1 /* $NetBSD: pmap.h,v 1.144 2016/07/14 05:00:51 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #if defined(_KERNEL_OPT) 77 #include "opt_arm32_pmap.h" 78 #include "opt_multiprocessor.h" 79 #endif 80 #include <arm/cpufunc.h> 81 #include <arm/locore.h> 82 #include <uvm/uvm_object.h> 83 #include <uvm/pmap/pmap_pvt.h> 84 #endif 85 86 #ifdef ARM_MMU_EXTENDED 87 #define PMAP_TLB_MAX 1 88 #define PMAP_TLB_HWPAGEWALKER 1 89 #if PMAP_TLB_MAX > 1 90 #define PMAP_TLB_NEED_SHOOTDOWN 1 91 #endif 92 #define PMAP_TLB_FLUSH_ASID_ON_RESET (arm_has_tlbiasid_p) 93 #define PMAP_TLB_NUM_PIDS 256 94 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti))) 95 #if PMAP_TLB_MAX > 1 96 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info) 97 #else 98 #define cpu_tlb_info(ci) (&pmap_tlb0_info) 99 #endif 100 #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1) 101 #include <uvm/pmap/tlb.h> 102 #include <uvm/pmap/pmap_tlb.h> 103 104 /* 105 * If we have an EXTENDED MMU and the address space is split evenly between 106 * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for 107 * user and kernel address spaces. 108 */ 109 #if (KERNEL_BASE & 0x80000000) == 0 110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000 111 #endif 112 #endif /* ARM_MMU_EXTENDED */ 113 114 /* 115 * a pmap describes a processes' 4GB virtual address space. this 116 * virtual address space can be broken up into 4096 1MB regions which 117 * are described by L1 PTEs in the L1 table. 118 * 119 * There is a line drawn at KERNEL_BASE. Everything below that line 120 * changes when the VM context is switched. Everything above that line 121 * is the same no matter which VM context is running. This is achieved 122 * by making the L1 PTEs for those slots above KERNEL_BASE reference 123 * kernel L2 tables. 124 * 125 * The basic layout of the virtual address space thus looks like this: 126 * 127 * 0xffffffff 128 * . 129 * . 130 * . 131 * KERNEL_BASE 132 * -------------------- 133 * . 134 * . 135 * . 136 * 0x00000000 137 */ 138 139 /* 140 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 141 * A bucket size of 16 provides for 16MB of contiguous virtual address 142 * space per l2_dtable. Most processes will, therefore, require only two or 143 * three of these to map their whole working set. 144 */ 145 #define L2_BUCKET_XLOG2 (L1_S_SHIFT) 146 #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2) 147 #define L2_BUCKET_LOG2 4 148 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 149 150 /* 151 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 152 * of l2_dtable structures required to track all possible page descriptors 153 * mappable by an L1 translation table is given by the following constants: 154 */ 155 #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2)) 156 #define L2_SIZE (1 << L2_LOG2) 157 158 /* 159 * tell MI code that the cache is virtually-indexed. 160 * ARMv6 is physically-tagged but all others are virtually-tagged. 161 */ 162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 163 #define PMAP_CACHE_VIPT 164 #else 165 #define PMAP_CACHE_VIVT 166 #endif 167 168 #ifndef _LOCORE 169 170 #ifndef PMAP_MMU_EXTENDED 171 struct l1_ttable; 172 struct l2_dtable; 173 174 /* 175 * Track cache/tlb occupancy using the following structure 176 */ 177 union pmap_cache_state { 178 struct { 179 union { 180 uint8_t csu_cache_b[2]; 181 uint16_t csu_cache; 182 } cs_cache_u; 183 184 union { 185 uint8_t csu_tlb_b[2]; 186 uint16_t csu_tlb; 187 } cs_tlb_u; 188 } cs_s; 189 uint32_t cs_all; 190 }; 191 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 192 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 193 #define cs_cache cs_s.cs_cache_u.csu_cache 194 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 195 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 196 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 197 198 /* 199 * Assigned to cs_all to force cacheops to work for a particular pmap 200 */ 201 #define PMAP_CACHE_STATE_ALL 0xffffffffu 202 #endif /* !ARM_MMU_EXTENDED */ 203 204 /* 205 * This structure is used by machine-dependent code to describe 206 * static mappings of devices, created at bootstrap time. 207 */ 208 struct pmap_devmap { 209 vaddr_t pd_va; /* virtual address */ 210 paddr_t pd_pa; /* physical address */ 211 psize_t pd_size; /* size of region */ 212 vm_prot_t pd_prot; /* protection code */ 213 int pd_cache; /* cache attributes */ 214 }; 215 216 /* 217 * The pmap structure itself 218 */ 219 struct pmap { 220 struct