1 /* $NetBSD: imxuart.c,v 1.30 2022/10/26 23:38:06 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved. 5 * Written by Hiroyuki Bessho for Genetec Corporation. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * derived from sys/dev/ic/com.c 32 */ 33 34 /*- 35 * Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc. 36 * All rights reserved. 37 * 38 * This code is derived from software contributed to The NetBSD Foundation 39 * by Charles M. Hannum. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 51 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 60 * POSSIBILITY OF SUCH DAMAGE. 61 */ 62 63 /* 64 * Copyright (c) 1991 The Regents of the University of California. 65 * All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions 69 * are met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce the above copyright 73 * notice, this list of conditions and the following disclaimer in the 74 * documentation and/or other materials provided with the distribution. 75 * 3. Neither the name of the University nor the names of its contributors 76 * may be used to endorse or promote products derived from this software 77 * without specific prior written permission. 78 * 79 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 80 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 81 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 82 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 83 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 84 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 85 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 86 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 87 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 88 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 89 * SUCH DAMAGE. 90 * 91 * @(#)com.c 7.5 (Berkeley) 5/16/91 92 */ 93 94 /* 95 * driver for UART in i.MX SoC. 96 */ 97 98 #include <sys/cdefs.h> 99 __KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.30 2022/10/26 23:38:06 riastradh Exp $"); 100 101 #include "opt_imxuart.h" 102 #include "opt_ddb.h" 103 #include "opt_ddbparam.h" 104 #include "opt_kgdb.h" 105 #include "opt_lockdebug.h" 106 #include "opt_multiprocessor.h" 107 #include "opt_ntp.h" 108 #include "opt_imxuart.h" 109 110 #ifdef RND_COM 111 #include <sys/rndsource.h> 112 #endif 113 114 #ifndef IMXUART_TOLERANCE 115 #define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */ 116 #endif 117 118 #ifndef IMXUART_FREQDIV 119 #define IMXUART_FREQDIV 2 /* XXX */ 120 #endif 121 122 #ifndef IMXUART_FREQ 123 #define IMXUART_FREQ (56900000) 124 #endif 125 126 /* 127 * Override cnmagic(9) macro before including <sys/systm.h>. 128 * We need to know if cn_check_magic triggered debugger, so set a flag. 129 * Callers of cn_check_magic must declare int cn_trapped = 0; 130 * XXX: this is *ugly*! 131 */ 132 #define cn_trap() \ 133 do { \ 134 console_debugger(); \ 135 cn_trapped = 1; \ 136 } while (/* CONSTCOND */ 0) 137 138 #include <sys/param.h> 139 #include <sys/systm.h> 140 #include <sys/ioctl.h> 141 #include <sys/select.h> 142 #include <sys/poll.h> 143 #include <sys/tty.h> 144 #include <sys/proc.h> 145 #include <sys/conf.h> 146 #include <sys/file.h> 147 #include <sys/uio.h> 148 #include <sys/kernel.h> 149 #include <sys/syslog.h> 150 #include <sys/device.h> 151 #include <sys/kmem.h> 152 #include <sys/timepps.h> 153 #include <sys/vnode.h> 154 #include <sys/kauth.h> 155 #include <sys/intr.h> 156 157 #include <sys/bus.h> 158 159 #include <ddb/db_active.h> 160 161 #include <arm/imx/imxuartreg.h> 162 #include <arm/imx/imxuartvar.h> 163 #include <dev/cons.h> 164 165 #ifndef IMXUART_RING_SIZE 166 #define IMXUART_RING_SIZE 2048 167 #endif 168 169 int imxuspeed(long, struct imxuart_baudrate_ratio *); 170 int imxuparam(struct tty *, struct termios *); 171 void imxustart(struct tty *); 172 int imxuhwiflow(struct tty *, int); 173 174 void imxuart_shutdown(struct imxuart_softc *); 175 void imxuart_loadchannelregs(struct imxuart_softc *); 176 void imxuart_hwiflow(struct imxuart_softc *); 177 void imxuart_break(struct imxuart_softc *, bool); 178 void imxuart_modem(struct imxuart_softc *, int); 179 void tiocm_to_imxu(struct imxuart_softc *, u_long, int); 180 int imxuart_to_tiocm(struct imxuart_softc *); 181 void imxuart_iflush(struct imxuart_softc *); 182 int imxuintr(void *); 183 184 int imxuart_common_getc(dev_t, struct imxuart_regs *); 185 void imxuart_common_putc(dev_t, struct imxuart_regs *, int); 186 187 188 int imxuart_init(struct imxuart_regs *, int, tcflag_t, int); 189 190 int imxucngetc(dev_t); 191 void imxucnputc(dev_t, int); 192 void imxucnpollc(dev_t, int); 193 194 static void imxuintr_read(struct imxuart_softc *); 195 static void imxuintr_send(struct imxuart_softc *); 196 197 static void imxuart_enable_debugport(struct imxuart_softc *); 198 static void imxuart_disable_all_interrupts(struct imxuart_softc *); 199 static void imxuart_control_rxint(struct imxuart_softc *, bool); 200 static void imxuart_control_txint(struct imxuart_softc *, bool); 201 static u_int imxuart_txfifo_space(struct imxuart_softc *sc); 202 203 static uint32_t cflag_to_ucr2(tcflag_t, uint32_t); 204 205 #define integrate static inline 206 void imxusoft(void *); 207 integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *); 208 integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *); 209 integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *); 210 integrate void imxuart_schedrx(struct imxuart_softc *); 211 void imxudiag(void *); 212 static void imxuart_load_speed(struct imxuart_softc *); 213 static void imxuart_load_params(struct imxuart_softc *); 214 integrate void imxuart_load_pendings(struct imxuart_softc *); 215 216 217 extern struct cfdriver imxuart_cd; 218 219 dev_type_open(imxuopen); 220 dev_type_close(imxuclose); 221 dev_type_read(imxuread); 222 dev_type_write(imxuwrite); 223 dev_type_ioctl(imxuioctl); 224 dev_type_stop(imxustop); 225 dev_type_tty(imxutty); 226 dev_type_poll(imxupoll); 227 228 const struct cdevsw imxcom_cdevsw = { 229 .d_open = imxuopen, 230 .d_close = imxuclose, 231 .d_read = imxuread, 232 .d_write = imxuwrite, 233 .d_ioctl = imxuioctl, 234 .d_stop = imxustop, 235 .d_tty = imxutty, 236 .d_poll = imxupoll, 237 .d_mmap = nommap, 238 .d_kqfilter = ttykqfilter, 239 .d_discard = nodiscard, 240 .d_flag = D_TTY 241 }; 242 243 /* 244 * Make this an option variable one can patch. 245 * But be warned: this must be a power of 2! 