xref: /netbsd-src/sys/arch/arm/include/arm32/pmap.h (revision 1580a27b92f58fcdcb23fdfbc04a7c2b54a0b7c8)
1 /*	$NetBSD: pmap.h,v 1.153 2017/10/22 20:35:32 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1994,1995 Mark Brinicombe.
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Mark Brinicombe
53  * 4. The name of the author may not be used to endorse or promote products
54  *    derived from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 #ifndef	_ARM32_PMAP_H_
69 #define	_ARM32_PMAP_H_
70 
71 #ifdef _KERNEL
72 
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
75 #ifndef _LOCORE
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 #include <arm/cpufunc.h>
81 #include <arm/locore.h>
82 #include <uvm/uvm_object.h>
83 #include <uvm/pmap/pmap_pvt.h>
84 #endif
85 
86 #ifdef ARM_MMU_EXTENDED
87 #define PMAP_HWPAGEWALKER		1
88 #define PMAP_TLB_MAX			1
89 #if PMAP_TLB_MAX > 1
90 #define PMAP_TLB_NEED_SHOOTDOWN		1
91 #endif
92 #define PMAP_TLB_FLUSH_ASID_ON_RESET	(arm_has_tlbiasid_p)
93 #define PMAP_TLB_NUM_PIDS		256
94 #define cpu_set_tlb_info(ci, ti)        ((void)((ci)->ci_tlb_info = (ti)))
95 #if PMAP_TLB_MAX > 1
96 #define cpu_tlb_info(ci)		((ci)->ci_tlb_info)
97 #else
98 #define cpu_tlb_info(ci)		(&pmap_tlb0_info)
99 #endif
100 #define pmap_md_tlb_asid_max()		(PMAP_TLB_NUM_PIDS - 1)
101 #include <uvm/pmap/tlb.h>
102 #include <uvm/pmap/pmap_tlb.h>
103 
104 /*
105  * If we have an EXTENDED MMU and the address space is split evenly between
106  * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for
107  * user and kernel address spaces.
108  */
109 #if (KERNEL_BASE & 0x80000000) == 0
110 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000
111 #endif
112 #endif  /* ARM_MMU_EXTENDED */
113 
114 /*
115  * a pmap describes a processes' 4GB virtual address space.  this
116  * virtual address space can be broken up into 4096 1MB regions which
117  * are described by L1 PTEs in the L1 table.
118  *
119  * There is a line drawn at KERNEL_BASE.  Everything below that line
120  * changes when the VM context is switched.  Everything above that line
121  * is the same no matter which VM context is running.  This is achieved
122  * by making the L1 PTEs for those slots above KERNEL_BASE reference
123  * kernel L2 tables.
124  *
125  * The basic layout of the virtual address space thus looks like this:
126  *
127  *	0xffffffff
128  *	.
129  *	.
130  *	.
131  *	KERNEL_BASE
132  *	--------------------
133  *	.
134  *	.
135  *	.
136  *	0x00000000
137  */
138 
139 /*
140  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141  * A bucket size of 16 provides for 16MB of contiguous virtual address
142  * space per l2_dtable. Most processes will, therefore, require only two or
143  * three of these to map their whole working set.
144  */
145 #define	L2_BUCKET_XLOG2	(L1_S_SHIFT)
146 #define L2_BUCKET_XSIZE	(1 << L2_BUCKET_XLOG2)
147 #define	L2_BUCKET_LOG2	4
148 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
149 
150 /*
151  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152  * of l2_dtable structures required to track all possible page descriptors
153  * mappable by an L1 translation table is given by the following constants:
154  */
155 #define	L2_LOG2		(32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2))
156 #define	L2_SIZE		(1 << L2_LOG2)
157 
158 /*
159  * tell MI code that the cache is virtually-indexed.
160  * ARMv6 is physically-tagged but all others are virtually-tagged.
161  */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
163 #define PMAP_CACHE_VIPT
164 #else
165 #define PMAP_CACHE_VIVT
166 #endif
167 
168 #ifndef _LOCORE
169 
170 #ifndef ARM_MMU_EXTENDED
171 struct l1_ttable;
172 struct l2_dtable;
173 
174 /*
175  * Track cache/tlb occupancy using the following structure
176  */
177 union pmap_cache_state {
178 	struct {
179 		union {
180 			uint8_t csu_cache_b[2];
181 			uint16_t csu_cache;
182 		} cs_cache_u;
183 
184 		union {
185 			uint8_t csu_tlb_b[2];
186 			uint16_t csu_tlb;
187 		} cs_tlb_u;
188 	} cs_s;
189 	uint32_t cs_all;
190 };
191 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
192 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
193 #define	cs_cache	cs_s.cs_cache_u.csu_cache
194 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
195 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
196 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
197 
198 /*
199  * Assigned to cs_all to force cacheops to work for a particular pmap
200  */
201 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
202 #endif /* !ARM_MMU_EXTENDED */
203 
204 /*
205  * This structure is used by machine-dependent code to describe
206  * static mappings of devices, created at bootstrap time.