uvm_object pm_obj; 221 kmutex_t pm_obj_lock; 222 #define pm_lock pm_obj.vmobjlock 223 #ifndef ARM_HAS_VBAR 224 pd_entry_t *pm_pl1vec; 225 pd_entry_t pm_l1vec; 226 #endif 227 struct l2_dtable *pm_l2[L2_SIZE]; 228 struct pmap_statistics pm_stats; 229 LIST_ENTRY(pmap) pm_list; 230 #ifdef ARM_MMU_EXTENDED 231 pd_entry_t *pm_l1; 232 paddr_t pm_l1_pa; 233 bool pm_remove_all; 234 #ifdef MULTIPROCESSOR 235 kcpuset_t *pm_onproc; 236 kcpuset_t *pm_active; 237 #if PMAP_TLB_MAX > 1 238 u_int pm_shootdown_pending; 239 #endif 240 #endif 241 struct pmap_asid_info pm_pai[PMAP_TLB_MAX]; 242 #else 243 struct l1_ttable *pm_l1; 244 union pmap_cache_state pm_cstate; 245 uint8_t pm_domain; 246 bool pm_activated; 247 bool pm_remove_all; 248 #endif 249 }; 250 251 struct pmap_kernel { 252 struct pmap kernel_pmap; 253 }; 254 255 /* 256 * Physical / virtual address structure. In a number of places (particularly 257 * during bootstrapping) we need to keep track of the physical and virtual 258 * addresses of various pages 259 */ 260 typedef struct pv_addr { 261 SLIST_ENTRY(pv_addr) pv_list; 262 paddr_t pv_pa; 263 vaddr_t pv_va; 264 vsize_t pv_size; 265 uint8_t pv_cache; 266 uint8_t pv_prot; 267 } pv_addr_t; 268 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; 269 270 extern pv_addrqh_t pmap_freeq; 271 extern pv_addr_t kernelstack; 272 extern pv_addr_t abtstack; 273 extern pv_addr_t fiqstack; 274 extern pv_addr_t irqstack; 275 extern pv_addr_t undstack; 276 extern pv_addr_t idlestack; 277 extern pv_addr_t systempage; 278 extern pv_addr_t kernel_l1pt; 279 280 #ifdef ARM_MMU_EXTENDED 281 extern bool arm_has_tlbiasid_p; /* also in <arm/locore.h> */ 282 #endif 283 284 /* 285 * Determine various modes for PTEs (user vs. kernel, cacheable 286 * vs. non-cacheable). 287 */ 288 #define PTE_KERNEL 0 289 #define PTE_USER 1 290 #define PTE_NOCACHE 0 291 #define PTE_CACHE 1 292 #define PTE_PAGETABLE 2 293 294 /* 295 * Flags that indicate attributes of pages or mappings of pages. 296 * 297 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 298 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 299 * pv_entry's for each page. They live in the same "namespace" so 300 * that we can clear multiple attributes at a time. 301 * 302 * Note the "non-cacheable" flag generally means the page has 303 * multiple mappings in a given address space. 304 */ 305 #define PVF_MOD 0x01 /* page is modified */ 306 #define PVF_REF 0x02 /* page is referenced */ 307 #define PVF_WIRED 0x04 /* mapping is wired */ 308 #define PVF_WRITE 0x08 /* mapping is writable */ 309 #define PVF_EXEC 0x10 /* mapping is executable */ 310 #ifdef PMAP_CACHE_VIVT 311 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 312 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 313 #define PVF_NC (PVF_UNC|PVF_KNC) 314 #endif 315 #ifdef PMAP_CACHE_VIPT 316 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ 317 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ 318 #endif 319 #define PVF_COLORED 0x80 /* page has or had a color */ 320 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ 321 #define PVF_KMPAGE 0x0200 /* page is used for kmem */ 322 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ 323 #define PVF_KMOD 0x0800 /* unmanaged page is modified */ 324 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) 325 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) 326 327 /* 328 * Commonly referenced structures 329 */ 330 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ 331 extern int arm_poolpage_vmfreelist; 332 333 /* 334 * Macros that we need to export 335 */ 336 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 337 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 338 339 #define pmap_is_modified(pg) \ 340 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 341 #define pmap_is_referenced(pg) \ 342 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 343 #define pmap_is_page_colored_p(md) \ 344 (((md)->pvh_attrs & PVF_COLORED) != 0) 345 346 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 347 348 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 349 u_int arm32_mmap_flags(paddr_t); 350 #define ARM32_MMAP_WRITECOMBINE 0x40000000 351 #define ARM32_MMAP_CACHEABLE 0x20000000 352 #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn) 353 354 #define PMAP_PTE 0x10000000 /* kenter_pa */ 355 356 /* 357 * Functions that we need to export 358 */ 359 void pmap_procwr(struct proc *, vaddr_t, int); 360 void pmap_remove_all(pmap_t); 361 bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 362 363 #define PMAP_NEED_PROCWR 364 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 365 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ 366 367 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 368 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) 369 void pmap_prefer(vaddr_t, vaddr_t *, int); 370 #endif 371 372 void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); 373 374 /* Functions we use internally. */ 375 #ifdef PMAP_STEAL_MEMORY 376 void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); 377 void pmap_boot_pageadd(pv_addr_t *); 378 vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); 379 #endif 380 void pmap_bootstrap(vaddr_t, vaddr_t); 381 382 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 383 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 384 int pmap_prefetchabt_fixup(void *); 385 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 386 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 387 struct pcb; 388 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 389 390 void pmap_debug(int); 391 void pmap_postinit(void); 392 393 void vector_page_setprot(int); 394 395 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); 396 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); 397 398 /* Bootstrapping routines. */ 399 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 400 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 401 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 402 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 403 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); 404 void pmap_devmap_register(const struct pmap_devmap *); 405 406 /* 407 * Special page zero routine for use by the idle loop (no cache cleans). 408 */ 409 bool pmap_pageidlezero(paddr_t); 410 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 411 412 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 413 /* 414 * For the pmap, this is a more useful way to map a direct mapped page. 415 * It returns either the direct-mapped VA or the VA supplied if it can't 416 * be direct mapped. 417 */ 418 vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t); 419 #endif 420 421 /* 422 * used by dumpsys to record the PA of the L1 table 423 */ 424 uint32_t pmap_kernel_L1_addr(void); 425 /* 426 * The current top of kernel VM 427 */ 428 extern vaddr_t pmap_curmaxkvaddr; 429 430 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 431 /* 432 * Ending VA of direct mapped memory (usually KERNEL_VM_BASE). 433 */ 434 extern vaddr_t pmap_directlimit; 435 #endif 436 437 /* 438 * Useful macros and constants 439 */ 440 441 /* Virtual address to page table entry */ 442 static inline pt_entry_t * 443 vtopte(vaddr_t va) 444 { 445 pd_entry_t *pdep; 446 pt_entry_t *ptep; 447 448 KASSERT(trunc_page(va) == va); 449 450 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 451 return (NULL); 452 return (ptep); 453 } 454 455 /* 456 * Virtual address to physical address 457 */ 458 static inline paddr_t 459 vtophys(vaddr_t va) 460 { 461 paddr_t pa; 462 463 if (pmap_extract(pmap_kernel(), va, &pa) == false) 464 return (0); /* XXXSCW: Panic? */ 465 466 return (pa); 467 } 468 469 /* 470 * The new pmap ensures that page-tables are always mapping Write-Thru. 471 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 472 * on every change. 473 * 474 * Unfortunately, not all CPUs have a write-through cache mode. So we 475 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 476 * and if there is the chance for PTE syncs to be needed, we define 477 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 478 * the code. 479 */ 480 extern int pmap_needs_pte_sync; 481 #if defined(_KERNEL_OPT) 482 /* 483 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 484 * we need to do PTE syncs. If only SA-1 is configured, then evaluate 485 * this at compile time. 486 */ 487 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1) 488 #define PMAP_INCLUDE_PTE_SYNC 489 #if (ARM_MMU_V6 > 0) 490 #define PMAP_NEEDS_PTE_SYNC 1 491 #elif (ARM_MMU_SA1 == 0) 492 #define PMAP_NEEDS_PTE_SYNC 0 493 #endif 494 #endif 495 #endif /* _KERNEL_OPT */ 496 497 /* 498 * Provide a fallback in case we were not able to determine it at 499 * compile-time. 500 */ 501 #ifndef PMAP_NEEDS_PTE_SYNC 502 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 503 #define PMAP_INCLUDE_PTE_SYNC 504 #endif 505 506 static inline void 507 pmap_ptesync(pt_entry_t *ptep, size_t cnt) 508 { 509 