1 /* $NetBSD: pmap.h,v 1.84 2008/01/01 14:06:43 chris Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1994,1995 Mark Brinicombe. 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Mark Brinicombe 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 #ifndef _ARM32_PMAP_H_ 69 #define _ARM32_PMAP_H_ 70 71 #ifdef _KERNEL 72 73 #include <arm/cpuconf.h> 74 #include <arm/arm32/pte.h> 75 #ifndef _LOCORE 76 #include <arm/cpufunc.h> 77 #include <uvm/uvm_object.h> 78 #endif 79 80 /* 81 * a pmap describes a processes' 4GB virtual address space. this 82 * virtual address space can be broken up into 4096 1MB regions which 83 * are described by L1 PTEs in the L1 table. 84 * 85 * There is a line drawn at KERNEL_BASE. Everything below that line 86 * changes when the VM context is switched. Everything above that line 87 * is the same no matter which VM context is running. This is achieved 88 * by making the L1 PTEs for those slots above KERNEL_BASE reference 89 * kernel L2 tables. 90 * 91 * The basic layout of the virtual address space thus looks like this: 92 * 93 * 0xffffffff 94 * . 95 * . 96 * . 97 * KERNEL_BASE 98 * -------------------- 99 * . 100 * . 101 * . 102 * 0x00000000 103 */ 104 105 /* 106 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 107 * A bucket size of 16 provides for 16MB of contiguous virtual address 108 * space per l2_dtable. Most processes will, therefore, require only two or 109 * three of these to map their whole working set. 110 */ 111 #define L2_BUCKET_LOG2 4 112 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 113 114 /* 115 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 116 * of l2_dtable structures required to track all possible page descriptors 117 * mappable by an L1 translation table is given by the following constants: 118 */ 119 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) 120 #define L2_SIZE (1 << L2_LOG2) 121 122 #ifndef _LOCORE 123 124 struct l1_ttable; 125 struct l2_dtable; 126 127 /* 128 * Track cache/tlb occupancy using the following structure 129 */ 130 union pmap_cache_state { 131 struct { 132 union { 133 u_int8_t csu_cache_b[2]; 134 u_int16_t csu_cache; 135 } cs_cache_u; 136 137 union { 138 u_int8_t csu_tlb_b[2]; 139 u_int16_t csu_tlb; 140 } cs_tlb_u; 141 } cs_s; 142 u_int32_t cs_all; 143 }; 144 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] 145 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] 146 #define cs_cache cs_s.cs_cache_u.csu_cache 147 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] 148 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] 149 #define cs_tlb cs_s.cs_tlb_u.csu_tlb 150 151 /* 152 * Assigned to cs_all to force cacheops to work for a particular pmap 153 */ 154 #define PMAP_CACHE_STATE_ALL 0xffffffffu 155 156 /* 157 * This structure is used by machine-dependent code to describe 158 * static mappings of devices, created at bootstrap time. 159 */ 160 struct pmap_devmap { 161 vaddr_t pd_va; /* virtual address */ 162 paddr_t pd_pa; /* physical address */ 163 psize_t pd_size; /* size of region */ 164 vm_prot_t pd_prot; /* protection code */ 165 int pd_cache; /* cache attributes */ 166 }; 167 168 /* 169 * The pmap structure itself 170 */ 171 struct pmap { 172 u_int8_t pm_domain; 173 bool pm_remove_all; 174 bool pm_activated; 175 struct l1_ttable *pm_l1; 176 pd_entry_t *pm_pl1vec; 177 pd_entry_t pm_l1vec; 178 union pmap_cache_state pm_cstate; 179 struct uvm_object pm_obj; 180 #define pm_lock pm_obj.vmobjlock 181 struct l2_dtable *pm_l2[L2_SIZE]; 182 struct pmap_statistics pm_stats; 183 LIST_ENTRY(pmap) pm_list; 184 }; 185 186 typedef struct pmap *pmap_t; 187 188 /* 189 * Physical / virtual address structure. In a number of places (particularly 190 * during bootstrapping) we need to keep track of the physical and virtual 191 * addresses of various pages 192 */ 193 typedef struct pv_addr { 194 SLIST_ENTRY(pv_addr) pv_list; 195 paddr_t pv_pa; 196 vaddr_t pv_va; 197 } pv_addr_t; 198 199 /* 200 * Determine various modes for PTEs (user vs. kernel, cacheable 201 * vs. non-cacheable). 202 */ 203 #define PTE_KERNEL 0 204 #define PTE_USER 1 205 #define PTE_NOCACHE 0 206 #define PTE_CACHE 1 207 #define PTE_PAGETABLE 2 208 209 /* 210 * Flags that indicate attributes of pages or mappings of pages. 