207  */
208 struct pmap_devmap {
209 	vaddr_t		pd_va;		/* virtual address */
210 	paddr_t		pd_pa;		/* physical address */
211 	psize_t		pd_size;	/* size of region */
212 	vm_prot_t	pd_prot;	/* protection code */
213 	int		pd_cache;	/* cache attributes */
214 };
215 
216 #define	DEVMAP_ALIGN(a)	((a) & ~L1_S_OFFSET)
217 #define	DEVMAP_SIZE(s)	roundup2((s), L1_S_SIZE)
218 #define	DEVMAP_ENTRY(va, pa, sz)			\
219 	{						\
220 		.pd_va = DEVMAP_ALIGN(va),		\
221 		.pd_pa = DEVMAP_ALIGN(pa),		\
222 		.pd_size = DEVMAP_SIZE(sz),		\
223 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,	\
224 		.pd_cache = PTE_NOCACHE			\
225 	}
226 #define	DEVMAP_ENTRY_END	{ 0 }
227 
228 /*
229  * The pmap structure itself
230  */
231 struct pmap {
232 	struct uvm_object	pm_obj;
233 	kmutex_t		pm_obj_lock;
234 #define	pm_lock pm_obj.vmobjlock
235 #ifndef ARM_HAS_VBAR
236 	pd_entry_t		*pm_pl1vec;
237 	pd_entry_t		pm_l1vec;
238 #endif
239 	struct l2_dtable	*pm_l2[L2_SIZE];
240 	struct pmap_statistics	pm_stats;
241 	LIST_ENTRY(pmap)	pm_list;
242 #ifdef ARM_MMU_EXTENDED
243 	pd_entry_t		*pm_l1;
244 	paddr_t			pm_l1_pa;
245 	bool			pm_remove_all;
246 #ifdef MULTIPROCESSOR
247 	kcpuset_t		*pm_onproc;
248 	kcpuset_t		*pm_active;
249 #if PMAP_TLB_MAX > 1
250 	u_int			pm_shootdown_pending;
251 #endif
252 #endif
253 	struct pmap_asid_info	pm_pai[PMAP_TLB_MAX];
254 #else
255 	struct l1_ttable	*pm_l1;
256 	union pmap_cache_state	pm_cstate;
257 	uint8_t			pm_domain;
258 	bool			pm_activated;
259 	bool			pm_remove_all;
260 #endif
261 };
262 
263 struct pmap_kernel {
264 	struct pmap		kernel_pmap;
265 };
266 
267 /*
268  * Physical / virtual address structure. In a number of places (particularly
269  * during bootstrapping) we need to keep track of the physical and virtual
270  * addresses of various pages
271  */
272 typedef struct pv_addr {
273 	SLIST_ENTRY(pv_addr) pv_list;
274 	paddr_t pv_pa;
275 	vaddr_t pv_va;
276 	vsize_t pv_size;
277 	uint8_t pv_cache;
278 	uint8_t pv_prot;
279 } pv_addr_t;
280 typedef SLIST_HEAD(, pv_addr) pv_addrqh_t;
281 
282 extern pv_addrqh_t pmap_freeq;
283 extern pv_addr_t kernelstack;
284 extern pv_addr_t abtstack;
285 extern pv_addr_t fiqstack;
286 extern pv_addr_t irqstack;
287 extern pv_addr_t undstack;
288 extern pv_addr_t idlestack;
289 extern pv_addr_t systempage;
290 extern pv_addr_t kernel_l1pt;
291 
292 #ifdef ARM_MMU_EXTENDED
293 extern bool arm_has_tlbiasid_p;	/* also in <arm/locore.h> */
294 #endif
295 
296 /*
297  * Determine various modes for PTEs (user vs. kernel, cacheable
298  * vs. non-cacheable).
299  */
300 #define	PTE_KERNEL	0
301 #define	PTE_USER	1
302 #define	PTE_NOCACHE	0
303 #define	PTE_CACHE	1
304 #define	PTE_PAGETABLE	2
305 
306 /*
307  * Flags that indicate attributes of pages or mappings of pages.
308  *
309  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
310  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
311  * pv_entry's for each page.  They live in the same "namespace" so
312  * that we can clear multiple attributes at a time.
313  *
314  * Note the "non-cacheable" flag generally means the page has
315  * multiple mappings in a given address space.
