1 /* $NetBSD: imxuart.c,v 1.14 2014/08/10 16:44:33 tls Exp $ */ 2 3 /* 4 * Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved. 5 * Written by Hiroyuki Bessho for Genetec Corporation. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * derived from sys/dev/ic/com.c 32 */ 33 34 /*- 35 * Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc. 36 * All rights reserved. 37 * 38 * This code is derived from software contributed to The NetBSD Foundation 39 * by Charles M. Hannum. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 51 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 60 * POSSIBILITY OF SUCH DAMAGE. 61 */ 62 63 /* 64 * Copyright (c) 1991 The Regents of the University of California. 65 * All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions 69 * are met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce the above copyright 73 * notice, this list of conditions and the following disclaimer in the 74 * documentation and/or other materials provided with the distribution. 75 * 3. Neither the name of the University nor the names of its contributors 76 * may be used to endorse or promote products derived from this software 77 * without specific prior written permission. 78 * 79 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 80 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 81 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 82 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 83 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 84 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 85 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 86 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 87 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 88 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 89 * SUCH DAMAGE. 90 * 91 * @(#)com.c 7.5 (Berkeley) 5/16/91 92 */ 93 94 /* 95 * driver for UART in i.MX SoC. 96 */ 97 98 #include <sys/cdefs.h> 99 __KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.14 2014/08/10 16:44:33 tls Exp $"); 100 101 #include "opt_imxuart.h" 102 #include "opt_ddb.h" 103 #include "opt_kgdb.h" 104 #include "opt_lockdebug.h" 105 #include "opt_multiprocessor.h" 106 #include "opt_ntp.h" 107 #include "opt_imxuart.h" 108 #include "opt_imx.h" 109 110 #include "rnd.h" 111 #ifdef RND_COM 112 #include <sys/rnd.h> 113 #endif 114 115 #ifndef IMXUART_TOLERANCE 116 #define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */ 117 #endif 118 119 #ifndef IMXUART_FREQDIV 120 #define IMXUART_FREQDIV 2 /* XXX */ 121 #endif 122 123 #ifndef IMXUART_FREQ 124 #define IMXUART_FREQ (56900000) 125 #endif 126 127 /* 128 * Override cnmagic(9) macro before including <sys/systm.h>. 129 * We need to know if cn_check_magic triggered debugger, so set a flag. 130 * Callers of cn_check_magic must declare int cn_trapped = 0; 131 * XXX: this is *ugly*! 132 */ 133 #define cn_trap() \ 134 do { \ 135 console_debugger(); \ 136 cn_trapped = 1; \ 137 } while (/* CONSTCOND */ 0) 138 139 #include <sys/param.h> 140 #include <sys/systm.h> 141 #include <sys/ioctl.h> 142 #include <sys/select.h> 143 #include <sys/poll.h> 144 #include <sys/tty.h> 145 #include <sys/proc.h> 146 #include <sys/conf.h> 147 #include <sys/file.h> 148 #include <sys/uio.h> 149 #include <sys/kernel.h> 150 #include <sys/syslog.h> 151 #include <sys/device.h> 152 #include <sys/malloc.h> 153 #include <sys/timepps.h> 154 #include <sys/vnode.h> 155 #include <sys/kauth.h> 156 #include <sys/intr.h> 157 158 #include <sys/bus.h> 159 160 #include <arm/imx/imxuartreg.h> 161 #include <arm/imx/imxuartvar.h> 162 #include <dev/cons.h> 163 164 #ifndef IMXUART_RING_SIZE 165 #define IMXUART_RING_SIZE 2048 166 #endif 167 168 typedef struct imxuart_softc { 169 device_t sc_dev; 170 171 struct imxuart_regs { 172 bus_space_tag_t ur_iot; 173 bus_space_handle_t ur_ioh; 174 bus_addr_t ur_iobase; 175 #if 0 176 bus_size_t ur_nports; 177 bus_size_t ur_map[16]; 178 #endif 179 } sc_regs; 180 181 #define sc_bt sc_regs.ur_iot 182 #define sc_bh sc_regs.ur_ioh 183 184 uint32_t sc_intrspec_enb; 185 uint32_t sc_ucr2_d; /* target value for UCR2 */ 186 uint32_t sc_ucr[4]; /* cached value of UCRn */ 187 #define sc_ucr1 sc_ucr[0] 188 #define sc_ucr2 sc_ucr[1] 189 #define sc_ucr3 sc_ucr[2] 190 #define sc_ucr4 sc_ucr[3] 191 192 uint sc_init_cnt; 193 194 bus_addr_t sc_addr; 195 bus_size_t sc_size; 196 int sc_intr; 197 198 u_char sc_hwflags; 199 /* Hardware flag masks */ 200 #define IMXUART_HW_FLOW __BIT(0) 201 #define IMXUART_HW_DEV_OK __BIT(1) 202 #define IMXUART_HW_CONSOLE __BIT(2) 203 #define IMXUART_HW_KGDB __BIT(3) 204 205 206 bool enabled; 207 208 u_char sc_swflags; 209 210 u_char sc_rx_flags; 211 #define IMXUART_RX_TTY_BLOCKED __BIT(0) 212 #define IMXUART_RX_TTY_OVERFLOWED __BIT(1) 213 #define IMXUART_RX_IBUF_BLOCKED __BIT(2) 214 #define IMXUART_RX_IBUF_OVERFLOWED __BIT(3) 215 #define IMXUART_RX_ANY_BLOCK \ 216 (IMXUART_RX_TTY_BLOCKED|IMXUART_RX_TTY_OVERFLOWED| \ 217 IMXUART_RX_IBUF_BLOCKED|IMXUART_RX_IBUF_OVERFLOWED) 218 219 bool sc_tx_busy, sc_tx_done, sc_tx_stopped; 220 bool sc_rx_ready,sc_st_check; 221 u_short sc_txfifo_len, sc_txfifo_thresh; 222 223 uint16_t *sc_rbuf; 224 u_int sc_rbuf_size; 225 u_int sc_rbuf_in; 226 u_int sc_rbuf_out; 227 #define IMXUART_RBUF_AVAIL(sc) \ 228 ((sc->sc_rbuf_out <= sc->sc_rbuf_in) ? \ 229 (sc->sc_rbuf_in - sc->sc_rbuf_out) : \ 230 (sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in))) 231 232 #define IMXUART_RBUF_SPACE(sc) \ 233 ((sc->sc_rbuf_in <= sc->sc_rbuf_out ? \ 234 sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in) : \ 235 sc->sc_rbuf_in - sc->sc_rbuf_out) - 1) 236 /* increment ringbuffer pointer */ 237 #define IMXUART_RBUF_INC(sc,v,i) (((v) + (i))&((sc->sc_rbuf_size)-1)) 238 u_int sc_r_lowat; 239 u_int sc_r_hiwat; 240 241 /* output chunk */ 242 u_char *sc_tba; 243 u_int sc_tbc; 244 u_int sc_heldtbc; 245 /* pending parameter changes */ 246 u_char sc_pending; 247 #define IMXUART_PEND_PARAM __BIT(0) 248 #define IMXUART_PEND_SPEED __BIT(1) 249 250 251 struct callout sc_diag_callout; 252 kmutex_t sc_lock; 253 void *sc_ih; /* interrupt handler */ 254 void *sc_si; /* soft interrupt */ 255 struct tty *sc_tty; 256 257 /* power management hooks */ 258 int (*enable)(struct imxuart_softc *); 259 void (*disable)(struct imxuart_softc *); 260 261 struct { 262 ulong err; 263 ulong brk; 264 ulong prerr; 265 ulong frmerr; 266 ulong ovrrun; 267 } sc_errors; 268 269 struct imxuart_baudrate_ratio { 270 uint16_t numerator; /* UBIR */ 271 uint16_t modulator; /* UBMR */ 272 } sc_ratio; 273 274 } imxuart_softc_t; 275 276 277 int imxuspeed(long, struct imxuart_baudrate_ratio *); 278 int imxuparam(struct tty *, struct termios *); 279 void imxustart(struct tty *); 280 int imxuhwiflow(struct tty *, int); 281 282 void imxuart_shutdown(struct imxuart_softc *); 283 void imxuart_loadchannelregs(struct imxuart_softc *); 284 void imxuart_hwiflow(struct imxuart_softc *); 285 void imxuart_break(struct imxuart_softc *, bool); 286 void imxuart_modem(struct imxuart_softc *, int); 287 void tiocm_to_imxu(struct imxuart_softc *, u_long, int); 288 int imxuart_to_tiocm(struct imxuart_softc *); 289 void imxuart_iflush(struct imxuart_softc *); 290 int imxuintr(void *); 291 292 int imxuart_common_getc(dev_t, struct imxuart_regs *); 293 void imxuart_common_putc(dev_t, struct imxuart_regs *, int); 294 295 296 int imxuart_init(struct imxuart_regs *, int, tcflag_t); 297 298 int imxucngetc(dev_t); 299 void imxucnputc(dev_t, int); 300 void imxucnpollc(dev_t, int); 301 302 static void imxuintr_read(struct imxuart_softc *); 303 static void imxuintr_send(struct imxuart_softc *); 304 305 static void imxuart_enable_debugport(struct imxuart_softc *); 306 static void imxuart_disable_all_interrupts(struct imxuart_softc *); 307 static void imxuart_control_rxint(struct imxuart_softc *, bool); 308 static void imxuart_control_txint(struct imxuart_softc *, bool); 309 static u_int imxuart_txfifo_space(struct imxuart_softc *sc); 310 311 static uint32_t cflag_to_ucr2(tcflag_t, uint32_t); 312 313 CFATTACH_DECL_NEW(imxuart, sizeof(struct imxuart_softc), 314 imxuart_match, imxuart_attach, NULL, NULL); 315 316 317 #define integrate static inline 318 void imxusoft(void *); 319 integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *); 320 integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *); 321 integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *); 322 integrate void imxuart_schedrx(struct imxuart_softc *); 323 void imxudiag(void *); 324 static void imxuart_load_speed(struct imxuart_softc *); 325 static void imxuart_load_params(struct imxuart_softc *); 326 integrate void imxuart_load_pendings(struct imxuart_softc *); 327 328 329 extern struct cfdriver imxuart_cd; 330 331 dev_type_open(imxuopen); 332 dev_type_close(imxuclose); 333 dev_type_read(imxuread); 334 dev_type_write(imxuwrite); 335 dev_type_ioctl(imxuioctl); 336 dev_type_stop(imxustop); 337 dev_type_tty(imxutty); 338 dev_type_poll(imxupoll); 339 340 const struct cdevsw imxcom_cdevsw = { 341 .d_open = imxuopen, 342 .d_close = imxuclose, 343 .d_read = imxuread, 344 .d_write = imxuwrite, 345 .d_ioctl = imxuioctl, 346 .d_stop = imxustop, 347 .d_tty = imxutty, 348 .d_poll = imxupoll, 349 .d_mmap = nommap, 350 .d_kqfilter = ttykqfilter, 351 .d_discard = nodiscard, 352 .d_flag = D_TTY 353 }; 354 355 /* 356 * Make this an option variable one can patch. 