246 */ 247 u_int imxuart_rbuf_size = IMXUART_RING_SIZE; 248 249 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 250 u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4; 251 u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4; 252 253 static struct imxuart_regs imxuconsregs; 254 static int imxuconsattached; 255 static int imxuconsrate; 256 static tcflag_t imxuconscflag; 257 static struct cnm_state imxuart_cnm_state; 258 259 u_int imxuart_freq = IMXUART_FREQ; 260 u_int imxuart_freqdiv = IMXUART_FREQDIV; 261 262 #ifdef KGDB 263 #include <sys/kgdb.h> 264 265 static struct imxuart_regs imxu_kgdb_regs; 266 static int imxu_kgdb_attached; 267 268 int imxuart_kgdb_getc(void *); 269 void imxuart_kgdb_putc(void *, int); 270 #endif /* KGDB */ 271 272 #define IMXUART_DIALOUT_MASK TTDIALOUT_MASK 273 274 #define IMXUART_UNIT(x) TTUNIT(x) 275 #define IMXUART_DIALOUT(x) TTDIALOUT(x) 276 277 #define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \ 278 device_is_active((sc)->sc_dev)) 279 280 #define BR BUS_SPACE_BARRIER_READ 281 #define BW BUS_SPACE_BARRIER_WRITE 282 #define IMXUART_BARRIER(r, f) \ 283 bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f)) 284 285 286 void 287 imxuart_attach_common(device_t parent, device_t self, 288 bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags) 289 { 290 struct imxuart_softc *sc = device_private(self); 291 struct imxuart_regs *regsp = &sc->sc_regs; 292 bus_space_handle_t ioh; 293 294 aprint_naive("\n"); 295 aprint_normal("\n"); 296 297 sc->sc_dev = self; 298 299 if (size <= 0) 300 size = IMX_UART_SIZE; 301 302 sc->sc_intr = intr; 303 regsp->ur_iot = iot; 304 regsp->ur_iobase = iobase; 305 306 if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) { 307 return; 308 } 309 regsp->ur_ioh = ioh; 310 311 sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL, 312 imxuintr, sc); 313 if (sc->sc_ih == NULL) { 314 aprint_error_dev(sc->sc_dev, "intr_establish failed\n"); 315 return; 316 } 317 318 imxuart_attach_subr(sc); 319 } 320 321 void 322 imxuart_attach_subr(struct imxuart_softc *sc) 323 { 324 struct imxuart_regs *regsp = &sc->sc_regs; 325 bus_space_tag_t iot = regsp->ur_iot; 326 bus_space_handle_t ioh = regsp->ur_ioh; 327 struct tty *tp; 328 329 callout_init(&sc->sc_diag_callout, 0); 330 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH); 331 332 if (regsp->ur_iobase != imxuconsregs.ur_iobase) 333 imxuart_init(&sc->sc_regs, TTYDEF_SPEED, TTYDEF_CFLAG, false); 334 335 bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4); 336 sc->sc_ucr2_d = sc->sc_ucr2; 337 338 /* Disable interrupts before configuring the device. */ 339 imxuart_disable_all_interrupts(sc); 340 341 if (regsp->ur_iobase == imxuconsregs.ur_iobase) { 342 imxuconsattached = 1; 343 344 /* Make sure the console is always "hardwired". */ 345 #if 0 346 delay(10000); /* wait for output to finish */ 347 #endif 348 SET(sc->sc_hwflags, IMXUART_HW_CONSOLE); 349 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); 350 } 351 352 353 tp = tty_alloc(); 354 tp->t_oproc = imxustart; 355 tp->t_param = imxuparam; 356 tp->t_hwiflow = imxuhwiflow; 357 358 sc->sc_tty = tp; 359 sc->sc_rbuf = kmem_alloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size, 360 KM_SLEEP); 361 sc->sc_rbuf_size = imxuart_rbuf_size; 362 sc->sc_rbuf_in = sc->sc_rbuf_out = 0; 363 sc->sc_txfifo_len = 32; 364 sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space 365 * for this many characters */ 366 367 tty_attach(tp); 368 369 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 370 int maj; 371 372 /* locate the major number */ 373 maj = cdevsw_lookup_major(&imxcom_cdevsw); 374 375 if (maj != NODEVMAJOR) { 376 tp->t_dev = cn_tab->cn_dev = makedev(maj, 377 device_unit(sc->sc_dev)); 378 379 aprint_normal_dev(sc->sc_dev, "console\n"); 