1 /* $NetBSD: pmap.h,v 1.75 2003/06/18 02:58:09 bsh Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #include <arm/cpufunc.h> 77 #include <uvm/uvm_object.h> 78 #endif 79 80 /* 81 * a pmap describes a processes' 4GB virtual address space. this 82 * virtual address space can be broken up into 4096 1MB regions which 83 * are described by L1 PTEs in the L1 table. 84 * 85 * There is a line drawn at KERNEL_BASE. Everything below that line 86 * changes when the VM context is switched. Everything above that line 87 * is the same no matter which VM context is running. This is achieved 88 * by making the L1 PTEs for those slots above KERNEL_BASE reference 89 * kernel L2 tables. 90 * 91 * The basic layout of the virtual address space thus looks like this: 92 * 93 * 0xffffffff 94 * . 95 * . 96 * . 97 * KERNEL_BASE 98 * -------------------- 99 * . 100 * . 101 * . 102 * 0x00000000 103 */ 104 105 /* 106 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 107 * A bucket size of 16 provides for 16MB of contiguous virtual address 108 * space per l2_dtable. Most processes will, therefore, require only two or 109 * three of these to map their whole working set. 110 */ 111 #define L2_BUCKET_LOG2 4 112 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 113 114 /* 115 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 116 * of l2_dtable structures required to track all possible page descriptors 117 * mappable by an L1 translation table is given by the following constants: 118 */ 119 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) 120 #define L2_SIZE (1 << L2_LOG2) 121 122 #ifndef _LOCORE 123 124 struct l1_ttable; 125 struct l2_dtable; 126 127 /* 128 * Track cache/tlb occupancy using the following structure 129 */ 130 union pmap_cache_state { 131 struct { 132 union { 133 u_int8_t csu_cache_b[2]; 134 u_int16_t csu_cache; 135 } cs_cache_u; 136 137 union { 138 u_int8_t csu_tlb_b[2]; 139 u_int16_t csu_tlb; 140 } cs_tlb_u; 141 } cs_s; 142 u_int32_t cs_all; 143 }; 144 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 145 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 146 #define cs_cache cs_s.cs_cache_u.csu_cache 147 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 148 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 149 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 150 151 /* 152 * Assigned to cs_all to force cacheops to work for a particular pmap 153 */ 154 #define PMAP_CACHE_STATE_ALL 0xffffffffu 155 156 /* 157 * This structure is used by machine-dependent code to describe 158 * static mappings of devices, created at bootstrap time. 159 */ 160 struct pmap_devmap { 161 vaddr_t pd_va; /* virtual address */ 162 paddr_t pd_pa; /* physical address */ 163 psize_t pd_size; /* size of region */ 164 vm_prot_t pd_prot; /* protection code */ 165 int pd_cache; /* cache attributes */ 166 }; 167 168 /* 169 * The pmap structure itself 170 */ 171 struct pmap { 172 u_int8_t pm_domain; 173 boolean_t pm_remove_all; 174 struct l1_ttable *pm_l1; 175 union pmap_cache_state pm_cstate; 176 struct uvm_object pm_obj; 177 #define pm_lock pm_obj.vmobjlock 178 struct l2_dtable *pm_l2[L2_SIZE]; 179 struct pmap_statistics pm_stats; 180 LIST_ENTRY(pmap) pm_list; 181 }; 182 183 typedef struct pmap *pmap_t; 184 185 /* 186 * Physical / virtual address structure. In a number of places (particularly 187 * during bootstrapping) we need to keep track of the physical and virtual 188 * addresses of various pages 189 */ 190 typedef struct pv_addr { 191 SLIST_ENTRY(pv_addr) pv_list; 192 paddr_t pv_pa; 193 vaddr_t pv_va; 194 } pv_addr_t; 195 196 /* 197 * Determine various modes for PTEs (user vs. kernel, cacheable 198 * vs. non-cacheable). 199 */ 200 #define PTE_KERNEL 0 201 #define PTE_USER 1 202 #define PTE_NOCACHE 0 203 #define PTE_CACHE 1 204 #define PTE_PAGETABLE 2 205 206 /* 207 * Flags that indicate attributes of pages or mappings of pages. 208 * 209 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 210 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 211 * pv_entry's for each page. They live in the same "namespace" so 212 * that we can clear multiple attributes at a time. 213 * 214 * Note the "non-cacheable" flag generally means the page has 215 * multiple mappings in a given address space. 216 */ 217 #define PVF_MOD 0x01 /* page is modified */ 218 #define PVF_REF 0x02 /* page is referenced */ 219 #define PVF_WIRED 0x04 /* mapping is wired */ 220 #define PVF_WRITE 0x08 /* mapping is writable */ 221 #define PVF_EXEC 0x10 /* mapping is executable */ 222 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 223 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 224 #define PVF_NC (PVF_UNC|PVF_KNC) 225 226 /* 227 * Commonly referenced structures 228 */ 229 extern struct pmap kernel_pmap_store; 230 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ 231 232 /* 233 * Macros that we need to export 234 */ 235 #define pmap_kernel() (&kernel_pmap_store) 236 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 237 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 238 239 #define pmap_is_modified(pg) \ 240 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 241 #define pmap_is_referenced(pg) \ 242 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 243 244 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 245 246 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 247 248 /* 249 * Functions that we need to export 250 */ 251 void pmap_procwr(struct proc *, vaddr_t, int); 252 void pmap_remove_all(pmap_t); 