357 * But be warned: this must be a power of 2! 358 */ 359 u_int imxuart_rbuf_size = IMXUART_RING_SIZE; 360 361 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 362 u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4; 363 u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4; 364 365 static struct imxuart_regs imxuconsregs; 366 static int imxuconsattached; 367 static int imxuconsrate; 368 static tcflag_t imxuconscflag; 369 static struct cnm_state imxuart_cnm_state; 370 371 u_int imxuart_freq = IMXUART_FREQ; 372 u_int imxuart_freqdiv = IMXUART_FREQDIV; 373 374 #ifdef KGDB 375 #include <sys/kgdb.h> 376 377 static struct imxuart_regs imxu_kgdb_regs; 378 static int imxu_kgdb_attached; 379 380 int imxuart_kgdb_getc(void *); 381 void imxuart_kgdb_putc(void *, int); 382 #endif /* KGDB */ 383 384 #define IMXUART_UNIT_MASK 0x7ffff 385 #define IMXUART_DIALOUT_MASK 0x80000 386 387 #define IMXUART_UNIT(x) (minor(x) & IMXUART_UNIT_MASK) 388 #define IMXUART_DIALOUT(x) (minor(x) & IMXUART_DIALOUT_MASK) 389 390 #define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \ 391 device_is_active((sc)->sc_dev)) 392 393 #define BR BUS_SPACE_BARRIER_READ 394 #define BW BUS_SPACE_BARRIER_WRITE 395 #define IMXUART_BARRIER(r, f) \ 396 bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f)) 397 398 399 void 400 imxuart_attach_common(device_t parent, device_t self, 401 bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags) 402 { 403 imxuart_softc_t *sc = device_private(self); 404 struct imxuart_regs *regsp = &sc->sc_regs; 405 struct tty *tp; 406 bus_space_handle_t ioh; 407 408 aprint_naive("\n"); 409 aprint_normal("\n"); 410 411 sc->sc_dev = self; 412 413 if (size <= 0) 414 size = IMX_UART_SIZE; 415 416 sc->sc_intr = intr; 417 regsp->ur_iot = iot; 418 regsp->ur_iobase = iobase; 419 420 if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) { 421 return; 422 } 423 regsp->ur_ioh = ioh; 424 425 callout_init(&sc->sc_diag_callout, 0); 426 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH); 427 428 bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4); 429 sc->sc_ucr2_d = sc->sc_ucr2; 430 431 /* Disable interrupts before configuring the device. */ 432 imxuart_disable_all_interrupts(sc); 433 434 if (regsp->ur_iobase == imxuconsregs.ur_iobase) { 435 imxuconsattached = 1; 436 437 /* Make sure the console is always "hardwired". */ 438 #if 0 439 delay(10000); /* wait for output to finish */ 440 #endif 441 SET(sc->sc_hwflags, IMXUART_HW_CONSOLE); 442 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); 443 } 444 445 446 tp = tty_alloc(); 447 tp->t_oproc = imxustart; 448 tp->t_param = imxuparam; 449 tp->t_hwiflow = imxuhwiflow; 450 451 sc->sc_tty = tp; 452 sc->sc_rbuf = malloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size, 453 M_DEVBUF, M_NOWAIT); 454 sc->sc_rbuf_size = imxuart_rbuf_size; 455 sc->sc_rbuf_in = sc->sc_rbuf_out = 0; 456 if (sc->sc_rbuf == NULL) { 457 aprint_error_dev(sc->sc_dev, 458 "unable to allocate ring buffer\n"); 459 return; 460 } 461 462 sc->sc_txfifo_len = 32; 463 sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space 464 * for this many characters */ 465 466 tty_attach(tp); 467 468 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 469 int maj; 470 471 /* locate the major number */ 472 maj = cdevsw_lookup_major(&imxcom_cdevsw); 473 474 if (maj != NODEVMAJOR) { 475 tp->t_dev = cn_tab->cn_dev = makedev(maj, 476 device_unit(sc->sc_dev)); 477 478 aprint_normal_dev(sc->sc_dev, "console\n"); 479 } 480 } 481 482 sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL, 483 imxuintr, sc); 484 if (sc->sc_ih == NULL) 485 aprint_error_dev(sc->sc_dev, "intr_establish failed\n"); 486 487 #ifdef KGDB 488 /* 489 * Allow kgdb to "take over" this port. If this is 490 * not the console and is the kgdb device, it has 491 * exclusive use. If it's the console _and_ the 492 * kgdb device, it doesn't. 493 */ 494 if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) { 495 if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 496 imxu_kgdb_attached = 1; 497 498 SET(sc->sc_hwflags, IMXUART_HW_KGDB); 499 } 500 aprint_normal_dev(sc->sc_dev, "kgdb\n"); 501 } 502 #endif 503 504 sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc); 505 506 #ifdef RND_COM 507 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 508 RND_TYPE_TTY, RND_FLAG_COLLECT_TIME | 509 RND_FLAG_ESTIMATE_TIME); 510 #endif 511 512 /* if there are no enable/disable functions, assume the device 513 is always enabled */ 514 if (!sc->enable) 515 sc->enabled = 1; 516 517 imxuart_enable_debugport(sc); 518 519 SET(sc->sc_hwflags, IMXUART_HW_DEV_OK); 520 521 //shutdownhook_establish(imxuart_shutdownhook, sc); 522 523 524 #if 0 525 { 526 uint32_t reg; 527 reg = bus_space_read_4(iot, ioh, IMX_UCR1); 528 reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN; 529 bus_space_write_4(iot, ioh, IMX_UCR1, reg); 530 } 531 #endif 532 } 533 534 /* 535 * baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1)) 536 * 537 * (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq 538 */ 539 540 static long 541 gcd(long m, long n) 542 { 543 544 if (m < n) 545 return gcd(n, m); 546 547 if (n <= 0) 548 return m; 549 return gcd(n, m % n); 550 } 551 552 553 int 554 imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio) 555 { 556 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ 557 long b = 16 * speed; 558 long f = imxuart_freq / imxuart_freqdiv; 559 long d; 560 int err = 0; 561 562 /* reduce b/f */ 563 while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) { 564 f /= d; 565 b /= d; 566 } 567 568 569 while (f > (1<<16) || b > (1<<16)) { 570 f /= 2; 571 b /= 2; 572 } 573 if (f <= 0 || b <= 0) 574 return -1; 575 576 #ifdef DIAGNOSTIC 577 err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv, 578 (uint64_t)speed * 16 * f / b) - 1000; 579 if (err < 0) 580 err = -err; 581 #endif 582 583 ratio->numerator = b-1; 584 ratio->modulator = f-1; 585 586 if (err > IMXUART_TOLERANCE) 587 return -1; 588 589 return 0; 590 #undef divrnd 591 } 592 593 #ifdef IMXUART_DEBUG 594 int imxuart_debug = 0; 595 596 void imxustatus(struct imxuart_softc *, const char *); 597 void 598 imxustatus(struct imxuart_softc *sc, const char *str) 599 { 600 struct tty *tp = sc->sc_tty; 601 602 aprint_normal_dev(sc->sc_dev, 603 "%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n", 604 str, 605 ISSET(tp->t_cflag, CLOCAL) ? '+' : '-', 606 ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-', 607 ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-', 608 ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-', 609 sc->sc_tx_stopped ? '+' : '-'); 610 611 aprint_normal_dev(sc->sc_dev, 612 "%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n", 613 str, 614 ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-', 615 ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-', 616 ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-', 617 ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-', 