316  */
317 #define	PVF_MOD		0x01		/* page is modified */
318 #define	PVF_REF		0x02		/* page is referenced */
319 #define	PVF_WIRED	0x04		/* mapping is wired */
320 #define	PVF_WRITE	0x08		/* mapping is writable */
321 #define	PVF_EXEC	0x10		/* mapping is executable */
322 #ifdef PMAP_CACHE_VIVT
323 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
324 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
325 #define	PVF_NC		(PVF_UNC|PVF_KNC)
326 #endif
327 #ifdef PMAP_CACHE_VIPT
328 #define	PVF_NC		0x20		/* mapping is 'kernel' non-cacheable */
329 #define	PVF_MULTCLR	0x40		/* mapping is multi-colored */
330 #endif
331 #define	PVF_COLORED	0x80		/* page has or had a color */
332 #define	PVF_KENTRY	0x0100		/* page entered via pmap_kenter_pa */
333 #define	PVF_KMPAGE	0x0200		/* page is used for kmem */
334 #define	PVF_DIRTY	0x0400		/* page may have dirty cache lines */
335 #define	PVF_KMOD	0x0800		/* unmanaged page is modified  */
336 #define	PVF_KWRITE	(PVF_KENTRY|PVF_WRITE)
337 #define	PVF_DMOD	(PVF_MOD|PVF_KMOD|PVF_KMPAGE)
338 
339 /*
340  * Commonly referenced structures
341  */
342 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
343 extern int		arm_poolpage_vmfreelist;
344 
345 /*
346  * Macros that we need to export
347  */
348 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
349 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
350 
351 #define	pmap_is_modified(pg)	\
352 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
353 #define	pmap_is_referenced(pg)	\
354 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
355 #define	pmap_is_page_colored_p(md)	\
356 	(((md)->pvh_attrs & PVF_COLORED) != 0)
357 
358 #define	pmap_copy(dp, sp, da, l, sa)	/* nothing */
359 
360 #define pmap_phys_address(ppn)		(arm_ptob((ppn)))
361 u_int arm32_mmap_flags(paddr_t);
362 #define ARM32_MMAP_WRITECOMBINE		0x40000000
363 #define ARM32_MMAP_CACHEABLE		0x20000000
364 #define pmap_mmap_flags(ppn)		arm32_mmap_flags(ppn)
365 
366 #define	PMAP_PTE			0x10000000 /* kenter_pa */
367 
368 /*
369  * Functions that we need to export
370  */
371 void	pmap_procwr(struct proc *, vaddr_t, int);
372 void	pmap_remove_all(pmap_t);
373 bool	pmap_extract(pmap_t, vaddr_t, paddr_t *);
374 
375 #define	PMAP_NEED_PROCWR
376 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
377 #define	PMAP_ENABLE_PMAP_KMPAGE	/* enable the PMAP_KMPAGE flag */
378 
379 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
380 #define	PMAP_PREFER(hint, vap, sz, td)	pmap_prefer((hint), (vap), (td))
381 void	pmap_prefer(vaddr_t, vaddr_t *, int);
382 #endif
383 
384 void	pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t);
385 
386 /* Functions we use internally. */
387 #ifdef PMAP_STEAL_MEMORY
388 void	pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *);
389 void	pmap_boot_pageadd(pv_addr_t *);
390 vaddr_t	pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
391 #endif
392 void	pmap_bootstrap(vaddr_t, vaddr_t);
393 
394 void	pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int);
395 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
396 int	pmap_prefetchabt_fixup(void *);
397 bool	pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
398 bool	pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
399 struct pcb;
400 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
401 
402 void	pmap_debug(int);
403 void	pmap_postinit(void);
404 
405 void	vector_page_setprot(int);
406 
407 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
408 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
409 
410 /* Bootstrapping routines. */
411 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
412 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
413 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
414 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
415 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
416 void	pmap_devmap_register(const struct pmap_devmap *);
417 
418 /*
419  * Special page zero routine for use by the idle loop (no cache cleans).
420  */
421 bool	pmap_pageidlezero(paddr_t);
422 #define PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
423 
424 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
425 /*
426  * For the pmap, this is a more useful way to map a direct mapped page.
427  * It returns either the direct-mapped VA or the VA supplied if it can't
428  * be direct mapped.
429  */
430 vaddr_t	pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t);
431 #endif
432 
433 /*
434  * used by dumpsys to record the PA of the L1 table
435  */
436 uint32_t pmap_kernel_L1_addr(void);
437 /*
438  * The current top of kernel VM
439  */
440 extern vaddr_t	pmap_curmaxkvaddr;
441 
442 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
443 /*
444  * Ending VA of direct mapped memory (usually KERNEL_VM_BASE).
445  */
446 extern vaddr_t pmap_directlimit;
447 #endif
448 
449 /*
450  * Useful macros and constants
451  */
452 
453 /* Virtual address to page table entry */
454 static inline pt_entry_t *
455 vtopte(vaddr_t va)
456 {
457 	pd_entry_t *pdep;
458 	pt_entry_t *ptep;
459 
460 	KASSERT(trunc_page(va) == va);
461 
462 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false)
463 		return (NULL);
464 	return (ptep);
465 }
466 
467 /*
468  * Virtual address to physical address
469  */
470 static inline paddr_t
471 vtophys(vaddr_t va)
472 {
473 	paddr_t pa;
474 
475 	if (pmap_extract(pmap_kernel(), va, &pa) == false)
476 		return (0);	/* XXXSCW: Panic? */
477 
478 	return (pa);
479 }
480 
481 /*
482  * The new pmap ensures that page-tables are always mapping Write-Thru.
483  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
484  * on every change.
485  *
486  * Unfortunately, not all CPUs have a write-through cache mode.  So we
487  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
488  * and if there is the chance for PTE syncs to be needed, we define
489  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
490  * the code.
491  */
492 extern int pmap_needs_pte_sync;
493 #if defined(_KERNEL_OPT)
494 /*
495  * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a
496  * single MMU type is selected.
497  *
498  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
499  * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs.
500  * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs.
501  *
502  * Use run time evaluation for all other cases.
503  *
504  */
505 #if (ARM_NMMUS == 1)
506 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0)
507 #define	PMAP_INCLUDE_PTE_SYNC
508 #define	PMAP_NEEDS_PTE_SYNC	1
509 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0)
510 #define	PMAP_NEEDS_PTE_SYNC	0
511 #endif
512 #endif
513 #endif /* _KERNEL_OPT */
514 
515 /*
516  * Provide a fallback in case we were not able to determine it at
517  * compile-time.
