int ttb));
248 void	arm8_tlb_flushID	__P((void));
249 void	arm8_tlb_flushID_SE	__P((u_int va));
250 void	arm8_cache_flushID	__P((void));
251 void	arm8_cache_flushID_E	__P((u_int entry));
252 void	arm8_cache_cleanID	__P((void));
253 void	arm8_cache_cleanID_E	__P((u_int entry));
254 void	arm8_cache_purgeID	__P((void));
255 void	arm8_cache_purgeID_E	__P((u_int entry));
256 
257 void	arm8_cache_syncI	__P((void));
258 void	arm8_cache_cleanID_rng	__P((vaddr_t start, vsize_t end));
259 void	arm8_cache_cleanD_rng	__P((vaddr_t start, vsize_t end));
260 void	arm8_cache_purgeID_rng	__P((vaddr_t start, vsize_t end));
261 void	arm8_cache_purgeD_rng	__P((vaddr_t start, vsize_t end));
262 void	arm8_cache_syncI_rng	__P((vaddr_t start, vsize_t end));
263 
264 void	arm8_context_switch	__P((void));
265 
266 void	arm8_setup		__P((char *string));
267 
268 u_int	arm8_clock_config	__P((u_int, u_int));
269 #endif
270 
271 #ifdef CPU_ARM9
272 void	arm9_setttb		__P((u_int));
273 
274 void	arm9_tlb_flushID_SE	__P((u_int va));
275 
276 void	arm9_cache_flushID	__P((void));
277 void	arm9_cache_flushID_SE	__P((u_int));
278 void	arm9_cache_flushI	__P((void));
279 void	arm9_cache_flushI_SE	__P((u_int));
280 void	arm9_cache_flushD	__P((void));
281 void	arm9_cache_flushD_SE	__P((u_int));
282 
283 void	arm9_cache_cleanID	__P((void));
284 
285 void	arm9_cache_syncI	__P((void));
286 void	arm9_cache_flushID_rng	__P((vaddr_t, vsize_t));
287 void	arm9_cache_flushD_rng	__P((vaddr_t, vsize_t));
288 void	arm9_cache_syncI_rng	__P((vaddr_t, vsize_t));
289 
290 void	arm9_context_switch	__P((void));
291 
292 void	arm9_setup		__P((char *string));
293 #endif
294 
295 #if defined(CPU_ARM9) || defined(CPU_SA110) || defined(CPU_XSCALE)
296 void	armv4_tlb_flushID	__P((void));
297 void	armv4_tlb_flushI	__P((void));
298 void	armv4_tlb_flushD	__P((void));
299 void	armv4_tlb_flushD_SE	__P((u_int va));
300 
301 void	armv4_drain_writebuf	__P((void));
302 #endif
303 
304 #ifdef CPU_SA110
305 void	sa110_setttb		__P((u_int ttb));
306 
307 void	sa11x0_cpu_sleep	__P((int mode));
308 
309 void	sa110_tlb_flushID_SE	__P((u_int va));
310 
311 void	sa110_cache_flushID	__P((void));
312 void	sa110_cache_flushI	__P((void));
313 void	sa110_cache_flushD	__P((void));
314 void	sa110_cache_flushD_SE	__P((u_int entry));
315 
316 void	sa110_cache_cleanID	__P((void));
317 void	sa110_cache_cleanD	__P((void));
318 void	sa110_cache_cleanD_E	__P((u_int entry));
319 
320 void	sa110_cache_purgeID	__P((void));
321 void	sa110_cache_purgeID_E	__P((u_int entry));
322 void	sa110_cache_purgeD	__P((void));
323 void	sa110_cache_purgeD_E	__P((u_int entry));
324 
325 void	sa110_cache_syncI	__P((void));
326 void	sa110_cache_cleanID_rng	__P((vaddr_t start, vsize_t end));
327 void	sa110_cache_cleanD_rng	__P((vaddr_t start, vsize_t end));
328 void	sa110_cache_purgeID_rng	__P((vaddr_t start, vsize_t end));
329 void	sa110_cache_purgeD_rng	__P((vaddr_t start, vsize_t end));
330 void	sa110_cache_syncI_rng	__P((vaddr_t start, vsize_t end));
331 
332 void	sa110_context_switch	__P((void));
333 
334 void	sa110_setup		__P((char *string));
335 #endif	/* CPU_SA110 */
336 
337 #ifdef CPU_XSCALE
338 void	xscale_cpwait		__P((void));
339 
340 void	xscale_cpu_sleep	__P((int mode));
341 
342 u_int	xscale_control		__P((u_int clear, u_int bic));
343 
344 void	xscale_setttb		__P((u_int ttb));
345 
346 void	xscale_tlb_flushID_SE	__P((u_int va));
347 
348 void	xscale_cache_flushID	__P((void));
349 void	xscale_cache_flushI	__P((void));