618 sc->sc_rx_flags); 619 } 620 #endif 621 622 #if 0 623 int 624 imxuart_detach(device_t self, int flags) 625 { 626 struct imxuart_softc *sc = device_private(self); 627 int maj, mn; 628 629 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) 630 return EBUSY; 631 632 /* locate the major number */ 633 maj = cdevsw_lookup_major(&imxcom_cdevsw); 634 635 /* Nuke the vnodes for any open instances. */ 636 mn = device_unit(self); 637 vdevgone(maj, mn, mn, VCHR); 638 639 mn |= IMXUART_DIALOUT_MASK; 640 vdevgone(maj, mn, mn, VCHR); 641 642 if (sc->sc_rbuf == NULL) { 643 /* 644 * Ring buffer allocation failed in the imxuart_attach_subr, 645 * only the tty is allocated, and nothing else. 646 */ 647 tty_free(sc->sc_tty); 648 return 0; 649 } 650 651 /* Free the receive buffer. */ 652 free(sc->sc_rbuf, M_DEVBUF); 653 654 /* Detach and free the tty. */ 655 tty_detach(sc->sc_tty); 656 tty_free(sc->sc_tty); 657 658 /* Unhook the soft interrupt handler. */ 659 softint_disestablish(sc->sc_si); 660 661 #ifdef RND_COM 662 /* Unhook the entropy source. */ 663 rnd_detach_source(&sc->rnd_source); 664 #endif 665 callout_destroy(&sc->sc_diag_callout); 666 667 /* Destroy the lock. */ 668 mutex_destroy(&sc->sc_lock); 669 670 return (0); 671 } 672 #endif 673 674 #ifdef notyet 675 int 676 imxuart_activate(device_t self, enum devact act) 677 { 678 struct imxuart_softc *sc = device_private(self); 679 int rv = 0; 680 681 switch (act) { 682 case DVACT_ACTIVATE: 683 rv = EOPNOTSUPP; 684 break; 685 686 case DVACT_DEACTIVATE: 687 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) { 688 rv = EBUSY; 689 break; 690 } 691 692 if (sc->disable != NULL && sc->enabled != 0) { 693 (*sc->disable)(sc); 694 sc->enabled = 0; 695 } 696 break; 697 } 698 699 return (rv); 700 } 701 #endif 702 703 void 704 imxuart_shutdown(struct imxuart_softc *sc) 705 { 706 struct tty *tp = sc->sc_tty; 707 708 mutex_spin_enter(&sc->sc_lock); 709 710 /* If we were asserting flow control, then deassert it. */ 711 SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED); 712 imxuart_hwiflow(sc); 713 714 /* Clear any break condition set with TIOCSBRK. */ 715 imxuart_break(sc, false); 716 717 /* 718 * Hang up if necessary. Wait a bit, so the other side has time to 719 * notice even if we immediately open the port again. 720 * Avoid tsleeping above splhigh(). 721 */ 722 if (ISSET(tp->t_cflag, HUPCL)) { 723 imxuart_modem(sc, 0); 724 mutex_spin_exit(&sc->sc_lock); 725 /* XXX will only timeout */ 726 (void) kpause(ttclos, false, hz, NULL); 727 mutex_spin_enter(&sc->sc_lock); 728 } 729 730 /* Turn off interrupts. */ 731 imxuart_disable_all_interrupts(sc); 732 /* re-enable recv interrupt for console or kgdb port */ 733 imxuart_enable_debugport(sc); 734 735 mutex_spin_exit(&sc->sc_lock); 736 737 #ifdef notyet 738 if (sc->disable) { 739 #ifdef DIAGNOSTIC 740 if (!sc->enabled) 741 panic("imxuart_shutdown: not enabled?"); 742 #endif 743 (*sc->disable)(sc); 744 sc->enabled = 0; 745 } 746 #endif 747 } 748 749 int 750 imxuopen(dev_t dev, int flag, int mode, struct lwp *l) 751 { 752 struct imxuart_softc *sc; 753 struct tty *tp; 754 int s; 755 int error; 756 757 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 758 if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) || 759 sc->sc_rbuf == NULL) 760 return (ENXIO); 761 762 if (!device_is_active(sc->sc_dev)) 763 return (ENXIO); 764 765 #ifdef KGDB 766 /* 767 * If this is the kgdb port, no other use is permitted. 768 */ 769 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) 770 return (EBUSY); 771 #endif 772 773 tp = sc->sc_tty; 774 775 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) 776 return (EBUSY); 777 778 s = spltty(); 779 780 /* 781 * Do the following iff this is a first open. 782 */ 783 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 784 struct termios t; 785 786 tp->t_dev = dev; 787 788 789 #ifdef notyet 790 if (sc->enable) { 791 if ((*sc->enable)(sc)) { 792 splx(s); 793 aprint_error_dev(sc->sc_dev, 794 "device enable failed\n"); 795 return (EIO); 796 } 797 sc->enabled = 1; 798 } 799 #endif 800 801 mutex_spin_enter(&sc->sc_lock); 802 803 imxuart_disable_all_interrupts(sc); 804 805 /* Fetch the current modem control status, needed later. */ 806 807 #ifdef IMXUART_PPS 808 /* Clear PPS capture state on first open. */ 809 mutex_spin_enter(&timecounter_lock); 810 memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state)); 811 sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR; 812 pps_init(&sc->sc_pps_state); 813 mutex_spin_exit(&timecounter_lock); 814 #endif 815 816 mutex_spin_exit(&sc->sc_lock); 817 818 /* 819 * Initialize the termios status to the defaults. Add in the 820 * sticky bits from TIOCSFLAGS. 821 */ 822 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 823 t.c_ospeed = imxuconsrate; 824 t.c_cflag = imxuconscflag; 825 } else { 826 t.c_ospeed = TTYDEF_SPEED; 827 t.c_cflag = TTYDEF_CFLAG; 828 } 829 t.c_ispeed = t.c_ospeed; 830 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) 831 SET(t.c_cflag, CLOCAL); 832 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) 833 SET(t.c_cflag, CRTSCTS); 834 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) 835 SET(t.c_cflag, MDMBUF); 836 /* Make sure imxuparam() will do something. */ 837 tp->t_ospeed = 0; 838 (void) imxuparam(tp, &t); 839 tp->t_iflag = TTYDEF_IFLAG; 840 tp->t_oflag = TTYDEF_OFLAG; 841 tp->t_lflag = TTYDEF_LFLAG; 842 ttychars(tp); 843 ttsetwater(tp); 844 845 mutex_spin_enter(&sc->sc_lock); 846 847 /* 848 * Turn on DTR. We must always do this, even if carrier is not 849 * present, because otherwise we'd have to use TIOCSDTR 850 * immediately after setting CLOCAL, which applications do not 851 * expect. We always assert DTR while the device is open 852 * unless explicitly requested to deassert it. 853 */ 854 imxuart_modem(sc, 1); 855 856 /* Clear the input ring, and unblock. */ 857 sc->sc_rbuf_in = sc->sc_rbuf_out = 0; 858 imxuart_iflush(sc); 859 CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK); 860 imxuart_hwiflow(sc); 861 862 /* Turn on interrupts. */ 863 imxuart_control_rxint(sc, true); 864 865 #ifdef IMXUART_DEBUG 866 if (imxuart_debug) 867 imxustatus(sc, "imxuopen "); 868 #endif 869 870 mutex_spin_exit(&sc->sc_lock); 871 } 872 873 splx(s); 874 875 #if 0 876 error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK)); 877 #else 878 error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK)); 879 #endif 880 if (error) 881 goto bad; 882 883 error = (*tp->t_linesw->l_open)(dev, tp); 884 if (error) 885 goto bad; 886 887 return (0); 888 889 bad: 890 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 891 /* 892 * We failed to open the device, and nobody else had it opened. 893 * Clean up the state as appropriate. 894 */ 895 imxuart_shutdown(sc); 896 } 897 898 return (error); 899 } 900 901 int 902 imxuclose(dev_t dev, int flag, int mode, struct lwp *l) 903 { 904 struct imxuart_softc *sc = 905 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 906 struct tty *tp = sc->sc_tty; 907 908 /* XXX This is for cons.c. */ 909 if (!ISSET(tp->t_state, TS_ISOPEN)) 910 return (0); 911 912 (*tp->t_linesw->l_close)(tp, flag); 913 ttyclose(tp); 914 915 if (IMXUART_ISALIVE(sc) == 0) 916 return (0); 917 918 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 919 /* 920 * Although we got a last close, the device may still be in 921 * use; e.g. if this was the dialout node, and there are still 922 * processes waiting for carrier on the non-dialout node. 923 */ 924 imxuart_shutdown(sc); 925 } 926 927 return (0); 928 } 929 930 int 931 imxuread(dev_t dev, struct uio *uio, int flag) 932 { 933 struct imxuart_softc *sc = 934 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 935 struct tty *tp = sc->sc_tty; 936 937 if (IMXUART_ISALIVE(sc) == 0) 938 return (EIO); 939 940 return ((*tp->t_linesw->l_read)(tp, uio, flag)); 941 } 942 943 int 944 imxuwrite(dev_t dev, struct uio *uio, int flag) 945 { 946 struct imxuart_softc *sc = 947 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 948 struct tty *tp = sc->sc_tty; 949 950 if (IMXUART_ISALIVE(sc) == 0) 951 return (EIO); 952 953 return ((*tp->t_linesw->l_write)(tp, uio, flag)); 