211 * 212 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 213 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 214 * pv_entry's for each page. They live in the same "namespace" so 215 * that we can clear multiple attributes at a time. 216 * 217 * Note the "non-cacheable" flag generally means the page has 218 * multiple mappings in a given address space. 219 */ 220 #define PVF_MOD 0x01 /* page is modified */ 221 #define PVF_REF 0x02 /* page is referenced */ 222 #define PVF_WIRED 0x04 /* mapping is wired */ 223 #define PVF_WRITE 0x08 /* mapping is writable */ 224 #define PVF_EXEC 0x10 /* mapping is executable */ 225 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ 226 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ 227 #define PVF_NC (PVF_UNC|PVF_KNC) 228 229 /* 230 * Commonly referenced structures 231 */ 232 extern struct pmap kernel_pmap_store; 233 extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ 234 235 /* 236 * Macros that we need to export 237 */ 238 #define pmap_kernel() (&kernel_pmap_store) 239 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 240 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 241 242 #define pmap_remove(pmap,sva,eva) pmap_do_remove((pmap),(sva),(eva),0) 243 244 #define pmap_is_modified(pg) \ 245 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) 246 #define pmap_is_referenced(pg) \ 247 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) 248 249 #define pmap_copy(dp, sp, da, l, sa) /* nothing */ 250 251 #define pmap_phys_address(ppn) (arm_ptob((ppn))) 252 253 /* 254 * Functions that we need to export 255 */ 256 void pmap_procwr(struct proc *, vaddr_t, int); 257 void pmap_remove_all(pmap_t); 258 bool pmap_extract(pmap_t, vaddr_t, paddr_t *); 259 260 #define PMAP_NEED_PROCWR 261 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 262 263 /* Functions we use internally. */ 264 void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t); 265 266 void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); 267 int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); 268 bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); 269 bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); 270 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 271 272 void pmap_debug(int); 273 void pmap_postinit(void); 274 275 void vector_page_setprot(int); 276 277 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); 278 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); 279 280 /* Bootstrapping routines. */ 281 void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); 282 void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); 283 vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); 284 void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); 285 void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); 286 void pmap_devmap_register(const struct pmap_devmap *); 287 288 /* 289 * Special page zero routine for use by the idle loop (no cache cleans). 290 */ 291 bool pmap_pageidlezero(paddr_t); 292 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 293 294 /* 295 * used by dumpsys to record the PA of the L1 table 296 */ 297 uint32_t pmap_kernel_L1_addr(void); 298 /* 299 * The current top of kernel VM 300 */ 301 extern vaddr_t pmap_curmaxkvaddr; 302 303 /* 304 * Useful macros and constants 305 */ 306 307 /* Virtual address to page table entry */ 308 static inline pt_entry_t * 309 vtopte(vaddr_t va) 310 { 311 pd_entry_t *pdep; 312 pt_entry_t *ptep; 313 314 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) 315 return (NULL); 316 return (ptep); 317 } 318 319 /* 320 * Virtual address to physical address 321 */ 322 static inline paddr_t 323 vtophys(vaddr_t va) 324 { 325 paddr_t pa; 326 327 if (pmap_extract(pmap_kernel(), va, &pa) == false) 328 return (0); /* XXXSCW: Panic? */ 329 330 return (pa); 331 } 332 333 /* 334 * The new pmap ensures that page-tables are always mapping Write-Thru. 335 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 336 * on every change. 