380 } 381 } 382 383 #ifdef KGDB 384 /* 385 * Allow kgdb to "take over" this port. If this is 386 * not the console and is the kgdb device, it has 387 * exclusive use. If it's the console _and_ the 388 * kgdb device, it doesn't. 389 */ 390 if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) { 391 if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 392 imxu_kgdb_attached = 1; 393 394 SET(sc->sc_hwflags, IMXUART_HW_KGDB); 395 } 396 aprint_normal_dev(sc->sc_dev, "kgdb\n"); 397 } 398 #endif 399 400 sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc); 401 402 #ifdef RND_COM 403 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 404 RND_TYPE_TTY, RND_FLAG_COLLECT_TIME | 405 RND_FLAG_ESTIMATE_TIME); 406 #endif 407 408 /* if there are no enable/disable functions, assume the device 409 is always enabled */ 410 if (!sc->enable) 411 sc->enabled = 1; 412 413 imxuart_enable_debugport(sc); 414 415 SET(sc->sc_hwflags, IMXUART_HW_DEV_OK); 416 417 //shutdownhook_establish(imxuart_shutdownhook, sc); 418 419 420 #if 0 421 { 422 uint32_t reg; 423 reg = bus_space_read_4(iot, ioh, IMX_UCR1); 424 reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN; 425 bus_space_write_4(iot, ioh, IMX_UCR1, reg); 426 } 427 #endif 428 } 429 430 /* 431 * baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1)) 432 * 433 * (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq 434 */ 435 436 static long 437 gcd(long m, long n) 438 { 439 440 if (m < n) 441 return gcd(n, m); 442 443 if (n <= 0) 444 return m; 445 return gcd(n, m % n); 446 } 447 448 int 449 imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio) 450 { 451 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ 452 long b = 16 * speed; 453 long f = imxuart_freq / imxuart_freqdiv; 454 long d; 455 int err = 0; 456 457 /* reduce b/f */ 458 while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) { 459 f /= d; 460 b /= d; 461 } 462 463 464 while (f > (1<<16) || b > (1<<16)) { 465 f /= 2; 466 b /= 2; 467 } 468 if (f <= 0 || b <= 0) 469 return -1; 470 471 #ifdef DIAGNOSTIC 472 err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv, 473 (uint64_t)speed * 16 * f / b) - 1000; 474 if (err < 0) 475 err = -err; 476 #endif 477 478 ratio->numerator = b-1; 479 ratio->modulator = f-1; 480 481 if (err > IMXUART_TOLERANCE) 482 return -1; 483 484 return 0; 485 #undef divrnd 486 } 487 488 #ifdef IMXUART_DEBUG 489 int imxuart_debug = 0; 490 491 void imxustatus(struct imxuart_softc *, const char *); 492 void 493 imxustatus(struct imxuart_softc *sc, const char *str) 494 { 495 struct tty *tp = sc->sc_tty; 496 497 aprint_normal_dev(sc->sc_dev, 498 "%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n", 499 str, 500 ISSET(tp->t_cflag, CLOCAL) ? '+' : '-', 501 ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-', 502 ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-', 503 ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-', 504 sc->sc_tx_stopped ? '+' : '-'); 505 506 aprint_normal_dev(sc->sc_dev, 507 "%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n", 508 str, 509 ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-', 510 ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-', 511 ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-', 512 ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-', 513 sc->sc_rx_flags); 514 } 515 #endif 516 517 #if 0 518 int 519 