350 void	xscale_cache_flushD	__P((void));
351 void	xscale_cache_flushD_SE	__P((u_int entry));
352 
353 void	xscale_cache_cleanID	__P((void));
354 void	xscale_cache_cleanD	__P((void));
355 void	xscale_cache_cleanD_E	__P((u_int entry));
356 
357 void	xscale_cache_purgeID	__P((void));
358 void	xscale_cache_purgeID_E	__P((u_int entry));
359 void	xscale_cache_purgeD	__P((void));
360 void	xscale_cache_purgeD_E	__P((u_int entry));
361 
362 void	xscale_cache_syncI	__P((void));
363 void	xscale_cache_cleanID_rng __P((vaddr_t start, vsize_t end));
364 void	xscale_cache_cleanD_rng	__P((vaddr_t start, vsize_t end));
365 void	xscale_cache_purgeID_rng __P((vaddr_t start, vsize_t end));
366 void	xscale_cache_purgeD_rng	__P((vaddr_t start, vsize_t end));
367 void	xscale_cache_syncI_rng	__P((vaddr_t start, vsize_t end));
368 
369 /* Used in write-through mode. */
370 void	xscale_cache_flushID_rng __P((vaddr_t start, vsize_t end));
371 void	xscale_cache_flushD_rng	__P((vaddr_t start, vsize_t end));
372 void	xscale_cache_flushI_rng	__P((vaddr_t start, vsize_t end));
373 
374 void	xscale_context_switch	__P((void));
375 
376 void	xscale_setup		__P((char *string));
377 #endif	/* CPU_XSCALE */
378 
379 #define tlb_flush	cpu_tlb_flushID
380 #define setttb		cpu_setttb
381 #define drain_writebuf	cpu_drain_writebuf
382 
383 /*
384  * Macros for manipulating CPU interrupts
385  */
386 #ifdef __PROG32
387 #define disable_interrupts(mask)					\
388 	(SetCPSR((mask) & (I32_bit | F32_bit), (mask) & (I32_bit | F32_bit)))
389 
390 #define enable_interrupts(mask)						\
391 	(SetCPSR((mask) & (I32_bit | F32_bit), 0))
392 
393 #define restore_interrupts(old_cpsr)					\
394 	(SetCPSR((I32_bit | F32_bit), (old_cpsr) & (I32_bit | F32_bit)))
395 #else /* ! __PROG32 */
396 #define	disable_interrupts(mask)					\
397 	(set_r15((mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE),		\
398 		 (mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)))
399 
400 #define	enable_interrupts(mask)						\
401 	(set_r15((mask) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE), 0))
402 
403 #define	restore_interrupts(old_r15)					\
404 	(set_r15((R15_IRQ_DISABLE | R15_FIQ_DISABLE),			\
405 		 (old_r15) & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)))
406 #endif /* __PROG32 */
407 
408 #ifdef __PROG32
409 /* Functions to manipulate the CPSR. */
410 u_int	SetCPSR(u_int bic, u_int eor);
411 u_int	GetCPSR(void);
412 #else
413 /* Functions to manipulate the processor control bits in r15. */
414 u_int	set_r15(u_int bic, u_int eor);
415 u_int	get_r15(void);
416 #endif /* __PROG32 */
417 
418 /*
419  * Functions to manipulate cpu r13
420  * (in arm/arm32/setstack.S)
421  */
422 
423 void set_stackptr	__P((u_int mode, u_int address));
424 u_int get_stackptr	__P((u_int mode));
425 
426 /*
427  * Miscellany
428  */
429 
430 int get_pc_str_offset	__P((void));
431 
432 /*
433  * CPU functions from locore.S
434  */
435 
436 void cpu_reset		__P((void)) __attribute__((__noreturn__));
437 
438 /*
439  * Cache info variables.
440  */
441 
442 /* PRIMARY CACHE VARIABLES */
443 int	arm_picache_size;
444 int	arm_picache_line_size;
445 int	arm_picache_ways;
446 
447 int	arm_pdcache_size;	/* and unified */
448 int	arm_pdcache_line_size;
449 int	arm_pdcache_ways;
450 
451 int	arm_pcache_type;
452 int	arm_pcache_unified;
453 
454 int	arm_dcache_align;
455 int	arm_dcache_align_mask;
456 
457 #endif	/* _KERNEL */
458 #endif	/* _ARM32_CPUFUNC_H_ */
459 
460 /* End of cpufunc.h */
461