253 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *); 254 255 #define PMAP_NEED_PROCWR 256 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 257 258 /* Functions we use internally. */ 259 void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t); 260 261 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 262 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 263 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 264 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 265 266 void pmap_debug(int); 267 void pmap_postinit(void); 268 269 void vector_page_setprot(int); 270 271 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); 272 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); 273 274 /* Bootstrapping routines. */ 275 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 276 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 277 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 278 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 279 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); 280 void pmap_devmap_register(const struct pmap_devmap *); 281 282 /* 283 * Special page zero routine for use by the idle loop (no cache cleans). 284 */ 285 boolean_t pmap_pageidlezero(paddr_t); 286 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 287 288 /* 289 * The current top of kernel VM 290 */ 291 extern vaddr_t pmap_curmaxkvaddr; 292 293 /* 294 * Useful macros and constants 295 */ 296 297 /* Virtual address to page table entry */ 298 static __inline pt_entry_t * 299 vtopte(vaddr_t va) 300 { 301 pd_entry_t *pdep; 302 pt_entry_t *ptep; 303 304 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE) 305 return (NULL); 306 return (ptep); 307 } 308 309 /* 310 * Virtual address to physical address 311 */ 312 static __inline paddr_t 313 vtophys(vaddr_t va) 314 { 315 paddr_t pa; 316 317 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) 318 return (0); /* XXXSCW: Panic? */ 319 320 return (pa); 321 } 322 323 /* 324 * The new pmap ensures that page-tables are always mapping Write-Thru. 325 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 326 * on every change. 327 * 328 * Unfortunately, not all CPUs have a write-through cache mode. So we 329 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 330 * and if there is the chance for PTE syncs to be needed, we define 331 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 332 * the code. 333 */ 334 extern int pmap_needs_pte_sync; 335 #if defined(_KERNEL_OPT) 336 /* 337 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 338 * we need to do PTE syncs. If only SA-1 is configured, then evaluate 339 * this at compile time. 340 */ 341 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) 342 #define PMAP_NEEDS_PTE_SYNC 1 343 #define PMAP_INCLUDE_PTE_SYNC 344 #elif (ARM_MMU_SA1 == 0) 345 #define PMAP_NEEDS_PTE_SYNC 0 346 #endif 347 #endif /* _KERNEL_OPT */ 348 349 /* 350 * Provide a fallback in case we were not able to determine it at 351 * compile-time. 352 */ 353 #ifndef PMAP_NEEDS_PTE_SYNC 354 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 355 #define PMAP_INCLUDE_PTE_SYNC 356 #endif 357 358 #define PTE_SYNC(pte) \ 359 do { \ 360 if (PMAP_NEEDS_PTE_SYNC) \ 361 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\ 362 } while (/*CONSTCOND*/0) 363 364 #define PTE_SYNC_RANGE(pte, cnt) \ 365 do { \ 366 if (PMAP_NEEDS_PTE_SYNC) { \ 367 cpu_dcache_wb_range((vaddr_t)(pte), \ 368 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 369 } \ 370 } while (/*CONSTCOND*/0) 371 372 #define l1pte_valid(pde) ((pde) != 0) 373 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 374 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 375 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 376 377 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) 378 #define l2pte_valid(pte) ((pte) != 0) 379 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 380 381 /* L1 and L2 page table macros */ 382 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 383 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 384 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 385 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 386 387 #define pmap_pte_v(pte) l2pte_valid(*(pte)) 388 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 389 390 /* Size of the kernel part of the L1 page table */ 391 #define KERNEL_PD_SIZE \ 392 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 393 394 /************************* ARM MMU configuration *****************************/ 395 396 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 397 void pmap_copy_page_generic(paddr_t, paddr_t); 398 void pmap_zero_page_generic(paddr_t); 399 400 void pmap_pte_init_generic(void); 401 #if defined(CPU_ARM8) 402 void pmap_pte_init_arm8(void); 403 #endif 404 #if defined(CPU_ARM9) 405 void pmap_pte_init_arm9(void); 406 #endif /* CPU_ARM9 */ 407 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 408 409 #if ARM_MMU_SA1 == 1 410 void pmap_pte_init_sa1(void); 411 #endif /* ARM_MMU_SA1 == 1 */ 412 413 #if ARM_MMU_XSCALE == 1 414 void pmap_copy_page_xscale(paddr_t, paddr_t); 415 void pmap_zero_page_xscale(paddr_t); 416 417 void pmap_pte_init_xscale(void); 418 419 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 420 #endif /* ARM_MMU_XSCALE == 1 */ 421 422 extern pt_entry_t pte_l1_s_cache_mode; 423 extern pt_entry_t pte_l1_s_cache_mask; 424 425 extern pt_entry_t pte_l2_l_cache_mode; 426 extern pt_entry_t pte_l2_l_cache_mask; 427 428 extern pt_entry_t pte_l2_s_cache_mode; 429 extern pt_entry_t pte_l2_s_cache_mask; 430 431 extern pt_entry_t pte_l1_s_cache_mode_pt; 432 extern pt_entry_t pte_l2_l_cache_mode_pt; 433 extern pt_entry_t pte_l2_s_cache_mode_pt; 434 435 extern pt_entry_t pte_l2_s_prot_u; 436 extern pt_entry_t pte_l2_s_prot_w; 437 extern pt_entry_t pte_l2_s_prot_mask; 438 439 extern pt_entry_t pte_l1_s_proto; 440 extern pt_entry_t pte_l1_c_proto; 441 extern pt_entry_t pte_l2_s_proto; 442 443 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 444 extern void (*pmap_zero_page_func)(paddr_t); 445 446 #endif /* !