imxuart_detach(device_t self, int flags) 520 { 521 struct imxuart_softc *sc = device_private(self); 522 int maj, mn; 523 524 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) 525 return EBUSY; 526 527 /* locate the major number */ 528 maj = cdevsw_lookup_major(&imxcom_cdevsw); 529 530 /* Nuke the vnodes for any open instances. */ 531 mn = device_unit(self); 532 vdevgone(maj, mn, mn, VCHR); 533 534 mn |= IMXUART_DIALOUT_MASK; 535 vdevgone(maj, mn, mn, VCHR); 536 537 if (sc->sc_rbuf == NULL) { 538 /* 539 * Ring buffer allocation failed in the imxuart_attach_subr, 540 * only the tty is allocated, and nothing else. 541 */ 542 tty_free(sc->sc_tty); 543 return 0; 544 } 545 546 /* Free the receive buffer. */ 547 kmem_free(sc->sc_rbuf, sizeof(*sc->sc_rbuf) * sc->sc_rbuf_size); 548 549 /* Detach and free the tty. */ 550 tty_detach(sc->sc_tty); 551 tty_free(sc->sc_tty); 552 553 /* Unhook the soft interrupt handler. */ 554 softint_disestablish(sc->sc_si); 555 556 #ifdef RND_COM 557 /* Unhook the entropy source. */ 558 rnd_detach_source(&sc->rnd_source); 559 #endif 560 callout_destroy(&sc->sc_diag_callout); 561 562 /* Destroy the lock. */ 563 mutex_destroy(&sc->sc_lock); 564 565 return (0); 566 } 567 #endif 568 569 #ifdef notyet 570 int 571 imxuart_activate(device_t self, enum devact act) 572 { 573 struct imxuart_softc *sc = device_private(self); 574 int rv = 0; 575 576 switch (act) { 577 case DVACT_ACTIVATE: 578 rv = EOPNOTSUPP; 579 break; 580 581 case DVACT_DEACTIVATE: 582 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) { 583 rv = EBUSY; 584 break; 585 } 586 587 if (sc->disable != NULL && sc->enabled != 0) { 588 (*sc->disable)(sc); 589 sc->enabled = 0; 590 } 591 break; 592 } 593 594 return (rv); 595 } 596 #endif 597 598 void 599 imxuart_shutdown(struct imxuart_softc *sc) 600 { 601 struct tty *tp = sc->sc_tty; 602 603 mutex_spin_enter(&sc->sc_lock); 604 605 /* If we were asserting flow control, then deassert it. */ 606 SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED); 607 imxuart_hwiflow(sc); 608 609 /* Clear any break condition set with TIOCSBRK. */ 610 imxuart_break(sc, false); 611 612 /* 613 * Hang up if necessary. Wait a bit, so the other side has time to 614 * notice even if we immediately open the port again. 615 * Avoid tsleeping above splhigh(). 616 */ 617 if (ISSET(tp->t_cflag, HUPCL)) { 618 imxuart_modem(sc, 0); 619 mutex_spin_exit(&sc->sc_lock); 620 /* XXX will only timeout */ 621 (void) kpause(ttclos, false, hz, NULL); 622 mutex_spin_enter(&sc->sc_lock); 623 } 624 625 /* Turn off interrupts. */ 626 imxuart_disable_all_interrupts(sc); 627 /* re-enable recv interrupt for console or kgdb port */ 628 imxuart_enable_debugport(sc); 629 630 mutex_spin_exit(&sc->sc_lock); 631 632 #ifdef notyet 633 if (sc->disable) { 634 #ifdef DIAGNOSTIC 635 if (!sc->enabled) 636 panic("imxuart_shutdown: not enabled?"); 637 #endif 638 (*sc->disable)(sc); 639 sc->enabled = 0; 640 } 641 #endif 642 } 643 644 int 645 imxuopen(dev_t dev, int flag, int mode, struct lwp *l) 646 { 647 struct imxuart_softc *sc; 648 struct tty *tp; 649 int s; 650 int error; 651 652 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 653 if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) || 654 sc->sc_rbuf == NULL) 655 return (ENXIO); 656 657 if (!device_is_active(sc->sc_dev)) 658 return (ENXIO); 659 660 #ifdef KGDB 661 /* 662 * If this is the kgdb port, no other use is permitted. 