if (PMAP_NEEDS_PTE_SYNC) { 510 cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t)); 511 #ifdef SHEEVA_L2_CACHE 512 cpu_sdcache_wb_range((vaddr_t)ptep, -1, 513 cnt * sizeof(pt_entry_t)); 514 #endif 515 } 516 arm_dsb(); 517 } 518 519 #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1) 520 #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt)) 521 #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE) 522 #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt)) 523 524 #define l1pte_valid_p(pde) ((pde) != 0) 525 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 526 #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \ 527 && ((pde) & L1_S_V6_SUPER) != 0) 528 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 529 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 530 #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK) 531 #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT) 532 #define l1pte_pgindex(v) l1pte_index((v) & L1_ADDR_BITS \ 533 & ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1)) 534 535 static inline void 536 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde) 537 { 538 *pdep = pde; 539 } 540 541 static inline void 542 l1pte_set(pt_entry_t *pdep, pt_entry_t pde) 543 { 544 *pdep = pde; 545 if (l1pte_page_p(pde)) { 546 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep); 547 for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) { 548 pde += L2_T_SIZE; 549 pdep[k] = pde; 550 } 551 } else if (l1pte_supersection_p(pde)) { 552 KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep); 553 for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) { 554 pdep[k] = pde; 555 } 556 } 557 } 558 559 #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT)) 560 #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) 561 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 562 #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L) 563 #define l2pte_minidata_p(pte) (((pte) & \ 564 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ 565 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) 566 567 static inline void 568 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte) 569 { 570 if (l1pte_lpage_p(pte)) { 571 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 572 for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) { 573 *ptep++ = pte; 574 } 575 } else { 576 KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 577 for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) { 578 KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte); 579 *ptep++ = pte; 580 pte += L2_S_SIZE; 581 if (opte) 582 opte += L2_S_SIZE; 583 } 584 } 585 } 586 587 static inline void 588 l2pte_reset(pt_entry_t *ptep) 589 { 590 KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); 591 *ptep = 0; 592 for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) { 593 ptep[k] = 0; 594 } 595 } 596 597 /* L1 and L2 page table macros */ 598 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 599 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 600 #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde)) 601 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 602 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 603 604 #define pmap_pte_v(pte) l2pte_valid_p(*(pte)) 605 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 606 607 /* Size of the kernel part of the L1 page table */ 608 #define KERNEL_PD_SIZE \ 609 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 610 611 void bzero_page(vaddr_t); 612 void bcopy_page(vaddr_t, vaddr_t); 613 614 #ifdef FPU_VFP 615 void bzero_page_vfp(vaddr_t); 616 void bcopy_page_vfp(vaddr_t, vaddr_t); 617 #endif 618 619 /************************* ARM MMU configuration *****************************/ 620 621 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 622 void pmap_copy_page_generic(paddr_t, paddr_t); 623 void pmap_zero_page_generic(paddr_t); 624 625 void pmap_pte_init_generic(void); 626 #if defined(CPU_ARM8) 627 void pmap_pte_init_arm8(void); 628 #endif 629 #if defined(CPU_ARM9) 630 void pmap_pte_init_arm9(void); 631 #endif /* CPU_ARM9 */ 632 #if defined(CPU_ARM10) 633 void pmap_pte_init_arm10(void); 634 #endif /* CPU_ARM10 */ 635 #if defined(CPU_ARM11) /* ARM_MMU_V6 */ 636 void pmap_pte_init_arm11(void); 637 #endif /* CPU_ARM11 */ 638 #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */ 639 void pmap_pte_init_arm11mpcore(void); 640 #endif 641 #if ARM_MMU_V7 == 1 642 void pmap_pte_init_armv7(void); 643 #endif /* ARM_MMU_V7 */ 644 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 645 646 #if ARM_MMU_SA1 == 1 647 void pmap_pte_init_sa1(void); 648 #endif /* ARM_MMU_SA1 == 1 */ 649 650 #if ARM_MMU_XSCALE == 1 651 void pmap_copy_page_xscale(paddr_t, paddr_t); 652 void pmap_zero_page_xscale(paddr_t); 653 654 void pmap_pte_init_xscale(void); 655 656 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 657 658 #define PMAP_UAREA(va) pmap_uarea(va) 659 void pmap_uarea(vaddr_t); 660 #endif /* ARM_MMU_XSCALE == 1 */ 661 662 extern pt_entry_t pte_l1_s_cache_mode; 663 extern pt_entry_t pte_l1_s_cache_mask; 664 665 extern pt_entry_t pte_l2_l_cache_mode; 666 extern pt_entry_t pte_l2_l_cache_mask; 667 668 extern pt_entry_t pte_l2_s_cache_mode; 669 extern pt_entry_t pte_l2_s_cache_mask; 670 671 extern pt_entry_t pte_l1_s_cache_mode_pt; 672 extern pt_entry_t pte_l2_l_cache_mode_pt; 673 extern pt_entry_t pte_l2_s_cache_mode_pt; 674 675 extern pt_entry_t pte_l1_s_wc_mode; 676 extern pt_entry_t pte_l2_l_wc_mode; 677 extern pt_entry_t pte_l2_s_wc_mode; 678 679 extern pt_entry_t pte_l1_s_prot_u; 680 extern pt_entry_t pte_l1_s_prot_w; 681 extern pt_entry_t pte_l1_s_prot_ro; 682 extern pt_entry_t pte_l1_s_prot_mask; 683 684 extern pt_entry_t pte_l2_s_prot_u; 685 extern pt_entry_t pte_l2_s_prot_w; 686 extern pt_entry_t pte_l2_s_prot_ro; 687 extern pt_entry_t pte_l2_s_prot_mask; 688 689 extern pt_entry_t pte_l2_l_prot_u; 690 extern pt_entry_t pte_l2_l_prot_w; 691 extern pt_entry_t pte_l2_l_prot_ro; 692 extern pt_entry_t pte_l2_l_prot_mask; 693 694 extern pt_entry_t pte_l1_ss_proto; 695 extern pt_entry_t pte_l1_s_proto; 696 extern pt_entry_t pte_l1_c_proto; 697 extern pt_entry_t pte_l2_s_proto; 698 699 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 700 extern void (*pmap_zero_page_func)(paddr_t); 701 702 #endif /* !_LOCORE */ 703 704 /*****************************************************************************/ 705 706 #define KERNEL_PID 0 /* The kernel uses ASID 0 */ 707 708 /* 709 * Definitions for MMU domains 710 */ 711 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 712 #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */ 713 #ifdef ARM_MMU_EXTENDED 714 #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */ 715 #endif 716 717 /* 718 * These macros define the various bit masks in the PTE. 719 * 720 * We use these macros since we use different bits on different processor 721 * models. 722 */ 723 #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) 724 #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) 725 #define L1_S_PROT_RO_generic (0) 726 #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 727 728 #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) 729 #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) 730 #define L1_S_PROT_RO_xscale (0) 731 #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 732 733 #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 734 #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W)) 735 #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 736 #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 737 738 #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) 739 #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) 740 #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) 741 #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) 742 743 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 744 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) 745 #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)) 746 #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 747 #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) 748 749 #define L2_L_PROT_U_generic (L2_AP(AP_U)) 750 #define L2_L_PROT_W_generic (L2_AP(AP_W)) 751 #define L2_L_PROT_RO_generic (0) 752 #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 753 754 #define L2_L_PROT_U_xscale (L2_AP(AP_U)) 755 #define L2_L_PROT_W_xscale (L2_AP(AP_W)) 756 #define L2_L_PROT_RO_xscale (0) 757 #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 758 759 #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 760 #define L2_L_PROT_W_armv6n (L2_AP0(AP_W)) 761 #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 762 #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 763 764 #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 765 #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) 766 #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 767 #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) 