xref: /netbsd-src/sys/arch/arm/include/arm32/pmap.h (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: pmap.h,v 1.83 2007/10/17 19:53:41 garbled Exp $	*/
2 
3 /*
4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1994,1995 Mark Brinicombe.
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Mark Brinicombe
53  * 4. The name of the author may not be used to endorse or promote products
54  *    derived from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 #ifndef	_ARM32_PMAP_H_
69 #define	_ARM32_PMAP_H_
70 
71 #ifdef _KERNEL
72 
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #include <arm/cpufunc.h>
77 #include <uvm/uvm_object.h>
78 #endif
79 
80 /*
81  * a pmap describes a processes' 4GB virtual address space.  this
82  * virtual address space can be broken up into 4096 1MB regions which
83  * are described by L1 PTEs in the L1 table.
84  *
85  * There is a line drawn at KERNEL_BASE.  Everything below that line
86  * changes when the VM context is switched.  Everything above that line
87  * is the same no matter which VM context is running.  This is achieved
88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
89  * kernel L2 tables.
90  *
91  * The basic layout of the virtual address space thus looks like this:
92  *
93  *	0xffffffff
94  *	.
95  *	.
96  *	.
97  *	KERNEL_BASE
98  *	--------------------
99  *	.
100  *	.
101  *	.
102  *	0x00000000
103  */
104 
105 /*
106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107  * A bucket size of 16 provides for 16MB of contiguous virtual address
108  * space per l2_dtable. Most processes will, therefore, require only two or
109  * three of these to map their whole working set.
110  */
111 #define	L2_BUCKET_LOG2	4
112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
113 
114 /*
115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116  * of l2_dtable structures required to track all possible page descriptors
117  * mappable by an L1 translation table is given by the following constants:
118  */
119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 #define	L2_SIZE		(1 << L2_LOG2)
121 
122 #ifndef _LOCORE
123 
124 struct l1_ttable;
125 struct l2_dtable;
126 
127 /*
128  * Track cache/tlb occupancy using the following structure
129  */
130 union pmap_cache_state {
131 	struct {
132 		union {
133 			u_int8_t csu_cache_b[2];
134 			u_int16_t csu_cache;
135 		} cs_cache_u;
136 
137 		union {
138 			u_int8_t csu_tlb_b[2];
139 			u_int16_t csu_tlb;
140 		} cs_tlb_u;
141 	} cs_s;
142 	u_int32_t cs_all;
143 };
144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
150 
151 /*
152  * Assigned to cs_all to force cacheops to work for a particular pmap
153  */
154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
155 
156 /*
157  * This structure is used by machine-dependent code to describe
158  * static mappings of devices, created at bootstrap time.
159  */
160 struct pmap_devmap {
161 	vaddr_t		pd_va;		/* virtual address */
162 	paddr_t		pd_pa;		/* physical address */
163 	psize_t		pd_size;	/* size of region */
164 	vm_prot_t	pd_prot;	/* protection code */
165 	int		pd_cache;	/* cache attributes */
166 };
167 
168 /*
169  * The pmap structure itself
170  */
171 struct pmap {
172 	u_int8_t		pm_domain;
173 	bool			pm_remove_all;
174 	bool			pm_activated;
175 	struct l1_ttable	*pm_l1;
176 	pd_entry_t		*pm_pl1vec;
177 	pd_entry_t		pm_l1vec;
178 	union pmap_cache_state	pm_cstate;
179 	struct uvm_object	pm_obj;
180 #define	pm_lock pm_obj.vmobjlock
181 	struct l2_dtable	*pm_l2[L2_SIZE];
182 	struct pmap_statistics	pm_stats;
183 	LIST_ENTRY(pmap)	pm_list;
184 };
185 
186 typedef struct pmap *pmap_t;
187 
188 /*
189  * Physical / virtual address structure. In a number of places (particularly
190  * during bootstrapping) we need to keep track of the physical and virtual
191  * addresses of various pages
192  */
193 typedef struct pv_addr {
194 	SLIST_ENTRY(pv_addr) pv_list;
195 	paddr_t pv_pa;
196 	vaddr_t pv_va;
197 } pv_addr_t;
198 
199 /*
200  * Determine various modes for PTEs (user vs. kernel, cacheable
201  * vs. non-cacheable).
202  */
203 #define	PTE_KERNEL	0
204 #define	PTE_USER	1
205 #define	PTE_NOCACHE	0
206 #define	PTE_CACHE	1
207 #define	PTE_PAGETABLE	2
208 
209 /*
210  * Flags that indicate attributes of pages or mappings of pages.
211  *
212  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
213  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
214  * pv_entry's for each page.  They live in the same "namespace" so
215  * that we can clear multiple attributes at a time.
216  *
217  * Note the "non-cacheable" flag generally means the page has
218  * multiple mappings in a given address space.