337 * 338 * Unfortunately, not all CPUs have a write-through cache mode. So we 339 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 340 * and if there is the chance for PTE syncs to be needed, we define 341 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 342 * the code. 343 */ 344 extern int pmap_needs_pte_sync; 345 #if defined(_KERNEL_OPT) 346 /* 347 * StrongARM SA-1 caches do not have a write-through mode. So, on these, 348 * we need to do PTE syncs. If only SA-1 is configured, then evaluate 349 * this at compile time. 350 */ 351 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) 352 #define PMAP_NEEDS_PTE_SYNC 1 353 #define PMAP_INCLUDE_PTE_SYNC 354 #elif (ARM_MMU_SA1 == 0) 355 #define PMAP_NEEDS_PTE_SYNC 0 356 #endif 357 #endif /* _KERNEL_OPT */ 358 359 /* 360 * Provide a fallback in case we were not able to determine it at 361 * compile-time. 362 */ 363 #ifndef PMAP_NEEDS_PTE_SYNC 364 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 365 #define PMAP_INCLUDE_PTE_SYNC 366 #endif 367 368 #define PTE_SYNC(pte) \ 369 do { \ 370 if (PMAP_NEEDS_PTE_SYNC) \ 371 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\ 372 } while (/*CONSTCOND*/0) 373 374 #define PTE_SYNC_RANGE(pte, cnt) \ 375 do { \ 376 if (PMAP_NEEDS_PTE_SYNC) { \ 377 cpu_dcache_wb_range((vaddr_t)(pte), \ 378 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 379 } \ 380 } while (/*CONSTCOND*/0) 381 382 #define l1pte_valid(pde) ((pde) != 0) 383 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 384 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 385 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 386 387 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) 388 #define l2pte_valid(pte) ((pte) != 0) 389 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 390 #define l2pte_minidata(pte) (((pte) & \ 391 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\ 392 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X))) 393 394 /* L1 and L2 page table macros */ 395 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 396 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 397 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 398 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 399 400 #define pmap_pte_v(pte) l2pte_valid(*(pte)) 401 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 402 403 /* Size of the kernel part of the L1 page table */ 404 #define KERNEL_PD_SIZE \ 405 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) 406 407 /************************* ARM MMU configuration *****************************/ 408 409 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 410 void pmap_copy_page_generic(paddr_t, paddr_t); 411 void pmap_zero_page_generic(paddr_t); 412 413 void pmap_pte_init_generic(void); 414 #if defined(CPU_ARM8) 415 void pmap_pte_init_arm8(void); 416 #endif 417 #if defined(CPU_ARM9) 418 void pmap_pte_init_arm9(void); 419 #endif /* CPU_ARM9 */ 420 #if defined(CPU_ARM10) 421 void pmap_pte_init_arm10(void); 422 #endif /* CPU_ARM10 */ 423 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 424 425 #if ARM_MMU_SA1 == 1 426 void pmap_pte_init_sa1(void); 427 #endif /* ARM_MMU_SA1 == 1 */ 428 429 #if ARM_MMU_XSCALE == 1 430 void pmap_copy_page_xscale(paddr_t, paddr_t); 431 void pmap_zero_page_xscale(paddr_t); 432 433 void pmap_pte_init_xscale(void); 434 435 void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); 436 437 #define PMAP_UAREA(va) pmap_uarea(va) 438 void pmap_uarea(vaddr_t); 439 #endif /* ARM_MMU_XSCALE == 1 */ 440 441 extern pt_entry_t pte_l1_s_cache_mode; 442 extern pt_entry_t pte_l1_s_cache_mask; 443 444 extern pt_entry_t pte_l2_l_cache_mode; 445 extern pt_entry_t pte_l2_l_cache_mask; 446 447 extern pt_entry_t pte_l2_s_cache_mode; 448 extern pt_entry_t pte_l2_s_cache_mask; 449 450 extern pt_entry_t pte_l1_s_cache_mode_pt; 451 extern pt_entry_t pte_l2_l_cache_mode_pt; 452 extern pt_entry_t pte_l2_s_cache_mode_pt; 453 454 extern pt_entry_t pte_l2_s_prot_u; 455 extern pt_entry_t pte_l2_s_prot_w; 456 extern pt_entry_t pte_l2_s_prot_mask; 457 458 extern pt_entry_t pte_l1_s_proto; 459 extern pt_entry_t pte_l1_c_proto; 460 extern pt_entry_t pte_l2_s_proto; 461 462 extern void (*pmap_copy_page_func)(paddr_t, paddr_t); 463 extern void (*pmap_zero_page_func)(paddr_t); 464 465 #endif /* !_LOCORE */ 466 467 /*****************************************************************************/ 468 469 /* 470 * tell MI code that the cache is virtually-indexed *and* virtually-tagged. 471 */ 472 #define PMAP_CACHE_VIVT 473 474 /* 475 * Definitions for MMU domains 476 */ 477 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */ 478 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */ 479 480 /* 481 * These macros define the various bit masks in the PTE. 482 * 483 * We use these macros since we use different bits on different processor 484 * models. 