768 769 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 770 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) 771 #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)) 772 #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 773 #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) 774 775 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 776 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 777 #define L2_S_PROT_RO_generic (0) 778 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 779 780 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 781 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 782 #define L2_S_PROT_RO_xscale (0) 783 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 784 785 #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) 786 #define L2_S_PROT_W_armv6n (L2_AP0(AP_W)) 787 #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) 788 #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 789 790 #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) 791 #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) 792 #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) 793 #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) 794 795 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 796 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) 797 #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)) 798 #ifdef ARMV6_EXTENDED_SMALL_PAGE 799 #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6 800 #else 801 #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic 802 #endif 803 #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 804 #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) 805 806 807 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 808 #define L1_S_PROTO_xscale (L1_TYPE_S) 809 #define L1_S_PROTO_armv6 (L1_TYPE_S) 810 #define L1_S_PROTO_armv7 (L1_TYPE_S) 811 812 #define L1_SS_PROTO_generic 0 813 #define L1_SS_PROTO_xscale 0 814 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS) 815 #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS) 816 817 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 818 #define L1_C_PROTO_xscale (L1_TYPE_C) 819 #define L1_C_PROTO_armv6 (L1_TYPE_C) 820 #define L1_C_PROTO_armv7 (L1_TYPE_C) 821 822 #define L2_L_PROTO (L2_TYPE_L) 823 824 #define L2_S_PROTO_generic (L2_TYPE_S) 825 #define L2_S_PROTO_xscale (L2_TYPE_XS) 826 #ifdef ARMV6_EXTENDED_SMALL_PAGE 827 #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */ 828 #else 829 #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */ 830 #endif 831 #ifdef ARM_MMU_EXTENDED 832 #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN) 833 #else 834 #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */ 835 #endif 836 #ifdef ARM_MMU_EXTENDED 837 #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN) 838 #else 839 #define L2_S_PROTO_armv7 (L2_TYPE_S) 840 #endif 841 842 /* 843 * User-visible names for the ones that vary with MMU class. 844 */ 845 846 #if ARM_NMMUS > 1 847 /* More than one MMU class configured; use variables. */ 848 #define L1_S_PROT_U pte_l1_s_prot_u 849 #define L1_S_PROT_W pte_l1_s_prot_w 850 #define L1_S_PROT_RO pte_l1_s_prot_ro 851 #define L1_S_PROT_MASK pte_l1_s_prot_mask 852 853 #define L2_S_PROT_U pte_l2_s_prot_u 854 #define L2_S_PROT_W pte_l2_s_prot_w 855 #define L2_S_PROT_RO pte_l2_s_prot_ro 856 #define L2_S_PROT_MASK pte_l2_s_prot_mask 857 858 #define L2_L_PROT_U pte_l2_l_prot_u 859 #define L2_L_PROT_W pte_l2_l_prot_w 860 #define L2_L_PROT_RO pte_l2_l_prot_ro 861 #define L2_L_PROT_MASK pte_l2_l_prot_mask 862 863 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 864 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 865 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 866 867 #define L1_SS_PROTO pte_l1_ss_proto 868 #define L1_S_PROTO pte_l1_s_proto 869 #define L1_C_PROTO pte_l1_c_proto 870 #define L2_S_PROTO pte_l2_s_proto 871 872 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 873 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 874 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 875 #define L1_S_PROT_U L1_S_PROT_U_generic 876 #define L1_S_PROT_W L1_S_PROT_W_generic 877 #define L1_S_PROT_RO L1_S_PROT_RO_generic 878 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 879 880 #define L2_S_PROT_U L2_S_PROT_U_generic 881 #define L2_S_PROT_W L2_S_PROT_W_generic 882 #define L2_S_PROT_RO L2_S_PROT_RO_generic 883 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 884 885 #define