518  */
519 #ifndef PMAP_NEEDS_PTE_SYNC
520 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
521 #define	PMAP_INCLUDE_PTE_SYNC
522 #endif
523 
524 static inline void
525 pmap_ptesync(pt_entry_t *ptep, size_t cnt)
526 {
527 	if (PMAP_NEEDS_PTE_SYNC) {
528 		cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t));
529 #ifdef SHEEVA_L2_CACHE
530 		cpu_sdcache_wb_range((vaddr_t)ptep, -1,
531 		    cnt * sizeof(pt_entry_t));
532 #endif
533 	}
534 	arm_dsb();
535 }
536 
537 #define	PDE_SYNC(pdep)			pmap_ptesync((pdep), 1)
538 #define	PDE_SYNC_RANGE(pdep, cnt)	pmap_ptesync((pdep), (cnt))
539 #define	PTE_SYNC(ptep)			pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE)
540 #define	PTE_SYNC_RANGE(ptep, cnt)	pmap_ptesync((ptep), (cnt))
541 
542 #define l1pte_valid_p(pde)	((pde) != 0)
543 #define l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
544 #define l1pte_supersection_p(pde) (l1pte_section_p(pde)	\
545 				&& ((pde) & L1_S_V6_SUPER) != 0)
546 #define l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
547 #define l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
548 #define l1pte_pa(pde)		((pde) & L1_C_ADDR_MASK)
549 #define l1pte_index(v)		((vaddr_t)(v) >> L1_S_SHIFT)
550 #define l1pte_pgindex(v)	l1pte_index((v) & L1_ADDR_BITS \
551 		& ~(PAGE_SIZE * PAGE_SIZE / sizeof(pt_entry_t) - 1))
552 
553 static inline void
554 l1pte_setone(pt_entry_t *pdep, pt_entry_t pde)
555 {
556 	*pdep = pde;
557 }
558 
559 static inline void
560 l1pte_set(pt_entry_t *pdep, pt_entry_t pde)
561 {
562 	*pdep = pde;
563 	if (l1pte_page_p(pde)) {
564 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep);
565 		for (size_t k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) {
566 			pde += L2_T_SIZE;
567 			pdep[k] = pde;
568 		}
569 	} else if (l1pte_supersection_p(pde)) {
570 		KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep);
571 		for (size_t k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) {
572 			pdep[k] = pde;
573 		}
574 	}
575 }
576 
577 #define l2pte_index(v)		((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT))
578 #define l2pte_valid_p(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
579 #define l2pte_pa(pte)		((pte) & L2_S_FRAME)
580 #define l1pte_lpage_p(pte)	(((pte) & L2_TYPE_MASK) == L2_TYPE_L)
581 #define l2pte_minidata_p(pte)	(((pte) & \
582 				 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
583 				 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
584 
585 static inline void
586 l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte)
587 {
588 	if (l1pte_lpage_p(pte)) {
589 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
590 		for (size_t k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) {
591 			*ptep++ = pte;
592 		}
593 	} else {
594 		KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
595 		for (size_t k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) {
596 			KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte);
597 			*ptep++ = pte;
598 			pte += L2_S_SIZE;
599 			if (opte)
600 				opte += L2_S_SIZE;
601 		}
602 	}
603 }
604 
605 static inline void
606 l2pte_reset(pt_entry_t *ptep)
607 {
608 	KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep);
609 	*ptep = 0;
610 	for (vsize_t k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) {
611 		ptep[k] = 0;
612 	}
613 }
614 
615 /* L1 and L2 page table macros */
616 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
617 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
618 #define pmap_pde_supersection(pde)	l1pte_supersection_p(*(pde))
619 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
620 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
621 
622 #define	pmap_pte_v(pte)		l2pte_valid_p(*(pte))
623 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
624 
625 /* Size of the kernel part of the L1 page table */
626 #define KERNEL_PD_SIZE	\
627 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
628 
629 void	bzero_page(vaddr_t);
630 void	bcopy_page(vaddr_t, vaddr_t);
631 
632 #ifdef FPU_VFP
633 void	bzero_page_vfp(vaddr_t);
634 void	bcopy_page_vfp(vaddr_t, vaddr_t);
635 #endif
636 
637 /************************* ARM MMU configuration *****************************/
638 
639 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
640 void	pmap_copy_page_generic(paddr_t, paddr_t);
641 void	pmap_zero_page_generic(paddr_t);
642 
643 void	pmap_pte_init_generic(void);
644 #if defined(CPU_ARM8)
645 void	pmap_pte_init_arm8(void);
646 #endif
647 #if defined(CPU_ARM9)
648 void	pmap_pte_init_arm9(void);
649 #endif /* CPU_ARM9 */
650 #if defined(CPU_ARM10)
651 void	pmap_pte_init_arm10(void);
652 #endif /* CPU_ARM10 */
653 #if defined(CPU_ARM11)	/* ARM_MMU_V6 */
654 void	pmap_pte_init_arm11(void);
655 #endif /* CPU_ARM11 */
656 #if defined(CPU_ARM11MPCORE)	/* ARM_MMU_V6 */
657 void	pmap_pte_init_arm11mpcore(void);
658 #endif
659 #if ARM_MMU_V7 == 1
660 void	pmap_pte_init_armv7(void);
661 #endif /* ARM_MMU_V7 */
662 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
663 
664 #if ARM_MMU_SA1 == 1
665 void	pmap_pte_init_sa1(void);
666 #endif /* ARM_MMU_SA1 == 1 */
667 
668 #if ARM_MMU_XSCALE == 1
669 void	pmap_copy_page_xscale(paddr_t, paddr_t);
670 void	pmap_zero_page_xscale(paddr_t);
671 
672 void	pmap_pte_init_xscale(void);
673 
674 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
675 
676 #define	PMAP_UAREA(va)		pmap_uarea(va)
677 void	pmap_uarea(vaddr_t);
678 #endif /* ARM_MMU_XSCALE == 1 */