485 */ 486 #define L1_S_PROT_U (L1_S_AP(AP_U)) 487 #define L1_S_PROT_W (L1_S_AP(AP_W)) 488 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) 489 490 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 491 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)) 492 493 #define L2_L_PROT_U (L2_AP(AP_U)) 494 #define L2_L_PROT_W (L2_AP(AP_W)) 495 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) 496 497 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 498 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X)) 499 500 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 501 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 502 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) 503 504 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 505 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 506 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) 507 508 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 509 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)) 510 511 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 512 #define L1_S_PROTO_xscale (L1_TYPE_S) 513 514 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 515 #define L1_C_PROTO_xscale (L1_TYPE_C) 516 517 #define L2_L_PROTO (L2_TYPE_L) 518 519 #define L2_S_PROTO_generic (L2_TYPE_S) 520 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) 521 522 /* 523 * User-visible names for the ones that vary with MMU class. 524 */ 525 526 #if ARM_NMMUS > 1 527 /* More than one MMU class configured; use variables. */ 528 #define L2_S_PROT_U pte_l2_s_prot_u 529 #define L2_S_PROT_W pte_l2_s_prot_w 530 #define L2_S_PROT_MASK pte_l2_s_prot_mask 531 532 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 533 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 534 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 535 536 #define L1_S_PROTO pte_l1_s_proto 537 #define L1_C_PROTO pte_l1_c_proto 538 #define L2_S_PROTO pte_l2_s_proto 539 540 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) 541 #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) 542 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 543 #define L2_S_PROT_U L2_S_PROT_U_generic 544 #define L2_S_PROT_W L2_S_PROT_W_generic 545 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 546 547 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 548 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 549 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 550 551 #define L1_S_PROTO L1_S_PROTO_generic 552 #define L1_C_PROTO L1_C_PROTO_generic 553 #define L2_S_PROTO L2_S_PROTO_generic 554 555 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) 556 #define pmap_zero_page(d) pmap_zero_page_generic((d)) 557 #elif ARM_MMU_XSCALE == 1 558 #define L2_S_PROT_U L2_S_PROT_U_xscale 559 #define L2_S_PROT_W L2_S_PROT_W_xscale 560 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 561 562 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 563 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 564 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 565 566 #define L1_S_PROTO L1_S_PROTO_xscale 567 #define L1_C_PROTO L1_C_PROTO_xscale 568 #define L2_S_PROTO L2_S_PROTO_xscale 569 570 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) 571 #define pmap_zero_page(d) pmap_zero_page_xscale((d)) 572 #endif /* ARM_NMMUS > 1 */ 573 574 /* 575 * These macros return various bits based on kernel/user and protection. 576 * Note that the compiler will usually fold these at compile time. 577 */ 578 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 579 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) 580 581 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 582 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) 583 584 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 585 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) 586 587 /* 588 * Macros to test if a mapping is mappable with an L1 Section mapping 589 * or an L2 Large Page mapping. 590 */ 591 #define L1_S_MAPPABLE_P(va, pa, size) \ 592 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 593 594 #define L2_L_MAPPABLE_P(va, pa, size) \ 595 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 596 597 /* 598 * Hooks for the pool allocator. 599 */ 600 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 601 602 #endif /* _KERNEL */ 603 604 #endif /* _ARM32_PMAP_H_ */ 605