954 } 955 956 int 957 imxupoll(dev_t dev, int events, struct lwp *l) 958 { 959 struct imxuart_softc *sc = 960 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 961 struct tty *tp = sc->sc_tty; 962 963 if (IMXUART_ISALIVE(sc) == 0) 964 return (POLLHUP); 965 966 return ((*tp->t_linesw->l_poll)(tp, events, l)); 967 } 968 969 struct tty * 970 imxutty(dev_t dev) 971 { 972 struct imxuart_softc *sc = 973 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 974 struct tty *tp = sc->sc_tty; 975 976 return (tp); 977 } 978 979 int 980 imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 981 { 982 struct imxuart_softc *sc; 983 struct tty *tp; 984 int error; 985 986 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 987 if (sc == NULL) 988 return ENXIO; 989 if (IMXUART_ISALIVE(sc) == 0) 990 return (EIO); 991 992 tp = sc->sc_tty; 993 994 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); 995 if (error != EPASSTHROUGH) 996 return (error); 997 998 error = ttioctl(tp, cmd, data, flag, l); 999 if (error != EPASSTHROUGH) 1000 return (error); 1001 1002 error = 0; 1003 switch (cmd) { 1004 case TIOCSFLAGS: 1005 error = kauth_authorize_device_tty(l->l_cred, 1006 KAUTH_DEVICE_TTY_PRIVSET, tp); 1007 break; 1008 default: 1009 /* nothing */ 1010 break; 1011 } 1012 if (error) { 1013 return error; 1014 } 1015 1016 mutex_spin_enter(&sc->sc_lock); 1017 1018 switch (cmd) { 1019 case TIOCSBRK: 1020 imxuart_break(sc, true); 1021 break; 1022 1023 case TIOCCBRK: 1024 imxuart_break(sc, false); 1025 break; 1026 1027 case TIOCSDTR: 1028 imxuart_modem(sc, 1); 1029 break; 1030 1031 case TIOCCDTR: 1032 imxuart_modem(sc, 0); 1033 break; 1034 1035 case TIOCGFLAGS: 1036 *(int *)data = sc->sc_swflags; 1037 break; 1038 1039 case TIOCSFLAGS: 1040 sc->sc_swflags = *(int *)data; 1041 break; 1042 1043 case TIOCMSET: 1044 case TIOCMBIS: 1045 case TIOCMBIC: 1046 tiocm_to_imxu(sc, cmd, *(int *)data); 1047 break; 1048 1049 case TIOCMGET: 1050 *(int *)data = imxuart_to_tiocm(sc); 1051 break; 1052 1053 #ifdef notyet 1054 case PPS_IOC_CREATE: 1055 case PPS_IOC_DESTROY: 1056 case PPS_IOC_GETPARAMS: 1057 case PPS_IOC_SETPARAMS: 1058 case PPS_IOC_GETCAP: 1059 case PPS_IOC_FETCH: 1060 #ifdef PPS_SYNC 1061 case PPS_IOC_KCBIND: 1062 #endif 1063 mutex_spin_enter(&timecounter_lock); 1064 error = pps_ioctl(cmd, data, &sc->sc_pps_state); 1065 mutex_spin_exit(&timecounter_lock); 1066 break; 1067 1068 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 1069 mutex_spin_enter(&timecounter_lock); 1070 #ifndef PPS_TRAILING_EDGE 1071 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 1072 &sc->sc_pps_state.ppsinfo.assert_timestamp); 1073 #else 1074 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 1075 &sc->sc_pps_state.ppsinfo.clear_timestamp); 1076 #endif 1077 mutex_spin_exit(&timecounter_lock); 1078 break; 1079 #endif 1080 1081 default: 1082 error = EPASSTHROUGH; 1083 break; 1084 } 1085 1086 mutex_spin_exit(&sc->sc_lock); 1087 1088 #ifdef IMXUART_DEBUG 1089 if (imxuart_debug) 1090 imxustatus(sc, "imxuioctl "); 1091 #endif 1092 1093 return (error); 1094 } 1095 1096 integrate void 1097 imxuart_schedrx(struct imxuart_softc *sc) 1098 { 1099 sc->sc_rx_ready = 1; 1100 1101 /* Wake up the poller. */ 1102 softint_schedule(sc->sc_si); 1103 } 1104 1105 void 1106 imxuart_break(struct imxuart_softc *sc, bool onoff) 1107 { 1108 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1109 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1110 1111 if (onoff) 1112 SET(sc->sc_ucr1, IMX_UCR1_SNDBRK); 1113 else 1114 CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK); 1115 1116 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1); 1117 } 1118 1119 void 1120 imxuart_modem(struct imxuart_softc *sc, int onoff) 1121 { 1122 #ifdef notyet 1123 if (sc->sc_mcr_dtr == 0) 1124 return; 1125 1126 if (onoff) 1127 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1128 else 1129 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1130 1131 if (!sc->sc_heldchange) { 1132 if (sc->sc_tx_busy) { 1133 sc->sc_heldtbc = sc->sc_tbc; 1134 sc->sc_tbc = 0; 1135 sc->sc_heldchange = 1; 1136 } else 1137 imxuart_loadchannelregs(sc); 1138 } 1139 #endif 1140 } 1141 1142 /* 1143 * RTS output is controlled by UCR2.CTS bit. 1144 * DTR output is controlled by UCR3.DSR bit. 1145 * (i.MX reference manual uses names in DCE mode) 1146 * 1147 * note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored. 1148 */ 1149 void 1150 tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits) 1151 { 1152 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1153 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1154 1155 uint32_t ucr2 = sc->sc_ucr2_d; 1156 uint32_t ucr3 = sc->sc_ucr3; 1157 1158 uint32_t ucr2_mask = 0; 1159 uint32_t ucr3_mask = 0; 1160 1161 1162 if (ISSET(ttybits, TIOCM_DTR)) 1163 ucr3_mask = IMX_UCR3_DSR; 1164 if (ISSET(ttybits, TIOCM_RTS)) 1165 ucr2_mask = IMX_UCR2_CTS; 1166 1167 switch (how) { 1168 case TIOCMBIC: 1169 CLR(ucr2, ucr2_mask); 1170 CLR(ucr3, ucr3_mask); 1171 break; 1172 1173 case TIOCMBIS: 1174 SET(ucr2, ucr2_mask); 1175 SET(ucr3, ucr3_mask); 1176 break; 1177 1178 case TIOCMSET: 1179 CLR(ucr2, ucr2_mask); 1180 CLR(ucr3, ucr3_mask); 1181 SET(ucr2, ucr2_mask); 1182 SET(ucr3, ucr3_mask); 1183 break; 1184 } 1185 1186 if (ucr3 != sc->sc_ucr3) { 1187 bus_space_write_4(iot, ioh, IMX_UCR3, ucr3); 1188 sc->sc_ucr3 = ucr3; 1189 } 1190 1191 if (ucr2 == sc->sc_ucr2_d) 1192 return; 1193 1194 sc->sc_ucr2_d = ucr2; 1195 /* update CTS bit only */ 1196 ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) | 1197 (ucr2 & IMX_UCR2_CTS); 1198 1199 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2); 1200 sc->sc_ucr2 = ucr2; 1201 } 1202 1203 int 1204 imxuart_to_tiocm(struct imxuart_softc *sc) 1205 { 1206 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1207 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1208 int ttybits = 0; 1209 uint32_t usr[2]; 1210 1211 if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR)) 1212 SET(ttybits, TIOCM_DTR); 1213 if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS)) 1214 SET(ttybits, TIOCM_RTS); 1215 1216 bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2); 1217 1218 if (ISSET(usr[0], IMX_USR1_RTSS)) 1219 SET(ttybits, TIOCM_CTS); 1220 1221 if (ISSET(usr[1], IMX_USR2_DCDIN)) 1222 SET(ttybits, TIOCM_CD); 1223 1224 #if 0 1225 /* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal, 1226 although there are bits in UART registers to detect delta of DSR. 1227 */ 1228 if (ISSET(imxubits, MSR_DSR)) 1229 SET(ttybits, TIOCM_DSR); 1230 #endif 1231 1232 if (ISSET(usr[1], IMX_USR2_RIIN)) 1233 SET(ttybits, TIOCM_RI); 1234 1235 1236 #ifdef notyet 1237 if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC)) 1238 SET(ttybits, TIOCM_LE); 1239 #endif 1240 1241 return (ttybits); 1242 } 1243 1244 static uint32_t 1245 cflag_to_ucr2(tcflag_t cflag, uint32_t oldval) 1246 { 1247 uint32_t val = oldval; 1248 1249 CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB); 1250 1251 switch (cflag & CSIZE) { 1252 case CS5: 1253 case CS6: 1254 /* not suppreted. use 7-bits */ 1255 case CS7: 1256 break; 1257 case CS8: 1258 SET(val, IMX_UCR2_WS); 1259 break; 1260 } 1261 1262 1263 if (ISSET(cflag, PARENB)) { 1264 SET(val, IMX_UCR2_PREN); 1265 1266 /* odd parity */ 1267 if (!ISSET(cflag, PARODD)) 1268 SET(val, IMX_UCR2_PROE); 1269 } 1270 1271 if (ISSET(cflag, CSTOPB)) 1272 SET(val, IMX_UCR2_STPB); 1273 1274 val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST; 1275 1276 return val; 1277 } 1278 1279 int 1280 imxuparam(struct tty *tp, struct termios *t) 1281 { 1282 struct imxuart_softc *sc = 1283 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1284 struct imxuart_baudrate_ratio ratio; 1285 uint32_t ucr2; 1286 bool change_speed = tp->t_ospeed != t->c_ospeed; 1287 1288 if (IMXUART_ISALIVE(sc) == 0) 1289 return (EIO); 1290 1291 /* Check requested parameters. */ 1292 if (t->c_ispeed && t->c_ispeed != t->c_ospeed) 1293 return (EINVAL); 1294 1295 /* 1296 * For the console, always force CLOCAL and !HUPCL, so that the port 1297 * is always active. 