663 */ 664 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) 665 return (EBUSY); 666 #endif 667 668 tp = sc->sc_tty; 669 670 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) 671 return (EBUSY); 672 673 s = spltty(); 674 675 /* 676 * Do the following iff this is a first open. 677 */ 678 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 679 struct termios t; 680 681 tp->t_dev = dev; 682 683 684 #ifdef notyet 685 if (sc->enable) { 686 if ((*sc->enable)(sc)) { 687 splx(s); 688 aprint_error_dev(sc->sc_dev, 689 "device enable failed\n"); 690 return (EIO); 691 } 692 sc->enabled = 1; 693 } 694 #endif 695 696 mutex_spin_enter(&sc->sc_lock); 697 698 imxuart_disable_all_interrupts(sc); 699 700 /* Fetch the current modem control status, needed later. */ 701 702 #ifdef IMXUART_PPS 703 /* Clear PPS capture state on first open. */ 704 mutex_spin_enter(&timecounter_lock); 705 memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state)); 706 sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR; 707 pps_init(&sc->sc_pps_state); 708 mutex_spin_exit(&timecounter_lock); 709 #endif 710 711 mutex_spin_exit(&sc->sc_lock); 712 713 /* 714 * Initialize the termios status to the defaults. Add in the 715 * sticky bits from TIOCSFLAGS. 716 */ 717 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 718 t.c_ospeed = imxuconsrate; 719 t.c_cflag = imxuconscflag; 720 } else { 721 t.c_ospeed = TTYDEF_SPEED; 722 t.c_cflag = TTYDEF_CFLAG; 723 } 724 t.c_ispeed = t.c_ospeed; 725 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) 726 SET(t.c_cflag, CLOCAL); 727 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) 728 SET(t.c_cflag, CRTSCTS); 729 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) 730 SET(t.c_cflag, MDMBUF); 731 /* Make sure imxuparam() will do something. */ 732 tp->t_ospeed = 0; 733 (void) imxuparam(tp, &t); 734 tp->t_iflag = TTYDEF_IFLAG; 735 tp->t_oflag = TTYDEF_OFLAG; 736 tp->t_lflag = TTYDEF_LFLAG; 737 ttychars(tp); 738 ttsetwater(tp); 739 740 mutex_spin_enter(&sc->sc_lock); 741 742 /* 743 * Turn on DTR. We must always do this, even if carrier is not 744 * present, because otherwise we'd have to use TIOCSDTR 745 * immediately after setting CLOCAL, which applications do not 746 * expect. We always assert DTR while the device is open 747 * unless explicitly requested to deassert it. 748 */ 749 imxuart_modem(sc, 1); 750 751 /* Clear the input ring, and unblock. */ 752 sc->sc_rbuf_in = sc->sc_rbuf_out = 0; 753 imxuart_iflush(sc); 754 CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK); 755 imxuart_hwiflow(sc); 756 757 /* Turn on interrupts. */ 758 imxuart_control_rxint(sc, true); 759 760 #ifdef IMXUART_DEBUG 761 if (imxuart_debug) 762 imxustatus(sc, "imxuopen "); 763 #endif 764 765 mutex_spin_exit(&sc->sc_lock); 766 } 767 768 splx(s); 769 770 #if 0 771 error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK)); 772 #else 773 error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK)); 774 #endif 775 if (error) 776 goto bad; 777 778 error = (*tp->t_linesw->l_open)(dev, tp); 779 if (error) 780 goto bad; 781 782 return (0); 783 784 bad: 785 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 786 /* 787 * We failed to open the device, and nobody else had it opened. 788 * Clean up the state as appropriate. 