679 
680 extern pt_entry_t		pte_l1_s_cache_mode;
681 extern pt_entry_t		pte_l1_s_cache_mask;
682 
683 extern pt_entry_t		pte_l2_l_cache_mode;
684 extern pt_entry_t		pte_l2_l_cache_mask;
685 
686 extern pt_entry_t		pte_l2_s_cache_mode;
687 extern pt_entry_t		pte_l2_s_cache_mask;
688 
689 extern pt_entry_t		pte_l1_s_cache_mode_pt;
690 extern pt_entry_t		pte_l2_l_cache_mode_pt;
691 extern pt_entry_t		pte_l2_s_cache_mode_pt;
692 
693 extern pt_entry_t		pte_l1_s_wc_mode;
694 extern pt_entry_t		pte_l2_l_wc_mode;
695 extern pt_entry_t		pte_l2_s_wc_mode;
696 
697 extern pt_entry_t		pte_l1_s_prot_u;
698 extern pt_entry_t		pte_l1_s_prot_w;
699 extern pt_entry_t		pte_l1_s_prot_ro;
700 extern pt_entry_t		pte_l1_s_prot_mask;
701 
702 extern pt_entry_t		pte_l2_s_prot_u;
703 extern pt_entry_t		pte_l2_s_prot_w;
704 extern pt_entry_t		pte_l2_s_prot_ro;
705 extern pt_entry_t		pte_l2_s_prot_mask;
706 
707 extern pt_entry_t		pte_l2_l_prot_u;
708 extern pt_entry_t		pte_l2_l_prot_w;
709 extern pt_entry_t		pte_l2_l_prot_ro;
710 extern pt_entry_t		pte_l2_l_prot_mask;
711 
712 extern pt_entry_t		pte_l1_ss_proto;
713 extern pt_entry_t		pte_l1_s_proto;
714 extern pt_entry_t		pte_l1_c_proto;
715 extern pt_entry_t		pte_l2_s_proto;
716 
717 extern void (*pmap_copy_page_func)(paddr_t, paddr_t);
718 extern void (*pmap_zero_page_func)(paddr_t);
719 
720 #endif /* !_LOCORE */
721 
722 /*****************************************************************************/
723 
724 #define	KERNEL_PID		0	/* The kernel uses ASID 0 */
725 
726 /*
727  * Definitions for MMU domains
728  */
729 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
730 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel pmap uses domain #0 */
731 #ifdef ARM_MMU_EXTENDED
732 #define	PMAP_DOMAIN_USER	1	/* User pmaps use domain #1 */
733 #endif
734 
735 /*
736  * These macros define the various bit masks in the PTE.
737  *
738  * We use these macros since we use different bits on different processor
739  * models.
740  */
741 #define	L1_S_PROT_U_generic	(L1_S_AP(AP_U))
742 #define	L1_S_PROT_W_generic	(L1_S_AP(AP_W))
743 #define	L1_S_PROT_RO_generic	(0)
744 #define	L1_S_PROT_MASK_generic	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
745 
746 #define	L1_S_PROT_U_xscale	(L1_S_AP(AP_U))
747 #define	L1_S_PROT_W_xscale	(L1_S_AP(AP_W))
748 #define	L1_S_PROT_RO_xscale	(0)
749 #define	L1_S_PROT_MASK_xscale	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
750 
751 #define	L1_S_PROT_U_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
752 #define	L1_S_PROT_W_armv6	(L1_S_AP(AP_W))
753 #define	L1_S_PROT_RO_armv6	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
754 #define	L1_S_PROT_MASK_armv6	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
755 
756 #define	L1_S_PROT_U_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_U))
757 #define	L1_S_PROT_W_armv7	(L1_S_AP(AP_W))
758 #define	L1_S_PROT_RO_armv7	(L1_S_AP(AP_R) | L1_S_AP(AP_RO))
759 #define	L1_S_PROT_MASK_armv7	(L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO)
760 
761 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
762 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
763 #define	L1_S_CACHE_MASK_armv6	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX))
764 #define	L1_S_CACHE_MASK_armv6n	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
765 #define	L1_S_CACHE_MASK_armv7	(L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S)
766 
767 #define	L2_L_PROT_U_generic	(L2_AP(AP_U))
768 #define	L2_L_PROT_W_generic	(L2_AP(AP_W))
769 #define	L2_L_PROT_RO_generic	(0)
770 #define	L2_L_PROT_MASK_generic	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
771 
772 #define	L2_L_PROT_U_xscale	(L2_AP(AP_U))
773 #define	L2_L_PROT_W_xscale	(L2_AP(AP_W))
774 #define	L2_L_PROT_RO_xscale	(0)
775 #define	L2_L_PROT_MASK_xscale	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
776 
777 #define	L2_L_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
778 #define	L2_L_PROT_W_armv6n	(L2_AP0(AP_W))
779 #define	L2_L_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
780 #define	L2_L_PROT_MASK_armv6n	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
781 
782 #define	L2_L_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
783 #define	L2_L_PROT_W_armv7	(L2_AP0(AP_W))
784 #define	L2_L_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
785 #define	L2_L_PROT_MASK_armv7	(L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO)
786 
787 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
788 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
789 #define	L2_L_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX))
790 #define	L2_L_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
791 #define	L2_L_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S)
792 
793 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
794 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
795 #define	L2_S_PROT_RO_generic	(0)
796 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
797 
798 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
799 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
800 #define	L2_S_PROT_RO_xscale	(0)
801 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
802 
803 #define	L2_S_PROT_U_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_U))
804 #define	L2_S_PROT_W_armv6n	(L2_AP0(AP_W))
805 #define	L2_S_PROT_RO_armv6n	(L2_AP0(AP_R) | L2_AP0(AP_RO))
806 #define	L2_S_PROT_MASK_armv6n	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