1298 */ 1299 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || 1300 ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 1301 SET(t->c_cflag, CLOCAL); 1302 CLR(t->c_cflag, HUPCL); 1303 } 1304 1305 /* 1306 * If there were no changes, don't do anything. This avoids dropping 1307 * input and improves performance when all we did was frob things like 1308 * VMIN and VTIME. 1309 */ 1310 if ( !change_speed && tp->t_cflag == t->c_cflag) 1311 return (0); 1312 1313 if (change_speed) { 1314 /* calculate baudrate modulator value */ 1315 if (imxuspeed(t->c_ospeed, &ratio) < 0) 1316 return (EINVAL); 1317 sc->sc_ratio = ratio; 1318 } 1319 1320 ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d); 1321 1322 mutex_spin_enter(&sc->sc_lock); 1323 1324 #if 0 /* flow control stuff. not yet */ 1325 /* 1326 * If we're not in a mode that assumes a connection is present, then 1327 * ignore carrier changes. 1328 */ 1329 if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) 1330 sc->sc_msr_dcd = 0; 1331 else 1332 sc->sc_msr_dcd = MSR_DCD; 1333 /* 1334 * Set the flow control pins depending on the current flow control 1335 * mode. 1336 */ 1337 if (ISSET(t->c_cflag, CRTSCTS)) { 1338 sc->sc_mcr_dtr = MCR_DTR; 1339 sc->sc_mcr_rts = MCR_RTS; 1340 sc->sc_msr_cts = MSR_CTS; 1341 sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS; 1342 } else if (ISSET(t->c_cflag, MDMBUF)) { 1343 /* 1344 * For DTR/DCD flow control, make sure we don't toggle DTR for 1345 * carrier detection. 1346 */ 1347 sc->sc_mcr_dtr = 0; 1348 sc->sc_mcr_rts = MCR_DTR; 1349 sc->sc_msr_cts = MSR_DCD; 1350 sc->sc_efr = 0; 1351 } else { 1352 /* 1353 * If no flow control, then always set RTS. This will make 1354 * the other side happy if it mistakenly thinks we're doing 1355 * RTS/CTS flow control. 1356 */ 1357 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS; 1358 sc->sc_mcr_rts = 0; 1359 sc->sc_msr_cts = 0; 1360 sc->sc_efr = 0; 1361 if (ISSET(sc->sc_mcr, MCR_DTR)) 1362 SET(sc->sc_mcr, MCR_RTS); 1363 else 1364 CLR(sc->sc_mcr, MCR_RTS); 1365 } 1366 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; 1367 #endif 1368 1369 /* And copy to tty. */ 1370 tp->t_ispeed = t->c_ospeed; 1371 tp->t_ospeed = t->c_ospeed; 1372 tp->t_cflag = t->c_cflag; 1373 1374 if (!change_speed && ucr2 == sc->sc_ucr2_d) { 1375 /* noop */ 1376 } 1377 else if (!sc->sc_pending && !sc->sc_tx_busy) { 1378 if (ucr2 != sc->sc_ucr2_d) { 1379 sc->sc_ucr2_d = ucr2; 1380 imxuart_load_params(sc); 1381 } 1382 if (change_speed) 1383 imxuart_load_speed(sc); 1384 } 1385 else { 1386 if (!sc->sc_pending) { 1387 sc->sc_heldtbc = sc->sc_tbc; 1388 sc->sc_tbc = 0; 1389 } 1390 sc->sc_pending |= 1391 (ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) | 1392 (change_speed ? 0 : IMXUART_PEND_SPEED); 1393 sc->sc_ucr2_d = ucr2; 1394 } 1395 1396 if (!ISSET(t->c_cflag, CHWFLOW)) { 1397 /* Disable the high water mark. */ 1398 sc->sc_r_hiwat = 0; 1399 sc->sc_r_lowat = 0; 1400 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) { 1401 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1402 imxuart_schedrx(sc); 1403 } 1404 if (ISSET(sc->sc_rx_flags, 1405 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) { 1406 CLR(sc->sc_rx_flags, 1407 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED); 1408 imxuart_hwiflow(sc); 1409 } 1410 } else { 1411 sc->sc_r_hiwat = imxuart_rbuf_hiwat; 1412 sc->sc_r_lowat = imxuart_rbuf_lowat; 1413 } 1414 1415 mutex_spin_exit(&sc->sc_lock); 1416 1417 #if 0 1418 /* 1419 * Update the tty layer's idea of the carrier bit, in case we changed 1420 * CLOCAL or MDMBUF. We don't hang up here; we only do that by 1421 * explicit request. 1422 */ 1423 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD)); 1424 #else 1425 /* XXX: always report that we have DCD */ 1426 (void) (*tp->t_linesw->l_modem)(tp, 1); 1427 #endif 1428 1429 #ifdef IMXUART_DEBUG 1430 if (imxuart_debug) 1431 imxustatus(sc, "imxuparam "); 1432 #endif 1433 1434 if (!ISSET(t->c_cflag, CHWFLOW)) { 1435 if (sc->sc_tx_stopped) { 1436 sc->sc_tx_stopped = 0; 1437 imxustart(tp); 1438 } 1439 } 1440 1441 return (0); 1442 } 1443 1444 void 1445 imxuart_iflush(struct imxuart_softc *sc) 1446 { 1447 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1448 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1449 #ifdef DIAGNOSTIC 1450 uint32_t reg = 0xffff; 1451 #endif 1452 int timo; 1453 1454 timo = 50000; 1455 /* flush any pending I/O */ 1456 while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR) 1457 && --timo) 1458 #ifdef DIAGNOSTIC 1459 reg = 1460 #else 1461 (void) 1462 #endif 1463 bus_space_read_4(iot, ioh, IMX_URXD); 1464 #ifdef DIAGNOSTIC 1465 if (!timo) 1466 aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg); 1467 #endif 1468 } 1469 1470 int 1471 imxuhwiflow(struct tty *tp, int block) 1472 { 1473 struct imxuart_softc *sc = 1474 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1475 1476 if (IMXUART_ISALIVE(sc) == 0) 1477 return (0); 1478 1479 #ifdef notyet 1480 if (sc->sc_mcr_rts == 0) 1481 return (0); 1482 #endif 1483 1484 mutex_spin_enter(&sc->sc_lock); 1485 1486 if (block) { 1487 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1488 SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED); 1489 imxuart_hwiflow(sc); 1490 } 1491 } else { 1492 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) { 1493 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1494 imxuart_schedrx(sc); 1495 } 1496 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1497 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED); 1498 imxuart_hwiflow(sc); 1499 } 1500 } 1501 1502 mutex_spin_exit(&sc->sc_lock); 1503 return (1); 1504 } 1505 1506 /* 1507 * (un)block input via hw flowcontrol 1508 */ 1509 void 1510 imxuart_hwiflow(struct imxuart_softc *sc) 1511 { 1512 #ifdef notyet 1513 struct imxuart_regs *regsp= &sc->sc_regs; 1514 1515 if (sc->sc_mcr_rts == 0) 1516 return; 1517 1518 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { 1519 CLR(sc->sc_mcr, sc->sc_mcr_rts); 1520 CLR(sc->sc_mcr_active, sc->sc_mcr_rts); 1521 } else { 1522 SET(sc->sc_mcr, sc->sc_mcr_rts); 1523 SET(sc->sc_mcr_active, sc->sc_mcr_rts); 1524 } 1525 UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active); 1526 #endif 1527 } 1528 1529 1530 void 1531 imxustart(struct tty *tp) 1532 { 1533 struct imxuart_softc *sc = 1534 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1535 int s; 1536 u_char *tba; 1537 int tbc; 1538 u_int n; 1539 u_int space; 1540 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1541 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1542 1543 if (IMXUART_ISALIVE(sc) == 0) 1544 return; 1545 1546 s = spltty(); 1547 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1548 goto out; 1549 if (sc->sc_tx_stopped) 1550 goto out; 1551 if (!ttypull(tp)) 1552 goto out; 1553 1554 /* Grab the first contiguous region of buffer space. */ 1555 tba = tp->t_outq.c_cf; 1556 tbc = ndqb(&tp->t_outq, 0); 1557 1558 mutex_spin_enter(&sc->sc_lock); 1559 1560 sc->sc_tba = tba; 1561 sc->sc_tbc = tbc; 1562 1563 SET(tp->t_state, TS_BUSY); 1564 sc->sc_tx_busy = 1; 1565 1566 space = imxuart_txfifo_space(sc); 1567 n = MIN(sc->sc_tbc, space); 1568 1569 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n); 1570 sc->sc_tbc -= n; 1571 sc->sc_tba += n; 1572 1573 /* Enable transmit completion interrupts */ 1574 imxuart_control_txint(sc, true); 1575 1576 mutex_spin_exit(&sc->sc_lock); 1577 out: 1578 splx(s); 1579 return; 1580 } 1581 1582 /* 1583 * Stop output on a line. 1584 */ 1585 void 1586 imxustop(struct tty *tp, int flag) 1587 { 1588 struct imxuart_softc *sc = 1589 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1590 1591 mutex_spin_enter(&sc->sc_lock); 1592 if (ISSET(tp->t_state, TS_BUSY)) { 1593 /* Stop transmitting at the next chunk. */ 1594 sc->sc_tbc = 0; 1595 sc->sc_heldtbc = 0; 1596 if (!ISSET(tp->t_state, TS_TTSTOP)) 1597 SET(tp->t_state, TS_FLUSH); 1598 } 1599 mutex_spin_exit(&sc->sc_lock); 1600 } 1601 1602 void 1603 imxudiag(void *arg) 1604 { 1605 #ifdef notyet 1606 struct imxuart_softc *sc = arg; 1607 int overflows, floods; 1608 1609 mutex_spin_enter(&sc->sc_lock); 1610 overflows = sc->sc_overflows; 1611 sc->sc_overflows = 0; 1612 floods = sc->sc_floods; 1613 sc->sc_floods = 0; 1614 sc->sc_errors = 0; 1615 