789 */ 790 imxuart_shutdown(sc); 791 } 792 793 return (error); 794 } 795 796 int 797 imxuclose(dev_t dev, int flag, int mode, struct lwp *l) 798 { 799 struct imxuart_softc *sc = 800 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 801 struct tty *tp = sc->sc_tty; 802 803 /* XXX This is for cons.c. */ 804 if (!ISSET(tp->t_state, TS_ISOPEN)) 805 return (0); 806 807 (*tp->t_linesw->l_close)(tp, flag); 808 ttyclose(tp); 809 810 if (IMXUART_ISALIVE(sc) == 0) 811 return (0); 812 813 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 814 /* 815 * Although we got a last close, the device may still be in 816 * use; e.g. if this was the dialout node, and there are still 817 * processes waiting for carrier on the non-dialout node. 818 */ 819 imxuart_shutdown(sc); 820 } 821 822 return (0); 823 } 824 825 int 826 imxuread(dev_t dev, struct uio *uio, int flag) 827 { 828 struct imxuart_softc *sc = 829 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 830 struct tty *tp = sc->sc_tty; 831 832 if (IMXUART_ISALIVE(sc) == 0) 833 return (EIO); 834 835 return ((*tp->t_linesw->l_read)(tp, uio, flag)); 836 } 837 838 int 839 imxuwrite(dev_t dev, struct uio *uio, int flag) 840 { 841 struct imxuart_softc *sc = 842 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 843 struct tty *tp = sc->sc_tty; 844 845 if (IMXUART_ISALIVE(sc) == 0) 846 return (EIO); 847 848 return ((*tp->t_linesw->l_write)(tp, uio, flag)); 849 } 850 851 int 852 imxupoll(dev_t dev, int events, struct lwp *l) 853 { 854 struct imxuart_softc *sc = 855 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 856 struct tty *tp = sc->sc_tty; 857 858 if (IMXUART_ISALIVE(sc) == 0) 859 return (POLLHUP); 860 861 return ((*tp->t_linesw->l_poll)(tp, events, l)); 862 } 863 864 struct tty * 865 imxutty(dev_t dev) 866 { 867 struct imxuart_softc *sc = 868 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 869 struct tty *tp = sc->sc_tty; 870 871 return (tp); 872 } 873 874 int 875 imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 876 { 877 struct imxuart_softc *sc; 878 struct tty *tp; 879 int error; 880 881 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev)); 882 if (sc == NULL) 883 return ENXIO; 884 if (IMXUART_ISALIVE(sc) == 0) 885 return (EIO); 886 887 tp = sc->sc_tty; 888 889 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); 890 if (error != EPASSTHROUGH) 891 return (error); 892 893 error = ttioctl(tp, cmd, data, flag, l); 894 if (error != EPASSTHROUGH) 895 return (error); 896 897 error = 0; 898 switch (cmd) { 899 case TIOCSFLAGS: 900 error = kauth_authorize_device_tty(l->l_cred, 901 KAUTH_DEVICE_TTY_PRIVSET, tp); 902 break; 903 default: 904 /* nothing */ 905 break; 906 } 907 if (error) { 908 return error; 909 } 910 911 mutex_spin_enter(&sc->sc_lock); 912 913 switch (cmd) { 914 case TIOCSBRK: 915 imxuart_break(sc, true); 916 break; 917 918 case TIOCCBRK: 919 imxuart_break(sc, false); 920 break; 921 922 case TIOCSDTR: 923 imxuart_modem(sc, 1); 924 break; 925 926 case TIOCCDTR: 927 imxuart_modem(sc, 0); 928 break; 929 930 case TIOCGFLAGS: 931 *(int *)data = sc->sc_swflags; 932 break; 933 934 case TIOCSFLAGS: 935 sc->sc_swflags = *(int *)data; 936 break; 937 938 case TIOCMSET: 939 case TIOCMBIS: 940 case TIOCMBIC: 941 tiocm_to_imxu(sc, cmd, *(int *)data); 942 break; 943 944 case TIOCMGET: 945 *(int *)data = imxuart_to_tiocm(sc); 946 break; 947 948 #ifdef notyet 949 case PPS_IOC_CREATE: 950 case PPS_IOC_DESTROY: 951 case PPS_IOC_GETPARAMS: 952 case PPS_IOC_SETPARAMS: 