807 
808 #define	L2_S_PROT_U_armv7	(L2_AP0(AP_R) | L2_AP0(AP_U))
809 #define	L2_S_PROT_W_armv7	(L2_AP0(AP_W))
810 #define	L2_S_PROT_RO_armv7	(L2_AP0(AP_R) | L2_AP0(AP_RO))
811 #define	L2_S_PROT_MASK_armv7	(L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO)
812 
813 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
814 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
815 #define	L2_XS_CACHE_MASK_armv6	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX))
816 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
817 #define	L2_S_CACHE_MASK_armv6c	L2_XS_CACHE_MASK_armv6
818 #else
819 #define	L2_S_CACHE_MASK_armv6c	L2_S_CACHE_MASK_generic
820 #endif
821 #define	L2_S_CACHE_MASK_armv6n	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
822 #define	L2_S_CACHE_MASK_armv7	(L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S)
823 
824 
825 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
826 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
827 #define	L1_S_PROTO_armv6	(L1_TYPE_S)
828 #define	L1_S_PROTO_armv7	(L1_TYPE_S)
829 
830 #define	L1_SS_PROTO_generic	0
831 #define	L1_SS_PROTO_xscale	0
832 #define	L1_SS_PROTO_armv6	(L1_TYPE_S | L1_S_V6_SS)
833 #define	L1_SS_PROTO_armv7	(L1_TYPE_S | L1_S_V6_SS)
834 
835 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
836 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
837 #define	L1_C_PROTO_armv6	(L1_TYPE_C)
838 #define	L1_C_PROTO_armv7	(L1_TYPE_C)
839 
840 #define	L2_L_PROTO		(L2_TYPE_L)
841 
842 #define	L2_S_PROTO_generic	(L2_TYPE_S)
843 #define	L2_S_PROTO_xscale	(L2_TYPE_XS)
844 #ifdef	ARMV6_EXTENDED_SMALL_PAGE
845 #define	L2_S_PROTO_armv6c	(L2_TYPE_XS)    /* XP=0, extended small page */
846 #else
847 #define	L2_S_PROTO_armv6c	(L2_TYPE_S)	/* XP=0, subpage APs */
848 #endif
849 #ifdef ARM_MMU_EXTENDED
850 #define	L2_S_PROTO_armv6n	(L2_TYPE_S|L2_XS_XN)
851 #else
852 #define	L2_S_PROTO_armv6n	(L2_TYPE_S)	/* with XP=1 */
853 #endif
854 #ifdef ARM_MMU_EXTENDED
855 #define	L2_S_PROTO_armv7	(L2_TYPE_S|L2_XS_XN)
856 #else
857 #define	L2_S_PROTO_armv7	(L2_TYPE_S)
858 #endif
859 
860 /*
861  * User-visible names for the ones that vary with MMU class.
862  */
863 
864 #if ARM_NMMUS > 1
865 /* More than one MMU class configured; use variables. */
866 #define	L1_S_PROT_U		pte_l1_s_prot_u
867 #define	L1_S_PROT_W		pte_l1_s_prot_w
868 #define	L1_S_PROT_RO		pte_l1_s_prot_ro
869 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
870 
871 #define	L2_S_PROT_U		pte_l2_s_prot_u
872 #define	L2_S_PROT_W		pte_l2_s_prot_w
873 #define	L2_S_PROT_RO		pte_l2_s_prot_ro
874 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
875 
876 #define	L2_L_PROT_U		pte_l2_l_prot_u
877 #define	L2_L_PROT_W		pte_l2_l_prot_w
878 #define	L2_L_PROT_RO		pte_l2_l_prot_ro
879 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
880 
881 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
882 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
883 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
884 
885 #define	L1_SS_PROTO		pte_l1_ss_proto
886 #define	L1_S_PROTO		pte_l1_s_proto
887 #define	L1_C_PROTO		pte_l1_c_proto
888 #define	L2_S_PROTO		pte_l2_s_proto
889 
890 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
891 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
892 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
893 #define	L1_S_PROT_U		L1_S_PROT_U_generic
894 #define	L1_S_PROT_W		L1_S_PROT_W_generic
895 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
896 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
897 
898 #define	L2_S_PROT_U		L2_S_PROT_U_generic
899 #define	L2_S_PROT_W		L2_S_PROT_W_generic
900 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
901 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
902 
903 #define	L2_L_PROT_U		L2_L_PROT_U_generic
904 #define	L2_L_PROT_W		L2_L_PROT_W_generic
905 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
906 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
907 
908 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
909 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
910 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
911 
912 #define	L1_SS_PROTO		L1_SS_PROTO_generic
913 #define	L1_S_PROTO		L1_S_PROTO_generic
914 #define	L1_C_PROTO		L1_C_PROTO_generic
915 #define	L2_S_PROTO		L2_S_PROTO_generic
916 
917 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
918 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
919 #elif ARM_MMU_V6N != 0
920 #define	L1_S_PROT_U		L1_S_PROT_U_armv6
921 #define	L1_S_PROT_W		L1_S_PROT_W_armv6
922 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv6
923 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv6
924 
925 #define	L2_S_PROT_U		L2_S_PROT_U_armv6n
926 #define	L2_S_PROT_W		L2_S_PROT_W_armv6n
927 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv6n
928 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv6n
929 
930 #define	L2_L_PROT_U		L2_L_PROT_U_armv6n
931 #define	L2_L_PROT_W		L2_L_PROT_W_armv6n
932 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv6n
933 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv6n
934 
935 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv6n
936 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv6n
937 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv6n
938 
939 /*
940  * These prototypes make writeable mappings, while the other MMU types
941  * make read-only mappings.