mutex_spin_exit(&sc->sc_lock); 1616 1617 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1618 device_xname(sc->sc_dev), 1619 overflows, overflows == 1 ? "" : "s", 1620 floods, floods == 1 ? "" : "s"); 1621 #endif 1622 } 1623 1624 integrate void 1625 imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp) 1626 { 1627 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint; 1628 u_int cc, scc, outp; 1629 uint16_t data; 1630 u_int code; 1631 1632 scc = cc = IMXUART_RBUF_AVAIL(sc); 1633 1634 #if 0 1635 if (cc == imxuart_rbuf_size-1) { 1636 sc->sc_floods++; 1637 if (sc->sc_errors++ == 0) 1638 callout_reset(&sc->sc_diag_callout, 60 * hz, 1639 imxudiag, sc); 1640 } 1641 #endif 1642 1643 /* If not yet open, drop the entire buffer content here */ 1644 if (!ISSET(tp->t_state, TS_ISOPEN)) { 1645 sc->sc_rbuf_out = sc->sc_rbuf_in; 1646 cc = 0; 1647 } 1648 1649 outp = sc->sc_rbuf_out; 1650 1651 #define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN) 1652 1653 while (cc) { 1654 data = sc->sc_rbuf[outp]; 1655 code = data & IMX_URXD_RX_DATA; 1656 if (ISSET(data, ERRBITS)) { 1657 if (sc->sc_errors.err == 0) 1658 callout_reset(&sc->sc_diag_callout, 1659 60 * hz, imxudiag, sc); 1660 if (ISSET(data, IMX_URXD_OVRRUN)) 1661 sc->sc_errors.ovrrun++; 1662 if (ISSET(data, IMX_URXD_BRK)) { 1663 sc->sc_errors.brk++; 1664 SET(code, TTY_FE); 1665 } 1666 if (ISSET(data, IMX_URXD_FRMERR)) { 1667 sc->sc_errors.frmerr++; 1668 SET(code, TTY_FE); 1669 } 1670 if (ISSET(data, IMX_URXD_PRERR)) { 1671 sc->sc_errors.prerr++; 1672 SET(code, TTY_PE); 1673 } 1674 } 1675 if ((*rint)(code, tp) == -1) { 1676 /* 1677 * The line discipline's buffer is out of space. 1678 */ 1679 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1680 /* 1681 * We're either not using flow control, or the 1682 * line discipline didn't tell us to block for 1683 * some reason. Either way, we have no way to 1684 * know when there's more space available, so 1685 * just drop the rest of the data. 1686 */ 1687 sc->sc_rbuf_out = sc->sc_rbuf_in; 1688 cc = 0; 1689 } else { 1690 /* 1691 * Don't schedule any more receive processing 1692 * until the line discipline tells us there's 1693 * space available (through imxuhwiflow()). 1694 * Leave the rest of the data in the input 1695 * buffer. 1696 */ 1697 SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1698 } 1699 break; 1700 } 1701 outp = IMXUART_RBUF_INC(sc, outp, 1); 1702 cc--; 1703 } 1704 1705 if (cc != scc) { 1706 sc->sc_rbuf_out = outp; 1707 mutex_spin_enter(&sc->sc_lock); 1708 1709 cc = IMXUART_RBUF_SPACE(sc); 1710 1711 /* Buffers should be ok again, release possible block. */ 1712 if (cc >= sc->sc_r_lowat) { 1713 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) { 1714 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED); 1715 imxuart_control_rxint(sc, true); 1716 } 1717 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) { 1718 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED); 1719 imxuart_hwiflow(sc); 1720 } 1721 } 1722 mutex_spin_exit(&sc->sc_lock); 1723 } 1724 } 1725 1726 integrate void 1727 imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp) 1728 { 1729 1730 CLR(tp->t_state, TS_BUSY); 1731 if (ISSET(tp->t_state, TS_FLUSH)) 1732 CLR(tp->t_state, TS_FLUSH); 1733 else 1734 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); 1735 (*tp->t_linesw->l_start)(tp); 1736 } 1737 1738 integrate void 1739 imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp) 1740 { 1741 #ifdef notyet 1742 u_char msr, delta; 1743 1744 mutex_spin_enter(&sc->sc_lock); 1745 msr = sc->sc_msr; 1746 delta = sc->sc_msr_delta; 1747 sc->sc_msr_delta = 0; 1748 mutex_spin_exit(&sc->sc_lock); 1749 1750 if (ISSET(delta, sc->sc_msr_dcd)) { 1751 /* 1752 * Inform the tty layer that carrier detect changed. 1753 */ 1754 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD)); 1755 } 1756 1757 if (ISSET(delta, sc->sc_msr_cts)) { 1758 /* Block or unblock output according to flow control. */ 1759 if (ISSET(msr, sc->sc_msr_cts)) { 1760 sc->sc_tx_stopped = 0; 1761 (*tp->t_linesw->l_start)(tp); 1762 } else { 1763 sc->sc_tx_stopped = 1; 1764 } 1765 } 1766 1767 #endif 1768 #ifdef IMXUART_DEBUG 1769 if (imxuart_debug) 1770 imxustatus(sc, "imxuart_stsoft"); 1771 #endif 1772 } 1773 1774 void 1775 imxusoft(void *arg) 1776 { 1777 struct imxuart_softc *sc = arg; 1778 struct tty *tp; 1779 1780 if (IMXUART_ISALIVE(sc) == 0) 1781 return; 1782 1783 tp = sc->sc_tty; 1784 1785 if (sc->sc_rx_ready) { 1786 sc->sc_rx_ready = 0; 1787 imxuart_rxsoft(sc, tp); 1788 } 1789 1790 if (sc->sc_st_check) { 1791 sc->sc_st_check = 0; 1792 imxuart_stsoft(sc, tp); 1793 } 1794 1795 if (sc->sc_tx_done) { 1796 sc->sc_tx_done = 0; 1797 imxuart_txsoft(sc, tp); 1798 } 1799 } 1800 1801 int 1802 imxuintr(void *arg) 1803 { 1804 struct imxuart_softc *sc = arg; 1805 uint32_t usr1, usr2; 1806 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1807 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1808 1809 1810 if (IMXUART_ISALIVE(sc) == 0) 1811 return (0); 1812 1813 mutex_spin_enter(&sc->sc_lock); 1814 1815 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1816 1817 1818 do { 1819 bus_space_write_4(iot, ioh, IMX_USR2, 1820 usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE)); 1821 if (usr2 & IMX_USR2_BRCD) { 1822 /* Break signal detected */ 1823 int cn_trapped = 0; 1824 1825 cn_check_magic(sc->sc_tty->t_dev, 1826 CNC_BREAK, imxuart_cnm_state); 1827 if (cn_trapped) 1828 continue; 1829 #if defined(KGDB) && !defined(DDB) 1830 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) { 1831 kgdb_connect(1); 1832 continue; 1833 } 1834 #endif 1835 } 1836 1837 if (usr2 & IMX_USR2_RDR) 1838 imxuintr_read(sc); 1839 1840 #ifdef IMXUART_PPS 1841 { 1842 u_char msr, delta; 1843 1844 msr = CSR_READ_1(regsp, IMXUART_REG_MSR); 1845 delta = msr ^ sc->sc_msr; 1846 sc->sc_msr = msr; 1847 if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) && 1848 (delta & MSR_DCD)) { 1849 mutex_spin_enter(&timecounter_lock); 1850 pps_capture(&sc->sc_pps_state); 1851 pps_event(&sc->sc_pps_state, 1852 (msr & MSR_DCD) ? 1853 PPS_CAPTUREASSERT : 1854 PPS_CAPTURECLEAR); 1855 mutex_spin_exit(&timecounter_lock); 1856 } 1857 } 1858 #endif 1859 1860 #ifdef notyet 1861 /* 1862 * Process normal status changes 1863 */ 1864 if (ISSET(delta, sc->sc_msr_mask)) { 1865 SET(sc->sc_msr_delta, delta); 1866 1867 /* 1868 * Stop output immediately if we lose the output 1869 * flow control signal or carrier detect. 1870 */ 1871 if (ISSET(~msr, sc->sc_msr_mask)) { 1872 sc->sc_tbc = 0; 1873 sc->sc_heldtbc = 0; 1874 #ifdef IMXUART_DEBUG 1875 if (imxuart_debug) 1876 imxustatus(sc, "imxuintr "); 1877 #endif 1878 } 1879 1880 sc->sc_st_check = 1; 1881 } 1882 #endif 1883 1884 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1885 } while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD)); 1886 1887 usr1 = bus_space_read_4(iot, ioh, IMX_USR1); 1888 if (usr1 & IMX_USR1_TRDY) 1889 imxuintr_send(sc); 1890 1891 mutex_spin_exit(&sc->sc_lock); 1892 1893 /* Wake up the poller. */ 1894 softint_schedule(sc->sc_si); 1895 1896 #ifdef RND_COM 1897 rnd_add_uint32(&sc->rnd_source, iir | lsr); 1898 #endif 1899 1900 return (1); 1901 } 1902 1903 1904 /* 1905 * called when there is least one character in rxfifo 1906 * 1907 */ 1908 1909 static void 1910 imxuintr_read(struct imxuart_softc *sc) 1911 { 1912 int cc; 1913 uint16_t rd; 1914 uint32_t usr2; 1915 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1916 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1917 1918 cc = IMXUART_RBUF_SPACE(sc); 1919 1920 /* clear aging timer interrupt */ 1921 bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM); 1922 1923 while (cc > 0) { 1924 int cn_trapped = 0; 1925 1926 1927 sc->sc_rbuf[sc->sc_rbuf_in] = rd = 1928 bus_space_read_4(iot, ioh, IMX_URXD); 1929 1930 cn_check_magic(sc->sc_tty->t_dev, 1931 rd & 0xff, imxuart_cnm_state); 1932 1933 if (!cn_trapped) { 1934 sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1); 1935 cc--; 1936 } 1937 1938 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1939 if (!(usr2 & IMX_USR2_RDR)) 1940 break; 1941 } 1942 1943 /* 1944 * Current string of incoming characters ended because 1945 * no more data was available or we ran out of space. 