1 /* $NetBSD: pmap.h,v 1.97 2010/11/14 13:33:21 uebayasi Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #if defined(_KERNEL_OPT) 77 #include "opt_arm32_pmap.h" 78 #endif 79 #include <arm/cpufunc.h> 80 #include <uvm/uvm_object.h> 81 #endif 82 83 /* 84 * a pmap describes a processes' 4GB virtual address space. this 85 * virtual address space can be broken up into 4096 1MB regions which 86 * are described by L1 PTEs in the L1 table. 87 * 88 * There is a line drawn at KERNEL_BASE. Everything below that line 89 * changes when the VM context is switched. Everything above that line 90 * is the same no matter which VM context is running. This is achieved 91 * by making the L1 PTEs for those slots above KERNEL_BASE reference 92 * kernel L2 tables. 93 * 94 * The basic layout of the virtual address space thus looks like this: 95 * 96 * 0xffffffff 97 * . 98 * . 99 * . 100 * KERNEL_BASE 101 * -------------------- 102 * . 103 * . 104 * . 105 * 0x00000000 106 */ 107 108 /* 109 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 110 * A bucket size of 16 provides for 16MB of contiguous virtual address 111 * space per l2_dtable. Most processes will, therefore, require only two or 112 * three of these to map their whole working set. 113 */ 114 #define L2_BUCKET_LOG2 4 115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 116 117 /* 118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 119 * of l2_dtable structures required to track all possible page descriptors 120 * mappable by an L1 translation table is given by the following constants: 121 */ 122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) 123 #define L2_SIZE (1 << L2_LOG2) 124 125 /* 126 * tell MI code that the cache is virtually-indexed. 127 * ARMv6 is physically-tagged but all others are virtually-tagged. 128 */ 129 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 130 #define PMAP_CACHE_VIPT 131 #else 132 #define PMAP_CACHE_VIVT 133 #endif 134 135 #ifndef _LOCORE 136 137 struct l1_ttable; 138 struct l2_dtable; 139 140 /* 141 * Track cache/tlb occupancy using the following structure 142 */ 143 union pmap_cache_state { 144 struct { 145 union { 146 u_int8_t csu_cache_b[2]; 147 u_int16_t csu_cache; 148 } cs_cache_u; 149 150 union { 151 u_int8_t csu_tlb_b[2]; 152 u_int16_t csu_tlb; 153 } cs_tlb_u; 154 } cs_s; 155 u_int32_t cs_all; 156 }; 157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 159 #define cs_cache cs_s.cs_cache_u.csu_cache 160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 163 164 /* 165 * Assigned to cs_all to force cacheops to work for a particular pmap 166 */ 167 #define PMAP_CACHE_STATE_ALL 0xffffffffu 168 169 /* 170 * This structure is used by machine-dependent code to describe 171 * static mappings of devices, created at bootstrap time. 172 */ 173 struct pmap_devmap { 174 vaddr_t pd_va; /* virtual address */ 175 paddr_t pd_pa; /* physical address */ 176 psize_t pd_size; /* size of region */ 177 vm_prot_t pd_prot; /* protection code */ 178 int pd_cache; /* cache attributes */ 179 }; 180 181 /* 182 * The pmap structure itself 183 */ 184 struct pmap { 185 u_int8_t pm_domain; 186 bool pm_remove_all; 187 bool pm_activated; 188 struct l1_ttable *pm_l1; 189 pd_entry_t *pm_pl1vec; 190 pd_entry_t pm_l1vec; 191 union pmap_cache_state pm_cstate; 192 struct uvm_object pm_obj; 193 #define pm_lock pm_obj.vmobjlock 194 struct l2_dtable *pm_l2[L2_SIZE]; 195 struct pmap_statistics pm_stats; 196 LIST_ENTRY(pmap) pm_list; 197 }; 198 199 /* 200 * Physical / virtual address structure. In a number of places (particularly 201 * during bootstrapping) we need to keep track of the physical and virtual 202 * addresses of various pages 203 */ 204 typedef struct pv_addr { 205 SLIST_ENTRY(pv_addr) pv_list; 206 paddr_t pv_pa; 207 vaddr_t pv_va; 208 vsize_t pv_size; 209 } pv_addr_t; 210 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; 211 212 extern pv_addrqh_t pmap_freeq; 213 extern pv_addr_t kernelpages; 214 extern pv_addr_t systempage; 215 extern pv_addr_t kernel_l1pt; 216 217 /* 218 * Determine various modes for PTEs (user vs. kernel, cacheable 219 * vs. non-cacheable). 220 */ 221 #define PTE_KERNEL 0 222 #define PTE_USER 1 223 #define PTE_NOCACHE 0 224 #define PTE_CACHE 1 225 #define PTE_PAGETABLE 2 226 227 /* 228 * Flags that indicate attributes of pages or mappings of pages. 229 * 230 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 231 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 232 * pv_entry's for each page. They live in the same "namespace" so 233 * that we can clear multiple attributes at a time. 234 * 235 * Note the "non-cacheable" flag generally means the page has 236 * multiple mappings in a given address space. 