942  */
943 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
944 #define	L1_S_PROTO		L1_S_PROTO_armv6
945 #define	L1_C_PROTO		L1_C_PROTO_armv6
946 #define	L2_S_PROTO		L2_S_PROTO_armv6n
947 
948 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
949 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
950 #elif ARM_MMU_V6C != 0
951 #define	L1_S_PROT_U		L1_S_PROT_U_generic
952 #define	L1_S_PROT_W		L1_S_PROT_W_generic
953 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
954 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
955 
956 #define	L2_S_PROT_U		L2_S_PROT_U_generic
957 #define	L2_S_PROT_W		L2_S_PROT_W_generic
958 #define	L2_S_PROT_RO		L2_S_PROT_RO_generic
959 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
960 
961 #define	L2_L_PROT_U		L2_L_PROT_U_generic
962 #define	L2_L_PROT_W		L2_L_PROT_W_generic
963 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
964 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
965 
966 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
967 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
968 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
969 
970 #define	L1_SS_PROTO		L1_SS_PROTO_armv6
971 #define	L1_S_PROTO		L1_S_PROTO_generic
972 #define	L1_C_PROTO		L1_C_PROTO_generic
973 #define	L2_S_PROTO		L2_S_PROTO_generic
974 
975 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
976 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
977 #elif ARM_MMU_XSCALE == 1
978 #define	L1_S_PROT_U		L1_S_PROT_U_generic
979 #define	L1_S_PROT_W		L1_S_PROT_W_generic
980 #define	L1_S_PROT_RO		L1_S_PROT_RO_generic
981 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_generic
982 
983 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
984 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
985 #define	L2_S_PROT_RO		L2_S_PROT_RO_xscale
986 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
987 
988 #define	L2_L_PROT_U		L2_L_PROT_U_generic
989 #define	L2_L_PROT_W		L2_L_PROT_W_generic
990 #define	L2_L_PROT_RO		L2_L_PROT_RO_generic
991 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_generic
992 
993 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
994 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
995 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
996 
997 #define	L1_SS_PROTO		L1_SS_PROTO_xscale
998 #define	L1_S_PROTO		L1_S_PROTO_xscale
999 #define	L1_C_PROTO		L1_C_PROTO_xscale
1000 #define	L2_S_PROTO		L2_S_PROTO_xscale
1001 
1002 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
1003 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
1004 #elif ARM_MMU_V7 == 1
1005 #define	L1_S_PROT_U		L1_S_PROT_U_armv7
1006 #define	L1_S_PROT_W		L1_S_PROT_W_armv7
1007 #define	L1_S_PROT_RO		L1_S_PROT_RO_armv7
1008 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_armv7
1009 
1010 #define	L2_S_PROT_U		L2_S_PROT_U_armv7
1011 #define	L2_S_PROT_W		L2_S_PROT_W_armv7
1012 #define	L2_S_PROT_RO		L2_S_PROT_RO_armv7
1013 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_armv7
1014 
1015 #define	L2_L_PROT_U		L2_L_PROT_U_armv7
1016 #define	L2_L_PROT_W		L2_L_PROT_W_armv7
1017 #define	L2_L_PROT_RO		L2_L_PROT_RO_armv7
1018 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_armv7
1019 
1020 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_armv7
1021 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_armv7
1022 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_armv7
1023 
1024 /*
1025  * These prototypes make writeable mappings, while the other MMU types
1026  * make read-only mappings.
1027  */
1028 #define	L1_SS_PROTO		L1_SS_PROTO_armv7
1029 #define	L1_S_PROTO		L1_S_PROTO_armv7
1030 #define	L1_C_PROTO		L1_C_PROTO_armv7
1031 #define	L2_S_PROTO		L2_S_PROTO_armv7
1032 
1033 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
1034 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
1035 #endif /* ARM_NMMUS > 1 */
1036 
1037 /*
1038  * Macros to set and query the write permission on page descriptors.