219  */
220 #define	PVF_MOD		0x01		/* page is modified */
221 #define	PVF_REF		0x02		/* page is referenced */
222 #define	PVF_WIRED	0x04		/* mapping is wired */
223 #define	PVF_WRITE	0x08		/* mapping is writable */
224 #define	PVF_EXEC	0x10		/* mapping is executable */
225 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
226 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
227 #define	PVF_NC		(PVF_UNC|PVF_KNC)
228 
229 /*
230  * Commonly referenced structures
231  */
232 extern struct pmap	kernel_pmap_store;
233 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
234 
235 /*
236  * Macros that we need to export
237  */
238 #define pmap_kernel()			(&kernel_pmap_store)
239 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
240 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
241 
242 #define	pmap_remove(pmap,sva,eva)	pmap_do_remove((pmap),(sva),(eva),0)
243 
244 #define	pmap_is_modified(pg)	\
245 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
246 #define	pmap_is_referenced(pg)	\
247 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
248 
249 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
250 
251 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
252 
253 /*
254  * Functions that we need to export
255  */
256 void	pmap_procwr(struct proc *, vaddr_t, int);
257 void	pmap_remove_all(pmap_t);
258 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
259 
260 #define	PMAP_NEED_PROCWR
261 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
262 
263 /* Functions we use internally. */
264 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
265 
266 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
267 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
268 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
269 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
270 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
271 
272 void	pmap_debug(int);
273 void	pmap_postinit(void);
274 
275 void	vector_page_setprot(int);
276 
277 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
278 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
279 
280 /* Bootstrapping routines. */
281 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
282 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
283 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
284 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
285 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
286 void	pmap_devmap_register(const struct pmap_devmap *);
287 
288 /*
289  * Special page zero routine for use by the idle loop (no cache cleans).
290  */
291 bool	pmap_pageidlezero(paddr_t);
292 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
293 
294 /*
295  * The current top of kernel VM
296  */
297 extern vaddr_t	pmap_curmaxkvaddr;
298 
299 /*
300  * Useful macros and constants
301  */
302 
303 /* Virtual address to page table entry */
304 static inline pt_entry_t *
305 vtopte(vaddr_t va)
306 {
307 	pd_entry_t *pdep;
308 	pt_entry_t *ptep;
309 
310 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
311 		return (NULL);
312 	return (ptep);
313 }
314 
315 /*
316  * Virtual address to physical address
317  */
318 static inline paddr_t
319 vtophys(vaddr_t va)
320 {
321 	paddr_t pa;
322 
323 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
324 		return (0);	/* XXXSCW: Panic? */
325 
326 	return (pa);
327 }
328 
329 /*
330  * The new pmap ensures that page-tables are always mapping Write-Thru.
331  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
332  * on every change.
333  *
334  * Unfortunately, not all CPUs have a write-through cache mode.  So we
335  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
336  * and if there is the chance for PTE syncs to be needed, we define
337  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
338  * the code.
339  */
340 extern int pmap_needs_pte_sync;
341 #if defined(_KERNEL_OPT)
342 /*
343  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
344  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
345  * this at compile time.
346  */
347 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
348 #define	PMAP_NEEDS_PTE_SYNC	1
349 #define	PMAP_INCLUDE_PTE_SYNC
350 #elif (ARM_MMU_SA1 == 0)
351 #define	PMAP_NEEDS_PTE_SYNC	0
352 #endif
353 #endif /* _KERNEL_OPT */
354 
355 /*
356  * Provide a fallback in case we were not able to determine it at
357  * compile-time.
358  */
359 #ifndef PMAP_NEEDS_PTE_SYNC
360 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
361 #define	PMAP_INCLUDE_PTE_SYNC
362 #endif
363 
364 #define	PTE_SYNC(pte)							\
365 do {									\
366 	if (PMAP_NEEDS_PTE_SYNC)					\
367 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
368 } while (/*CONSTCOND*/0)
369 
370 #define	PTE_SYNC_RANGE(pte, cnt)					\
371 do {									\
372 	if (PMAP_NEEDS_PTE_SYNC) {					\
373 		cpu_dcache_wb_range((vaddr_t)(pte),			\
374 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
375 	}								\
376 } while (/*CONSTCOND*/0)
377 
378 #define	l1pte_valid(pde)	((pde) != 0)
379 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
380 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
381 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
382 
383 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
384 #define	l2pte_valid(pte)	((pte) != 0)
385 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
386 #define l2pte_minidata(pte)	(((pte) & \
387 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
388 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
389 
390 /* L1 and L2 page table macros */
391 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
392 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
393 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
394 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
395 
396 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
397 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
398 
399 /* Size of the kernel part of the L1 page table */
400 #define KERNEL_PD_SIZE	\
401 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
402 
403 /************************* ARM MMU configuration *****************************/
404 
405 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
406 void	pmap_copy_page_generic(paddr_t, paddr_t);
407 void	pmap_zero_page_generic(paddr_t);
408 
409 void	pmap_pte_init_generic(void);
410 #if defined(CPU_ARM8)
411 void	pmap_pte_init_arm8(void);
412 #endif
413 #if defined(CPU_ARM9)
414 void	pmap_pte_init_arm9(void);