1946 * Schedule a receive event if any data was received. 1947 * If we're out of space, turn off receive interrupts. 1948 */ 1949 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) 1950 sc->sc_rx_ready = 1; 1951 /* 1952 * See if we are in danger of overflowing a buffer. If 1953 * so, use hardware flow control to ease the pressure. 1954 */ 1955 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) && 1956 cc < sc->sc_r_hiwat) { 1957 sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED; 1958 imxuart_hwiflow(sc); 1959 } 1960 1961 /* 1962 * If we're out of space, disable receive interrupts 1963 * until the queue has drained a bit. 1964 */ 1965 if (!cc) { 1966 sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED; 1967 imxuart_control_rxint(sc, false); 1968 } 1969 } 1970 1971 1972 1973 /* 1974 * find how many chars we can put into tx-fifo 1975 */ 1976 static u_int 1977 imxuart_txfifo_space(struct imxuart_softc *sc) 1978 { 1979 uint32_t usr1, usr2; 1980 u_int cc; 1981 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1982 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1983 1984 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1985 if (usr2 & IMX_USR2_TXFE) 1986 cc = sc->sc_txfifo_len; 1987 else { 1988 usr1 = bus_space_read_4(iot, ioh, IMX_USR1); 1989 if (usr1 & IMX_USR1_TRDY) 1990 cc = sc->sc_txfifo_thresh; 1991 else 1992 cc = 0; 1993 } 1994 1995 return cc; 1996 } 1997 1998 void 1999 imxuintr_send(struct imxuart_softc *sc) 2000 { 2001 uint32_t usr2; 2002 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2003 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2004 int cc = 0; 2005 2006 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 2007 2008 if (sc->sc_pending) { 2009 if (usr2 & IMX_USR2_TXFE) { 2010 imxuart_load_pendings(sc); 2011 sc->sc_tbc = sc->sc_heldtbc; 2012 sc->sc_heldtbc = 0; 2013 } 2014 else { 2015 /* wait for TX fifo empty */ 2016 imxuart_control_txint(sc, true); 2017 return; 2018 } 2019 } 2020 2021 cc = imxuart_txfifo_space(sc); 2022 cc = MIN(cc, sc->sc_tbc); 2023 2024 if (cc > 0) { 2025 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc); 2026 sc->sc_tbc -= cc; 2027 sc->sc_tba += cc; 2028 } 2029 2030 if (sc->sc_tbc > 0) 2031 imxuart_control_txint(sc, true); 2032 else { 2033 /* no more chars to send. 2034 we don't need tx interrupt any more. */ 2035 imxuart_control_txint(sc, false); 2036 if (sc->sc_tx_busy) { 2037 sc->sc_tx_busy = 0; 2038 sc->sc_tx_done = 1; 2039 } 2040 } 2041 } 2042 2043 static void 2044 imxuart_disable_all_interrupts(struct imxuart_softc *sc) 2045 { 2046 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2047 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2048 2049 sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1; 2050 sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2; 2051 sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3; 2052 sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4; 2053 2054 2055 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4); 2056 } 2057 2058 static void 2059 imxuart_control_rxint(struct imxuart_softc *sc, bool enable) 2060 { 2061 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2062 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2063 uint32_t ucr1, ucr2; 2064 2065 ucr1 = sc->sc_ucr1; 2066 ucr2 = sc->sc_ucr2; 2067 2068 if (enable) { 2069 ucr1 |= IMX_UCR1_RRDYEN; 2070 ucr2 |= IMX_UCR2_ATEN; 2071 } 2072 else { 2073 ucr1 &= ~IMX_UCR1_RRDYEN; 2074 ucr2 &= ~IMX_UCR2_ATEN; 2075 } 2076 2077 if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) { 2078 sc->sc_ucr1 = ucr1; 2079 sc->sc_ucr2 = ucr2; 2080 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2); 2081 } 2082 } 2083 2084 static void 2085 imxuart_control_txint(struct imxuart_softc *sc, bool enable) 2086 { 2087 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2088 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2089 uint32_t ucr1; 2090 uint32_t mask; 2091 2092 /* if parameter change is pending, get interrupt when Tx fifo 2093 is completely empty. otherwise, get interrupt when txfifo 2094 has less characters than threshold */ 2095 mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN; 2096 2097 ucr1 = sc->sc_ucr1; 2098 2099 CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN); 2100 if (enable) 2101 SET(ucr1, mask); 2102 2103 if (ucr1 != sc->sc_ucr1) { 2104 bus_space_write_4(iot, ioh, IMX_UCR1, ucr1); 2105 sc->sc_ucr1 = ucr1; 2106 } 2107 } 2108 2109 2110 static void 2111 imxuart_load_params(struct imxuart_softc *sc) 2112 { 2113 uint32_t ucr2; 2114 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2115 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2116 2117 ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) | 2118 (sc->sc_ucr2 & IMX_UCR2_ATEN); 2119 2120 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2); 2121 sc->sc_ucr2 = ucr2; 2122 } 2123 2124 static void 2125 imxuart_load_speed(struct imxuart_softc *sc) 2126 { 2127 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2128 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2129 int n, rfdiv, ufcr; 2130 2131 #ifdef notyet 2132 /* 2133 * Set the FIFO threshold based on the receive speed. 2134 * 2135 * * If it's a low speed, it's probably a mouse or some other 2136 * interactive device, so set the threshold low. 2137 * * If it's a high speed, trim the trigger level down to prevent 2138 * overflows. 2139 * * Otherwise set it a bit higher. 2140 */ 2141 if (t->c_ospeed <= 1200) 2142 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1; 2143 else if (t->c_ospeed <= 38400) 2144 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8; 2145 else 2146 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4; 2147 #endif 2148 2149 n = 32 - sc->sc_txfifo_thresh; 2150 n = MAX(2, n); 2151 2152 rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv); 2153 2154 ufcr = (n << IMX_UFCR_TXTL_SHIFT) | 2155 (rfdiv << IMX_UFCR_RFDIV_SHIFT) | 2156 (16 << IMX_UFCR_RXTL_SHIFT); 2157 2158 /* keep DCE/DTE bit */ 2159 ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE; 2160 2161 bus_space_write_4(iot, ioh, IMX_UFCR, ufcr); 2162 2163 /* UBIR must updated before UBMR */ 2164 bus_space_write_4(iot, ioh, 2165 IMX_UBIR, sc->sc_ratio.numerator); 2166 bus_space_write_4(iot, ioh, 2167 IMX_UBMR, sc->sc_ratio.modulator); 2168 2169 2170 } 2171 2172 2173 static void 2174 imxuart_load_pendings(struct imxuart_softc *sc) 2175 { 2176 if (sc->sc_pending & IMXUART_PEND_PARAM) 2177 imxuart_load_params(sc); 2178 if (sc->sc_pending & IMXUART_PEND_SPEED) 2179 imxuart_load_speed(sc); 2180 sc->sc_pending = 0; 2181 } 2182 2183 #if defined(IMXUARTCONSOLE) || defined(KGDB) 2184 2185 /* 2186 * The following functions are polled getc and putc routines, shared 2187 * by the console and kgdb glue. 2188 * 2189 * The read-ahead code is so that you can detect pending in-band 2190 * cn_magic in polled mode while doing output rather than having to 2191 * wait until the kernel decides it needs input. 