1039  */
1040 #define l1pte_set_writable(pte)	(((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W)
1041 #define l1pte_set_readonly(pte)	(((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO)
1042 
1043 #define l2pte_set_writable(pte)	(((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W)
1044 #define l2pte_set_readonly(pte)	(((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO)
1045 
1046 #define l2pte_writable_p(pte)	(((pte) & L2_S_PROT_W) == L2_S_PROT_W && \
1047 				 (L2_S_PROT_RO == 0 || \
1048 				  ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO))
1049 
1050 /*
1051  * These macros return various bits based on kernel/user and protection.
1052  * Note that the compiler will usually fold these at compile time.
1053  */
1054 
1055 #define	L1_S_PROT(ku, pr)	(					   \
1056 	(((ku) == PTE_USER) ? 						   \
1057 	    L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)	   \
1058 	: 								   \
1059 	    (((L1_S_PROT_RO && 						   \
1060 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1061 		    L1_S_PROT_RO : L1_S_PROT_W)))			   \
1062     )
1063 
1064 #define	L2_L_PROT(ku, pr)	(					   \
1065 	(((ku) == PTE_USER) ?						   \
1066 	    L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)	   \
1067 	:								   \
1068 	    (((L2_L_PROT_RO && 						   \
1069 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1070 		    L2_L_PROT_RO : L2_L_PROT_W)))			   \
1071     )
1072 
1073 #define	L2_S_PROT(ku, pr)	(					   \
1074 	(((ku) == PTE_USER) ?						   \
1075 	    L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)	   \
1076 	:								   \
1077 	    (((L2_S_PROT_RO &&						   \
1078 		((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \
1079 		    L2_S_PROT_RO : L2_S_PROT_W)))			   \
1080     )
1081 
1082 /*
1083  * Macros to test if a mapping is mappable with an L1 SuperSection,
1084  * L1 Section, or an L2 Large Page mapping.
1085  */
1086 #define	L1_SS_MAPPABLE_P(va, pa, size)					\
1087 	((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE)
1088 
1089 #define	L1_S_MAPPABLE_P(va, pa, size)					\
1090 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
1091 
1092 #define	L2_L_MAPPABLE_P(va, pa, size)					\
1093 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
1094 
1095 #ifndef _LOCORE
1096 /*
1097  * Hooks for the pool allocator.
1098  */
1099 #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
1100 extern paddr_t physical_start, physical_end;
1101 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1102 struct vm_page *arm_pmap_alloc_poolpage(int);
1103 #define	PMAP_ALLOC_POOLPAGE	arm_pmap_alloc_poolpage
1104 #endif
1105 #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
1106 vaddr_t	pmap_map_poolpage(paddr_t);
1107 paddr_t	pmap_unmap_poolpage(vaddr_t);
1108 #define	PMAP_MAP_POOLPAGE(pa)	pmap_map_poolpage(pa)
1109 #define PMAP_UNMAP_POOLPAGE(va)	pmap_unmap_poolpage(va)
1110 #endif
1111 
1112 #define __HAVE_PMAP_PV_TRACK	1
1113 
1114 void pmap_pv_protect(paddr_t, vm_prot_t);
1115 
1116 struct pmap_page {
1117 	SLIST_HEAD(,pv_entry) pvh_list;		/* pv_entry list */
1118 	int pvh_attrs;				/* page attributes */
1119 	u_int uro_mappings;
1120 	u_int urw_mappings;
1121 	union {
1122 		u_short s_mappings[2];	/* Assume kernel count <= 65535 */
1123 		u_int i_mappings;
1124 	} k_u;
1125 };
1126 
1127 /*
1128  * pmap-specific data store in the vm_page structure.
1129  */
1130 #define	__HAVE_VM_PAGE_MD
1131 struct vm_page_md {
1132 	struct pmap_page pp;
1133 #define	pvh_list	pp.pvh_list
1134 #define	pvh_attrs	pp.pvh_attrs
1135 #define	uro_mappings	pp.uro_mappings
1136 #define	urw_mappings	pp.urw_mappings
1137 #define	kro_mappings	pp.k_u.s_mappings[0]
1138 #define	krw_mappings	pp.k_u.s_mappings[1]
1139 #define	k_mappings	pp.k_u.i_mappings
1140 };
1141 
1142 #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp)
1143 
1144 /*
1145  * Set the default color of each page.
1146  */
1147 #if ARM_MMU_V6 > 0
1148 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1149 	(pg)->mdpage.pvh_attrs = (pg)->phys_addr & arm_cache_prefer_mask
1150 #else
1151 #define	VM_MDPAGE_PVH_ATTRS_INIT(pg) \
1152 	(pg)->mdpage.pvh_attrs = 0
1153 #endif
1154 
1155 #define	VM_MDPAGE_INIT(pg)						\
1156 do {									\
1157 	SLIST_INIT(&(pg)->mdpage.pvh_list);				\
1158 	VM_MDPAGE_PVH_ATTRS_INIT(pg);					\
1159 	(pg)->mdpage.uro_mappings = 0;					\
1160 	(pg)->mdpage.urw_mappings = 0;					\
1161 	(pg)->mdpage.k_mappings = 0;					\
1162 } while (/*CONSTCOND*/0)
1163 
1164 #endif /* !_LOCORE */
1165 
1166 #endif /* _KERNEL */
1167 
1168 #endif	/* _ARM32_PMAP_H_ */
1169