415 #endif /* CPU_ARM9 */
416 #if defined(CPU_ARM10)
417 void	pmap_pte_init_arm10(void);
418 #endif /* CPU_ARM10 */
419 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
420 
421 #if ARM_MMU_SA1 == 1
422 void	pmap_pte_init_sa1(void);
423 #endif /* ARM_MMU_SA1 == 1 */
424 
425 #if ARM_MMU_XSCALE == 1
426 void	pmap_copy_page_xscale(paddr_t, paddr_t);
427 void	pmap_zero_page_xscale(paddr_t);
428 
429 void	pmap_pte_init_xscale(void);
430 
431 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
432 
433 #define	PMAP_UAREA(va)		pmap_uarea(va)
434 void	pmap_uarea(vaddr_t);
435 #endif /* ARM_MMU_XSCALE == 1 */
436 
437 extern pt_entry_t		pte_l1_s_cache_mode;
438 extern pt_entry_t		pte_l1_s_cache_mask;
439 
440 extern pt_entry_t		pte_l2_l_cache_mode;
441 extern pt_entry_t		pte_l2_l_cache_mask;
442 
443 extern pt_entry_t		pte_l2_s_cache_mode;
444 extern pt_entry_t		pte_l2_s_cache_mask;
445 
446 extern pt_entry_t		pte_l1_s_cache_mode_pt;
447 extern pt_entry_t		pte_l2_l_cache_mode_pt;
448 extern pt_entry_t		pte_l2_s_cache_mode_pt;
449 
450 extern pt_entry_t		pte_l2_s_prot_u;
451 extern pt_entry_t		pte_l2_s_prot_w;
452 extern pt_entry_t		pte_l2_s_prot_mask;
453 
454 extern pt_entry_t		pte_l1_s_proto;
455 extern pt_entry_t		pte_l1_c_proto;
456 extern pt_entry_t		pte_l2_s_proto;
457 
458 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
459 extern void (*pmap_zero_page_func)(paddr_t);
460 
461 #endif /* !_LOCORE */
462 
463 /*****************************************************************************/
464 
465 /*
466  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
467  */
468 #define PMAP_CACHE_VIVT
469 
470 /*
471  * Definitions for MMU domains
472  */
473 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
474 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
475 
476 /*
477  * These macros define the various bit masks in the PTE.
478  *
479  * We use these macros since we use different bits on different processor
480  * models.
481  */
482 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
483 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
484 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
485 
486 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
487 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
488 
489 #define	L2_L_PROT_U		(L2_AP(AP_U))
490 #define	L2_L_PROT_W		(L2_AP(AP_W))
491 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
492 
493 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
494 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
495 
496 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
497 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
498 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
499 
500 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
501 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
502 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
503 
504 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
505 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
506 
507 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
508 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
509 
510 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
511 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
512 
513 #define	L2_L_PROTO		(L2_TYPE_L)
514 
515 #define	L2_S_PROTO_generic	(L2_TYPE_S)
516 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
517 
518 /*
519  * User-visible names for the ones that vary with MMU class.
520  */
521 
522 #if ARM_NMMUS > 1
523 /* More than one MMU class configured; use variables. */
524 #define	L2_S_PROT_U		pte_l2_s_prot_u
525 #define	L2_S_PROT_W		pte_l2_s_prot_w
526 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
527 
528 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
529 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
530 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
531 
532 #define	L1_S_PROTO		pte_l1_s_proto
533 #define	L1_C_PROTO		pte_l1_c_proto
534 #define	L2_S_PROTO		pte_l2_s_proto
535 
536 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
537 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
538 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
539 #define	L2_S_PROT_U		L2_S_PROT_U_generic
540 #define	L2_S_PROT_W		L2_S_PROT_W_generic
541 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
542 
543 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
544 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
545 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
546 
547 #define	L1_S_PROTO		L1_S_PROTO_generic
548 #define	L1_C_PROTO		L1_C_PROTO_generic
549 #define	L2_S_PROTO		L2_S_PROTO_generic
550 
551 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
552 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
553 #elif ARM_MMU_XSCALE == 1
554 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
555 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
556 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
557 
558 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
559 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
560 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
561 
562 #define	L1_S_PROTO		L1_S_PROTO_xscale
563 #define	L1_C_PROTO		L1_C_PROTO_xscale
564 #define	L2_S_PROTO		L2_S_PROTO_xscale
565 
566 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
567 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
568 #endif /* ARM_NMMUS > 1 */
569 
570 /*
571  * These macros return various bits based on kernel/user and protection.
572  * Note that the compiler will usually fold these at compile time.
573  */
574 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
575 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
576 
577 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
578 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
579 
580 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
581 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
582 
583 /*
584  * Macros to test if a mapping is mappable with an L1 Section mapping
585  * or an L2 Large Page mapping.
586  */
587 #define	L1_S_MAPPABLE_P(va, pa, size)					\
588 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
589 
590 #define	L2_L_MAPPABLE_P(va, pa, size)					\
591 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
592 
593 /*
594  * Hooks for the pool allocator.
595  */
596 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
597 
598 #endif /* _KERNEL */
599 
600 #endif	/* _ARM32_PMAP_H_ */
601