237 */ 238 #define PVF_MOD 0x01 /* page is modified */ 239 #define PVF_REF 0x02 /* page is referenced */ 240 #define PVF_WIRED 0x04 /* mapping is wired */ 241 #define PVF_WRITE 0x08 /* mapping is writable */ 242 #define PVF_EXEC 0x10 /* mapping is executable */ 243 #ifdef PMAP_CACHE_VIVT 244 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 245 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 246 #define PVF_NC (PVF_UNC|PVF_KNC) 247 #endif 248 #ifdef PMAP_CACHE_VIPT 249 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ 250 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ 251 #endif 252 #define PVF_COLORED 0x80 /* page has or had a color */ 253 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ 254 #define PVF_KMPAGE 0x0200 /* page is used for kmem */ 255 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ 256 #define PVF_KMOD 0x0800 /* unmanaged page is modified */ 257 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) 258 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) 259 260 /* 261 * Commonly referenced structures 262 */ 263 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ 264 265 /* 266 * Macros that we need to export 267 */ 268 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 269 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 270 271 #define pmap_is_modified(pg) \ 272 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 273 #define pmap_is_referenced(pg) \ 274 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 275 #define pmap_is_page_colored_p(md) \ 276 (((md)->pvh_attrs & PVF_COLORED) != 0) 277 278 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 279 280 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 281 282 /* 283 * Functions that we need to export 284 */ 285 void pmap_procwr(struct proc *, vaddr_t, int); 286 void pmap_remove_all(pmap_t); 287 bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 288 289 #define PMAP_NEED_PROCWR 290 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 291 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ 292 293 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 294 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) 295 void pmap_prefer(vaddr_t, vaddr_t *, int); 296 #endif 297 298 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); 299 300 /* Functions we use internally. */ 301 #ifdef PMAP_STEAL_MEMORY 302 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); 303 void pmap_boot_pageadd(pv_addr_t *); 304 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); 305 #endif 306 void pmap_bootstrap(vaddr_t, vaddr_t); 307 308 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 309 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 310 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 311 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 312 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 313 314 void pmap_debug(int); 315 void pmap_postinit(void); 316 317 void vector_page_setprot(int); 318 319 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); 320 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); 321 322 /* Bootstrapping routines. */ 323 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 324 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 325 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 326 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 327 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); 328 void pmap_devmap_register(const struct pmap_devmap *); 329 330 /* 331 * Special page zero routine for use by the idle loop (no cache cleans). 332 */ 333 bool pmap_pageidlezero(paddr_t); 334 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 335 336 /* 337 * used by dumpsys to record the PA of the L1 table 338 */ 339 uint32_t pmap_kernel_L1_addr(void); 340 /* 341 * The current top of kernel VM 342 */ 343 extern vaddr_t pmap_curmaxkvaddr; 344 345 /* 346 * Useful macros and constants 347 */ 348 349 /* Virtual address to page table entry */ 350 static inline pt_entry_t * 351 vtopte(vaddr_t va) 352 { 353 pd_entry_t *pdep; 354 pt_entry_t *ptep; 355 356 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 357 return (NULL); 358 return (ptep); 359 } 360 361 /* 362 * Virtual address to physical address 363 */ 364 static inline paddr_t 365 vtophys(vaddr_t va) 366 { 367 paddr_t pa; 368 369 if (pmap_extract(pmap_kernel(), va, &pa) == false) 370 return (0); /* XXXSCW: Panic? */ 371 372 return (pa); 373 } 374 375 /* 376 * The new pmap ensures that page-tables are always mapping Write-Thru. 377 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 378 * on every change. 