_LOCORE */ 447 448 /*****************************************************************************/ 449 450 /* 451 * tell MI code that the cache is virtually-indexed *and* virtually-tagged. 452 */ 453 #define PMAP_CACHE_VIVT 454 455 /* 456 * Definitions for MMU domains 457 */ 458 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */ 459 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */ 460 461 /* 462 * These macros define the various bit masks in the PTE. 463 * 464 * We use these macros since we use different bits on different processor 465 * models. 466 */ 467 #define L1_S_PROT_U (L1_S_AP(AP_U)) 468 #define L1_S_PROT_W (L1_S_AP(AP_W)) 469 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) 470 471 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 472 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)) 473 474 #define L2_L_PROT_U (L2_AP(AP_U)) 475 #define L2_L_PROT_W (L2_AP(AP_W)) 476 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) 477 478 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 479 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X)) 480 481 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 482 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 483 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) 484 485 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 486 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 487 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) 488 489 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 490 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)) 491 492 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 493 #define L1_S_PROTO_xscale (L1_TYPE_S) 494 495 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 496 #define L1_C_PROTO_xscale (L1_TYPE_C) 497 498 #define L2_L_PROTO (L2_TYPE_L) 499 500 #define L2_S_PROTO_generic (L2_TYPE_S) 501 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) 502 503 /* 504 * User-visible names for the ones that vary with MMU class. 505 */ 506 507 #if ARM_NMMUS > 1 508 /* More than one MMU class configured; use variables. */ 509 #define L2_S_PROT_U pte_l2_s_prot_u 510 #define L2_S_PROT_W pte_l2_s_prot_w 511 #define L2_S_PROT_MASK pte_l2_s_prot_mask 512 513 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 514 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 515 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 516 517 #define L1_S_PROTO pte_l1_s_proto 518 #define L1_C_PROTO pte_l1_c_proto 519 #define L2_S_PROTO pte_l2_s_proto 520 521 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 522 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 523 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 524 #define L2_S_PROT_U L2_S_PROT_U_generic 525 #define L2_S_PROT_W L2_S_PROT_W_generic 526 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 527 528 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 529 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 530 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 531 532 #define L1_S_PROTO L1_S_PROTO_generic 533 #define L1_C_PROTO L1_C_PROTO_generic 534 #define L2_S_PROTO L2_S_PROTO_generic 535 536 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 537 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 538 #elif ARM_MMU_XSCALE == 1 539 #define L2_S_PROT_U L2_S_PROT_U_xscale 540 #define L2_S_PROT_W L2_S_PROT_W_xscale 541 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 542 543 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 544 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 545 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 546 547 #define L1_S_PROTO L1_S_PROTO_xscale 548 #define L1_C_PROTO L1_C_PROTO_xscale 549 #define L2_S_PROTO L2_S_PROTO_xscale 550 551 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 552 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 553 #endif /* ARM_NMMUS > 1 */ 554 555 /* 556 * These macros return various bits based on kernel/user and protection. 557 * Note that the compiler will usually fold these at compile time. 558 */ 559 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 560 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) 561 562 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 563 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) 564 565 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 566 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) 567 568 /* 569 * Macros to test if a mapping is mappable with an L1 Section mapping 570 * or an L2 Large Page mapping. 571 */ 572 #define L1_S_MAPPABLE_P(va, pa, size) \ 573 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 574 575 #define L2_L_MAPPABLE_P(va, pa, size) \ 576 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 577 578 /* 579 * Hooks for the pool allocator. 580 */ 581 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 582 583 #endif /* _KERNEL */ 584 585 #endif /* _ARM32_PMAP_H_ */ 586