2192 */ 2193 2194 #define READAHEAD_RING_LEN 16 2195 static int imxuart_readahead[READAHEAD_RING_LEN]; 2196 static int imxuart_readahead_in = 0; 2197 static int imxuart_readahead_out = 0; 2198 #define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out) 2199 #define READAHEAD_IS_FULL() \ 2200 (((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out) 2201 2202 int 2203 imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp) 2204 { 2205 int s = splserial(); 2206 u_char c; 2207 bus_space_tag_t iot = regsp->ur_iot; 2208 bus_space_handle_t ioh = regsp->ur_ioh; 2209 uint32_t usr2; 2210 2211 /* got a character from reading things earlier */ 2212 if (imxuart_readahead_in != imxuart_readahead_out) { 2213 2214 c = imxuart_readahead[imxuart_readahead_out]; 2215 imxuart_readahead_out = (imxuart_readahead_out + 1) & 2216 (READAHEAD_RING_LEN-1); 2217 splx(s); 2218 return (c); 2219 } 2220 2221 /* block until a character becomes available */ 2222 while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) 2223 ; 2224 2225 c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD); 2226 2227 { 2228 int __attribute__((__unused__))cn_trapped = 0; /* unused */ 2229 #ifdef DDB 2230 extern int db_active; 2231 if (!db_active) 2232 #endif 2233 cn_check_magic(dev, c, imxuart_cnm_state); 2234 } 2235 splx(s); 2236 return (c); 2237 } 2238 2239 void 2240 imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c) 2241 { 2242 int s = splserial(); 2243 int cin, timo; 2244 bus_space_tag_t iot = regsp->ur_iot; 2245 bus_space_handle_t ioh = regsp->ur_ioh; 2246 uint32_t usr2; 2247 2248 if (!READAHEAD_IS_FULL() && 2249 ((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) { 2250 2251 int __attribute__((__unused__))cn_trapped = 0; 2252 cin = bus_space_read_4(iot, ioh, IMX_URXD); 2253 cn_check_magic(dev, cin & 0xff, imxuart_cnm_state); 2254 imxuart_readahead_in = (imxuart_readahead_in + 1) & 2255 (READAHEAD_RING_LEN-1); 2256 } 2257 2258 /* wait for any pending transmission to finish */ 2259 timo = 150000; 2260 do { 2261 if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) { 2262 bus_space_write_4(iot, ioh, IMX_UTXD, c); 2263 break; 2264 } 2265 } while(--timo > 0); 2266 2267 IMXUART_BARRIER(regsp, BR | BW); 2268 2269 splx(s); 2270 } 2271 2272 /* 2273 * Initialize UART for use as console or KGDB line. 2274 */ 2275 int 2276 imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag) 2277 { 2278 struct imxuart_baudrate_ratio ratio; 2279 int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv); 2280 uint32_t ufcr; 2281 2282 if (bus_space_map(regsp->ur_iot, regsp->ur_iobase, IMX_UART_SIZE, 0, 2283 ®sp->ur_ioh)) 2284 return ENOMEM; /* ??? */ 2285 2286 if (imxuspeed(rate, &ratio) < 0) 2287 return EINVAL; 2288 2289 /* UBIR must updated before UBMR */ 2290 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, 2291 IMX_UBIR, ratio.numerator); 2292 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, 2293 IMX_UBMR, ratio.modulator); 2294 2295 2296 /* XXX: DTREN, DPEC */ 2297 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3, 2298 IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL); 2299 2300 ufcr = (8 << IMX_UFCR_TXTL_SHIFT) | (rfdiv << IMX_UFCR_RFDIV_SHIFT) | 2301 (1 << IMX_UFCR_RXTL_SHIFT); 2302 /* XXX: keep DCE/DTE bit */ 2303 ufcr |= bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR) & 2304 IMX_UFCR_DCEDTE; 2305 2306 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr); 2307 2308 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS, 2309 imxuart_freq / imxuart_freqdiv / 1000); 2310 2311 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2, 2312 IMX_UCR2_IRTS| 2313 IMX_UCR2_CTSC| 2314 IMX_UCR2_WS|IMX_UCR2_TXEN| 2315 IMX_UCR2_RXEN|IMX_UCR2_SRST); 2316 /* clear status registers */ 2317 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff); 2318 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff); 2319 2320 2321 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1, 2322 IMX_UCR1_UARTEN); 2323 2324 return (0); 2325 } 2326 2327 2328 #endif 2329 2330 2331 #ifdef IMXUARTCONSOLE 2332 /* 2333 * Following are all routines needed for UART to act as console 2334 */ 2335 struct consdev imxucons = { 2336 NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL, 2337 NODEV, CN_NORMAL 2338 }; 2339 2340 2341 int 2342 imxuart_cons_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate, 2343 tcflag_t cflag) 2344 { 2345 struct imxuart_regs regs; 2346 int res; 2347 2348 regs.ur_iot = iot; 2349 regs.ur_iobase = iobase; 2350 2351 res = imxuart_init(®s, rate, cflag); 2352 if (res) 2353 return (res); 2354 2355 cn_tab = &imxucons; 2356 cn_init_magic(&imxuart_cnm_state); 2357 cn_set_magic("\047\001"); /* default magic is BREAK */ 2358 2359 imxuconsrate = rate; 2360 imxuconscflag = cflag; 2361 2362 imxuconsregs = regs; 2363 2364 return 0; 2365 } 2366 2367 int 2368 imxucngetc(dev_t dev) 2369 { 2370 return (imxuart_common_getc(dev, &imxuconsregs)); 2371 } 2372 2373 /* 2374 * Console kernel output character routine. 2375 */ 2376 void 2377 imxucnputc(dev_t dev, int c) 2378 { 2379 imxuart_common_putc(dev, &imxuconsregs, c); 2380 } 2381 2382 void 2383 imxucnpollc(dev_t dev, int on) 2384 { 2385 2386 imxuart_readahead_in = 0; 2387 imxuart_readahead_out = 0; 2388 } 2389 2390 #endif /* IMXUARTCONSOLE */ 2391 2392 #ifdef KGDB 2393 int 2394 imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate, 2395 tcflag_t cflag) 2396 { 2397 int res; 2398 2399 if (iot == imxuconsregs.ur_iot && 2400 iobase == imxuconsregs.ur_iobase) { 2401 #if !defined(DDB) 2402 return (EBUSY); /* cannot share with console */ 2403 #else 2404 imxu_kgdb_regs.ur_iot = iot; 2405 imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh; 2406 imxu_kgdb_regs.ur_iobase = iobase; 2407 #endif 2408 } else { 2409 imxu_kgdb_regs.ur_iot = iot; 2410 imxu_kgdb_regs.ur_iobase = iobase; 2411 2412 res = imxuart_init(&imxu_kgdb_regs, rate, cflag); 2413 if (res) 2414 return (res); 2415 2416 /* 2417 * XXXfvdl this shouldn't be needed, but the cn_magic goo 2418 * expects this to be initialized 2419 */ 2420 cn_init_magic(&imxuart_cnm_state); 2421 cn_set_magic("\047\001"); 2422 } 2423 2424 kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs); 2425 kgdb_dev = 123; /* unneeded, only to satisfy some tests */ 2426 2427 return (0); 2428 } 2429 2430 /* ARGSUSED */ 2431 int 2432 imxuart_kgdb_getc(void *arg) 2433 { 2434 struct imxuart_regs *regs = arg; 2435 2436 return (imxuart_common_getc(NODEV, regs)); 2437 } 2438 2439 /* ARGSUSED */ 2440 void 2441 imxuart_kgdb_putc(void *arg, int c) 2442 { 2443 struct imxuart_regs *regs = arg; 2444 2445 imxuart_common_putc(NODEV, regs, c); 2446 } 2447 #endif /* KGDB */ 2448 2449 /* helper function to identify the imxu ports used by 2450 console or KGDB (and not yet autoconf attached) */ 2451 int 2452 imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh) 2453 { 2454 bus_space_handle_t help; 2455 2456 if (!imxuconsattached && 2457 iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase) 2458 help = imxuconsregs.ur_ioh; 2459 #ifdef KGDB 2460 else if (!imxu_kgdb_attached && 2461 iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase) 2462 help = imxu_kgdb_regs.ur_ioh; 2463 #endif 2464 else 2465 return (0); 2466 2467 if (ioh) 2468 *ioh = help; 2469 return (1); 2470 } 2471 2472 #ifdef notyet 2473 2474 bool 2475 imxuart_cleanup(device_t self, int how) 2476 { 2477 /* 2478 * this routine exists to serve as a shutdown hook for systems that 2479 * have firmware which doesn't interact properly with a imxuart device in 2480 * FIFO mode. 2481 */ 2482 struct imxuart_softc *sc = device_private(self); 2483 2484 if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO)) 2485 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0); 2486 2487 return true; 2488 } 2489 #endif 2490 2491 #ifdef notyet 2492 bool 2493 imxuart_suspend(device_t self PMF_FN_ARGS) 2494 { 2495 struct imxuart_softc *sc = device_private(self); 2496 2497 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0); 2498 (void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR); 2499 2500 return true; 2501 } 2502 #endif 2503 2504 #ifdef notyet 2505 bool 2506 imxuart_resume(device_t self PMF_FN_ARGS) 2507 { 2508 struct imxuart_softc *sc = device_private(self); 2509 2510 mutex_spin_enter(&sc->sc_lock); 2511 imxuart_loadchannelregs(sc); 2512 mutex_spin_exit(&sc->sc_lock); 2513 2514 return true; 2515 } 2516 #endif 2517 2518 static void 2519 imxuart_enable_debugport(struct imxuart_softc *sc) 2520 { 2521 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2522 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2523 2524 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) { 2525 2526 /* Turn on line break interrupt, set carrier. */ 2527 2528 sc->sc_ucr3 |= IMX_UCR3_DSR; 2529 bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3); 2530 2531 sc->sc_ucr4 |= IMX_UCR4_BKEN; 2532 bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4); 2533 2534 sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN| 2535 IMX_UCR2_CTS; 2536 bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2); 2537 2538 sc->sc_ucr1 |= IMX_UCR1_UARTEN; 2539 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1); 2540 } 2541 } 2542 2543 2544 void 2545 imxuart_set_frequency(u_int freq, u_int div) 2546 { 2547 imxuart_freq = freq; 2548 imxuart_freqdiv = div; 2549 } 2550