L2_L_PROT_U L2_L_PROT_U_generic 886 #define L2_L_PROT_W L2_L_PROT_W_generic 887 #define L2_L_PROT_RO L2_L_PROT_RO_generic 888 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 889 890 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 891 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 892 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 893 894 #define L1_SS_PROTO L1_SS_PROTO_generic 895 #define L1_S_PROTO L1_S_PROTO_generic 896 #define L1_C_PROTO L1_C_PROTO_generic 897 #define L2_S_PROTO L2_S_PROTO_generic 898 899 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 900 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 901 #elif ARM_MMU_V6N != 0 902 #define L1_S_PROT_U L1_S_PROT_U_armv6 903 #define L1_S_PROT_W L1_S_PROT_W_armv6 904 #define L1_S_PROT_RO L1_S_PROT_RO_armv6 905 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6 906 907 #define L2_S_PROT_U L2_S_PROT_U_armv6n 908 #define L2_S_PROT_W L2_S_PROT_W_armv6n 909 #define L2_S_PROT_RO L2_S_PROT_RO_armv6n 910 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n 911 912 #define L2_L_PROT_U L2_L_PROT_U_armv6n 913 #define L2_L_PROT_W L2_L_PROT_W_armv6n 914 #define L2_L_PROT_RO L2_L_PROT_RO_armv6n 915 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n 916 917 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n 918 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n 919 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n 920 921 /* These prototypes make writeable mappings, while the other MMU types 922 * make read-only mappings. */ 923 #define L1_SS_PROTO L1_SS_PROTO_armv6 924 #define L1_S_PROTO L1_S_PROTO_armv6 925 #define L1_C_PROTO L1_C_PROTO_armv6 926 #define L2_S_PROTO L2_S_PROTO_armv6n 927 928 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 929 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 930 #elif ARM_MMU_V6C != 0 931 #define L1_S_PROT_U L1_S_PROT_U_generic 932 #define L1_S_PROT_W L1_S_PROT_W_generic 933 #define L1_S_PROT_RO L1_S_PROT_RO_generic 934 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 935 936 #define L2_S_PROT_U L2_S_PROT_U_generic 937 #define L2_S_PROT_W L2_S_PROT_W_generic 938 #define L2_S_PROT_RO L2_S_PROT_RO_generic 939 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 940 941 #define L2_L_PROT_U L2_L_PROT_U_generic 942 #define L2_L_PROT_W L2_L_PROT_W_generic 943 #define L2_L_PROT_RO L2_L_PROT_RO_generic 944 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 945 946 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 947 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 948 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 949 950 #define L1_SS_PROTO L1_SS_PROTO_armv6 951 #define L1_S_PROTO L1_S_PROTO_generic 952 #define L1_C_PROTO L1_C_PROTO_generic 953 #define L2_S_PROTO L2_S_PROTO_generic 954 955 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 956 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 957 #elif ARM_MMU_XSCALE == 1 958 #define L1_S_PROT_U L1_S_PROT_U_generic 959 #define L1_S_PROT_W L1_S_PROT_W_generic 960 #define L1_S_PROT_RO L1_S_PROT_RO_generic 961 #define L1_S_PROT_MASK L1_S_PROT_MASK_generic 962 963 #define L2_S_PROT_U L2_S_PROT_U_xscale 964 #define L2_S_PROT_W L2_S_PROT_W_xscale 965 #define L2_S_PROT_RO L2_S_PROT_RO_xscale 966 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 967 968 #define L2_L_PROT_U L2_L_PROT_U_generic 969 #define L2_L_PROT_W L2_L_PROT_W_generic 970 #define L2_L_PROT_RO L2_L_PROT_RO_generic 971 #define L2_L_PROT_MASK L2_L_PROT_MASK_generic 972 973 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 974 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 975 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 976 977 #define L1_SS_PROTO L1_SS_PROTO_xscale 978 #define L1_S_PROTO L1_S_PROTO_xscale 979 #define L1_C_PROTO L1_C_PROTO_xscale 980 #define L2_S_PROTO L2_S_PROTO_xscale 981 982 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 983 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 984 #elif ARM_MMU_V7 == 1 985 #define L1_S_PROT_U L1_S_PROT_U_armv7 986 #define L1_S_PROT_W L1_S_PROT_W_armv7 987 #define L1_S_PROT_RO L1_S_PROT_RO_armv7 988 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 989 990 #define L2_S_PROT_U L2_S_PROT_U_armv7 991 #define L2_S_PROT_W L2_S_PROT_W_armv7 992 #define L2_S_PROT_RO L2_S_PROT_RO_armv7 993 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 994 995 #define L2_L_PROT_U L2_L_PROT_U_armv7 996 #define L2_L_PROT_W L2_L_PROT_W_armv7 997 #define L2_L_PROT_RO