379 * 380 * Unfortunately, not all CPUs have a write-through cache mode. So we 381 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 382 * and if there is the chance for PTE syncs to be needed, we define 383 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 384 * the code. 385 */ 386 extern int pmap_needs_pte_sync; 387 #if defined(_KERNEL_OPT) 388 /* 389 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 390 * we need to do PTE syncs. If only SA-1 is configured, then evaluate 391 * this at compile time. 392 */ 393 #if (ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7 != 0) && (ARM_NMMUS == 1) 394 #define PMAP_NEEDS_PTE_SYNC 1 395 #define PMAP_INCLUDE_PTE_SYNC 396 #elif (ARM_MMU_SA1 == 0) 397 #define PMAP_NEEDS_PTE_SYNC 0 398 #endif 399 #endif /* _KERNEL_OPT */ 400 401 /* 402 * Provide a fallback in case we were not able to determine it at 403 * compile-time. 404 */ 405 #ifndef PMAP_NEEDS_PTE_SYNC 406 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 407 #define PMAP_INCLUDE_PTE_SYNC 408 #endif 409 410 #define PTE_SYNC(pte) \ 411 do { \ 412 if (PMAP_NEEDS_PTE_SYNC) \ 413 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\ 414 } while (/*CONSTCOND*/0) 415 416 #define PTE_SYNC_RANGE(pte, cnt) \ 417 do { \ 418 if (PMAP_NEEDS_PTE_SYNC) { \ 419 cpu_dcache_wb_range((vaddr_t)(pte), \ 420 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 421 } \ 422 } while (/*CONSTCOND*/0) 423 424 #define l1pte_valid(pde) ((pde) != 0) 425 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 426 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 427 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 428 429 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) 430 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) 431 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 432 #define l2pte_minidata(pte) (((pte) & \ 433 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ 434 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) 435 436 /* L1 and L2 page table macros */ 437 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 438 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 439 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 440 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 441 442 #define pmap_pte_v(pte) l2pte_valid(*(pte)) 443 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 444 445 /* Size of the kernel part of the L1 page table */ 446 #define KERNEL_PD_SIZE \ 447 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 448 449 /************************* ARM MMU configuration *****************************/ 450 451 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 452 void pmap_copy_page_generic(paddr_t, paddr_t); 453 void pmap_zero_page_generic(paddr_t); 454 455 void pmap_pte_init_generic(void); 456 #if defined(CPU_ARM8) 457 void pmap_pte_init_arm8(void); 458 #endif 459 #if defined(CPU_ARM9) 460 void pmap_pte_init_arm9(void); 461 #endif /* CPU_ARM9 */ 462 #if defined(CPU_ARM10) 463 void pmap_pte_init_arm10(void); 464 #endif /* CPU_ARM10 */ 465 #if defined(CPU_ARM11) 466 void pmap_pte_init_arm11(void); 467 #endif /* CPU_ARM11 */ 468 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 469 470 #if ARM_MMU_SA1 == 1 471 void pmap_pte_init_sa1(void); 472 #endif /* ARM_MMU_SA1 == 1 */ 473 474 #if ARM_MMU_XSCALE == 1 475 void pmap_copy_page_xscale(paddr_t, paddr_t); 476 void pmap_zero_page_xscale(paddr_t); 477 478 void pmap_pte_init_xscale(void); 479 480 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 481 482 #define PMAP_UAREA(va) pmap_uarea(va) 483 void pmap_uarea(vaddr_t); 484 #endif /* ARM_MMU_XSCALE == 1 */ 485 486 #if ARM_MMU_V7 == 1 487 void pmap_pte_init_armv7(void); 488 #endif /* ARM_MMU_V7 */ 489 490 extern pt_entry_t pte_l1_s_cache_mode; 491 extern pt_entry_t pte_l1_s_cache_mask; 492 493 extern pt_entry_t pte_l2_l_cache_mode; 494 extern pt_entry_t pte_l2_l_cache_mask; 495 496 extern pt_entry_t pte_l2_s_cache_mode; 497 extern pt_entry_t pte_l2_s_cache_mask; 498 499 extern pt_entry_t pte_l1_s_cache_mode_pt; 500 extern pt_entry_t pte_l2_l_cache_mode_pt; 501 extern pt_entry_t pte_l2_s_cache_mode_pt; 502 503 extern pt_entry_t pte_l1_s_prot_u; 504 extern pt_entry_t pte_l1_s_prot_w; 505 extern pt_entry_t pte_l1_s_prot_ro; 506 extern pt_entry_t pte_l1_s_prot_mask; 507 508 extern pt_entry_t pte_l2_s_prot_u; 509 extern pt_entry_t pte_l2_s_prot_w; 510 extern pt_entry_t pte_l2_s_prot_ro; 511 extern pt_entry_t pte_l2_s_prot_mask; 512 513 extern pt_entry_t pte_l2_l_prot_u; 514 extern pt_entry_t pte_l2_l_prot_w; 515 extern pt_entry_t pte_l2_l_prot_ro; 516 extern pt_entry_t pte_l2_l_prot_mask; 517 518 extern pt_entry_t pte_l1_s_proto; 519 extern pt_entry_t pte_l1_c_proto; 520 extern pt_entry_t pte_l2_s_proto; 521 522 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 523 extern void (*pmap_zero_page_func)(paddr_t); 524 525 #endif /* !_LOCORE */ 526 527 /*****************************************************************************/ 528 529 /* 530 * Definitions for MMU domains 531 */ 532 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */ 533 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */ 534 535 /* 536 * These macros define the various bit masks in the PTE. 537 * 538 * We use these macros since we use different bits on different processor 539 * models. 540 */ 541 #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) 542 #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) 543 #define L1_S_PROT_RO_generic (0) 544 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 545 546 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) 547 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) 548 #define L1_S_PROT_RO_xscale (0) 549 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 550 551 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 552 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) 553 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 554 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 555 556 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 557 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) 558 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C) 559 560 #define L2_L_PROT_U_generic (L2_AP(AP_U)) 561 #define L2_L_PROT_W_generic (L2_AP(AP_W)) 562 #define L2_L_PROT_RO_generic (0) 563 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 564 565 #define L2_L_PROT_U_xscale (L2_AP(AP_U)) 566 #define L2_L_PROT_W_xscale (L2_AP(AP_W)) 567 #define L2_L_PROT_RO_xscale (0) 568 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 569 570 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 571 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) 572 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 573 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 574 575 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 576 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) 577 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C) 578 579 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 580 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 581 #define L2_S_PROT_RO_generic (0) 582 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 583 584 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 585 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 586 #define L2_S_PROT_RO_xscale (0) 587 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 588 589 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 590 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) 591 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 592 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 593 594 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 595 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) 596 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C) 597 598 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 599 #define L1_S_PROTO_xscale (L1_TYPE_S) 600 #define L1_S_PROTO_armv7 (L1_TYPE_S) 601 602 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 603 #define L1_C_PROTO_xscale (L1_TYPE_C) 604 #define L1_C_PROTO_armv7 (L1_TYPE_C) 605 606 #define L2_L_PROTO (L2_TYPE_L) 607 608 #define L2_S_PROTO_generic (L2_TYPE_S) 609 #define L2_S_PROTO_xscale (L2_TYPE_XS) 610 #define L2_S_PROTO_armv7 (L2_TYPE_S) 611 612 /* 613 * User-visible names for the ones that vary with MMU class. 614 */ 615 616 #if ARM_NMMUS > 1 617 /* More than one MMU class configured; use variables. */ 618 #define L1_S_PROT_U pte_l1_s_prot_u 619 #define L1_S_PROT_W pte_l1_s_prot_w 620 #define L1_S_PROT_RO pte_l1_s_prot_ro 621 #define L1_S_PROT_MASK pte_l1_s_prot_mask 622 623 #define L2_S_PROT_U pte_l2_s_prot_u 624 #define L2_S_PROT_W pte_l2_s_prot_w 625 #define L2_S_PROT_RO pte_l2_s_prot_ro 626 #define L2_S_PROT_MASK pte_l2_s_prot_mask 627 628 #define L2_L_PROT_U pte_l2_l_prot_u 629 #define L2_L_PROT_W pte_l2_l_prot_w 630 #define L2_L_PROT_RO pte_l2_l_prot_ro 631 #define L2_L_PROT_MASK pte_l2_l_prot_mask 632 633 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 634 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 635 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 636 637 #define L1_S_PROTO pte_l1_s_proto 638 #define L1_C_PROTO pte_l1_c_proto 639 #define L2_S_PROTO pte_l2_s_proto 640 641 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 642 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 643 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 644 #define L1_S_PROT_U L1_S_PROT_U_generic 645 #define L1_S_PROT_W L1_S_PROT_W_generic 646 #define L1_S_PROT_RO L1_S_PROT_RO_generic 647 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 648 649 #define L2_S_PROT_U L2_S_PROT_U_generic 650 #define L2_S_PROT_W L2_S_PROT_W_generic 651 #define L2_S_PROT_RO L2_S_PROT_RO_generic 652 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 653 654 #define L2_L_PROT_U L2_L_PROT_U_generic 655 #define L2_L_PROT_W L2_L_PROT_W_generic 656 #define L2_L_PROT_RO L2_L_PROT_RO_generic 657 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 658 659 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 660 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 661 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 662 663 #define L1_S_PROTO L1_S_PROTO_generic 664 #define L1_C_PROTO L1_C_PROTO_generic 665 #define L2_S_PROTO L2_S_PROTO_generic 666 667 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 668 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 669 #elif ARM_MMU_XSCALE == 1 670 #define L1_S_PROT_U L1_S_PROT_U_generic 671 #define L1_S_PROT_W L1_S_PROT_W_generic 672 #define L1_S_PROT_RO L1_S_PROT_RO_generic 673 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 674 675 #define L2_S_PROT_U L2_S_PROT_U_xscale 676 #define L2_S_PROT_W L2_S_PROT_W_xscale 677 #define L2_S_PROT_RO L2_S_PROT_RO_xscale 678 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 679 680 #define L2_L_PROT_U L2_L_PROT_U_generic 681 #define L2_L_PROT_W L2_L_PROT_W_generic 682 #define L2_L_PROT_RO L2_L_PROT_RO_generic 683 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 684 685 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 686 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 687 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 688 689 #define L1_S_PROTO L1_S_PROTO_xscale 690 #define L1_C_PROTO L1_C_PROTO_xscale 691 #define L2_S_PROTO L2_S_PROTO_xscale 692 693 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 694 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 695 #elif ARM_MMU_V7 == 1 696 #define L1_S_PROT_U L1_S_PROT_U_armv7 697 #define L1_S_PROT_W L1_S_PROT_W_armv7 698 #define L1_S_PROT_RO L1_S_PROT_RO_armv7 699 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 700 701 #define L2_S_PROT_U L2_S_PROT_U_armv7 702 #define L2_S_PROT_W L2_S_PROT_W_armv7 703 #define L2_S_PROT_RO L2_S_PROT_RO_armv7 704 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 705 706 #define L2_L_PROT_U L2_L_PROT_U_armv7 707 #define L2_L_PROT_W L2_L_PROT_W_armv7 708 #define L2_L_PROT_RO L2_L_PROT_RO_armv7 709 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 710 711 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 712 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 713 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 714 715 /* These prototypes make writeable mappings, while the other MMU types 716 * make read-only mappings. */ 717 #define L1_S_PROTO L1_S_PROTO_armv7 718 #define L1_C_PROTO L1_C_PROTO_armv7 719 #define L2_S_PROTO L2_S_PROTO_armv7 720 721 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 722 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 723 #endif /* ARM_NMMUS > 1 */ 724 725 /* 726 * Macros to set and query the write permission on page descriptors. 727 */ 728 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) 729 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) 730 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) 731 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) 732 733 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ 734 (L2_S_PROT_RO == 0 || \ 735 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) 736 737 /* 738 * These macros return various bits based on kernel/user and protection. 739 * Note that the compiler will usually fold these at compile time. 740 */ 741 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 742 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO)) 743 744 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 745 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO)) 746 747 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 748 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO)) 749 750 /* 751 * Macros to test if a mapping is mappable with an L1 Section mapping 752 * or an L2 Large Page mapping. 753 */ 754 #define L1_S_MAPPABLE_P(va, pa, size) \ 755 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 756 757 #define L2_L_MAPPABLE_P(va, pa, size) \ 758 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 759 760 /* 761 * Hooks for the pool allocator. 762 */ 763 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 764 765 #ifndef _LOCORE 766 767 /* 768 * pmap-specific data store in the vm_page structure. 769 */ 770 #define __HAVE_VM_PAGE_MD 771 struct vm_page_md { 772 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ 773 struct simplelock pvh_slock; /* lock on this head */ 774 int pvh_attrs; /* page attributes */ 775 u_int uro_mappings; 776 u_int urw_mappings; 777 union { 778 u_short s_mappings[2]; /* Assume kernel count <= 65535 */ 779 u_int i_mappings; 780 } k_u; 781 #define kro_mappings k_u.s_mappings[0] 782 #define krw_mappings k_u.s_mappings[1] 783 #define k_mappings k_u.i_mappings 784 }; 785 786 /* 787 * Set the default color of each page. 788 */ 789 #if ARM_MMU_V6 > 0 790 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 791 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask 792 #else 793 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 794 (pg)->mdpage.pvh_attrs = 0 795 #endif 796 797 #define VM_MDPAGE_INIT(pg) \ 798 do { \ 799 SLIST_INIT(&(pg)->mdpage.pvh_list); \ 800 simple_lock_init(&(pg)->mdpage.pvh_slock); \ 801 VM_MDPAGE_PVH_ATTRS_INIT(pg); \ 802 (pg)->mdpage.uro_mappings = 0; \ 803 (pg)->mdpage.urw_mappings = 0; \ 804 (pg)->mdpage.k_mappings = 0; \ 805 } while (/*CONSTCOND*/0) 806 807 #endif /* !_LOCORE */ 808 809 #endif /* _KERNEL */ 810 811 #endif /* _ARM32_PMAP_H_ */ 812