L2_L_PROT_RO_armv7 998 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 999 1000 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 1001 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 1002 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 1003 1004 /* These prototypes make writeable mappings, while the other MMU types 1005 * make read-only mappings. */ 1006 #define L1_SS_PROTO L1_SS_PROTO_armv7 1007 #define L1_S_PROTO L1_S_PROTO_armv7 1008 #define L1_C_PROTO L1_C_PROTO_armv7 1009 #define L2_S_PROTO L2_S_PROTO_armv7 1010 1011 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 1012 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 1013 #endif /* ARM_NMMUS > 1 */ 1014 1015 /* 1016 * Macros to set and query the write permission on page descriptors. 1017 */ 1018 #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) 1019 #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) 1020 #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) 1021 #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) 1022 1023 #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ 1024 (L2_S_PROT_RO == 0 || \ 1025 ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) 1026 1027 /* 1028 * These macros return various bits based on kernel/user and protection. 1029 * Note that the compiler will usually fold these at compile time. 1030 */ 1031 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 1032 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : L1_S_PROT_RO)) 1033 1034 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 1035 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : L2_L_PROT_RO)) 1036 1037 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 1038 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : L2_S_PROT_RO)) 1039 1040 /* 1041 * Macros to test if a mapping is mappable with an L1 SuperSection, 1042 * L1 Section, or an L2 Large Page mapping. 1043 */ 1044 #define L1_SS_MAPPABLE_P(va, pa, size) \ 1045 ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE) 1046 1047 #define L1_S_MAPPABLE_P(va, pa, size) \ 1048 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 1049 1050 #define L2_L_MAPPABLE_P(va, pa, size) \ 1051 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 1052 1053 #ifndef _LOCORE 1054 /* 1055 * Hooks for the pool allocator. 1056 */ 1057 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 1058 extern paddr_t physical_start, physical_end; 1059 #ifdef PMAP_NEED_ALLOC_POOLPAGE 1060 struct vm_page *arm_pmap_alloc_poolpage(int); 1061 #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage 1062 #endif 1063 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 1064 vaddr_t pmap_map_poolpage(paddr_t); 1065 paddr_t pmap_unmap_poolpage(vaddr_t); 1066 #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa) 1067 #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va) 1068 #endif 1069 1070 #define __HAVE_PMAP_PV_TRACK 1 1071 1072 void pmap_pv_protect(paddr_t, vm_prot_t); 1073 1074 struct pmap_page { 1075 SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ 1076 int pvh_attrs; /* page attributes */ 1077 u_int uro_mappings; 1078 u_int urw_mappings; 1079 union { 1080 u_short s_mappings[2]; /* Assume kernel count <= 65535 */ 1081 u_int i_mappings; 1082 } k_u; 1083 }; 1084 1085 /* 1086 * pmap-specific data store in the vm_page structure. 1087 */ 1088 #define __HAVE_VM_PAGE_MD 1089 struct vm_page_md { 1090 struct pmap_page pp; 1091 #define pvh_list pp.pvh_list 1092 #define pvh_attrs pp.pvh_attrs 1093 #define uro_mappings pp.uro_mappings 1094 #define urw_mappings pp.urw_mappings 1095 #define kro_mappings pp.k_u.s_mappings[0] 1096 #define krw_mappings pp.k_u.s_mappings[1] 1097 #define k_mappings pp.k_u.i_mappings 1098 }; 1099 1100 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp) 1101 1102 /* 1103 * Set the default color of each page. 1104 */ 1105 #if ARM_MMU_V6 > 0 1106 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1107 (pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask 1108 #else 1109 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ 1110 (pg)->mdpage.pvh_attrs = 0 1111 #endif 1112 1113 #define VM_MDPAGE_INIT(pg) \ 1114 do { \ 1115 SLIST_INIT(&(pg)->mdpage.pvh_list); \ 1116 VM_MDPAGE_PVH_ATTRS_INIT(pg); \ 1117 (pg)->mdpage.uro_mappings = 0; \ 1118 (pg)->mdpage.urw_mappings = 0; \ 1119 (pg)->mdpage.k_mappings = 0; \ 1120 } while (/*CONSTCOND*/0) 1121 1122 #endif /* !_LOCORE */ 1123 1124 #endif /* _KERNEL */ 1125 1126 #endif /* _ARM32_PMAP_H_ */ 1127