953 case PPS_IOC_GETCAP: 954 case PPS_IOC_FETCH: 955 #ifdef PPS_SYNC 956 case PPS_IOC_KCBIND: 957 #endif 958 mutex_spin_enter(&timecounter_lock); 959 error = pps_ioctl(cmd, data, &sc->sc_pps_state); 960 mutex_spin_exit(&timecounter_lock); 961 break; 962 963 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 964 mutex_spin_enter(&timecounter_lock); 965 #ifndef PPS_TRAILING_EDGE 966 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 967 &sc->sc_pps_state.ppsinfo.assert_timestamp); 968 #else 969 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 970 &sc->sc_pps_state.ppsinfo.clear_timestamp); 971 #endif 972 mutex_spin_exit(&timecounter_lock); 973 break; 974 #endif 975 976 default: 977 error = EPASSTHROUGH; 978 break; 979 } 980 981 mutex_spin_exit(&sc->sc_lock); 982 983 #ifdef IMXUART_DEBUG 984 if (imxuart_debug) 985 imxustatus(sc, "imxuioctl "); 986 #endif 987 988 return (error); 989 } 990 991 integrate void 992 imxuart_schedrx(struct imxuart_softc *sc) 993 { 994 sc->sc_rx_ready = 1; 995 996 /* Wake up the poller. */ 997 softint_schedule(sc->sc_si); 998 } 999 1000 void 1001 imxuart_break(struct imxuart_softc *sc, bool onoff) 1002 { 1003 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1004 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1005 1006 if (onoff) 1007 SET(sc->sc_ucr1, IMX_UCR1_SNDBRK); 1008 else 1009 CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK); 1010 1011 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1); 1012 } 1013 1014 void 1015 imxuart_modem(struct imxuart_softc *sc, int onoff) 1016 { 1017 #ifdef notyet 1018 if (sc->sc_mcr_dtr == 0) 1019 return; 1020 1021 if (onoff) 1022 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1023 else 1024 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1025 1026 if (!sc->sc_heldchange) { 1027 if (sc->sc_tx_busy) { 1028 sc->sc_heldtbc = sc->sc_tbc; 1029 sc->sc_tbc = 0; 1030 sc->sc_heldchange = 1; 1031 } else 1032 imxuart_loadchannelregs(sc); 1033 } 1034 #endif 1035 } 1036 1037 /* 1038 * RTS output is controlled by UCR2.CTS bit. 1039 * DTR output is controlled by UCR3.DSR bit. 1040 * (i.MX reference manual uses names in DCE mode) 1041 * 1042 * note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored. 1043 */ 1044 void 1045 tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits) 1046 { 1047 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1048 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1049 1050 uint32_t ucr2 = sc->sc_ucr2_d; 1051 uint32_t ucr3 = sc->sc_ucr3; 1052 1053 uint32_t ucr2_mask = 0; 1054 uint32_t ucr3_mask = 0; 1055 1056 1057 if (ISSET(ttybits, TIOCM_DTR)) 1058 ucr3_mask = IMX_UCR3_DSR; 1059 if (ISSET(ttybits, TIOCM_RTS)) 1060 ucr2_mask = IMX_UCR2_CTS; 1061 1062 switch (how) { 1063 case TIOCMBIC: 1064 CLR(ucr2, ucr2_mask); 1065 CLR(ucr3, ucr3_mask); 1066 break; 1067 1068 case TIOCMBIS: 1069 SET(ucr2, ucr2_mask); 1070 SET(ucr3, ucr3_mask); 1071 break; 1072 1073 case TIOCMSET: 1074 CLR(ucr2, ucr2_mask); 1075 CLR(ucr3, ucr3_mask); 1076 SET(ucr2, ucr2_mask); 1077 SET(ucr3, ucr3_mask); 1078 break; 1079 } 1080 1081 if (ucr3 != sc->sc_ucr3) { 1082 bus_space_write_4(iot, ioh, IMX_UCR3, ucr3); 1083 sc->sc_ucr3 = ucr3; 1084 } 1085 1086 if (ucr2 == sc->sc_ucr2_d) 1087 return; 1088 1089 sc->sc_ucr2_d = ucr2; 1090 /* update CTS bit only */ 1091 ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) | 1092 (ucr2 & IMX_UCR2_CTS); 1093 1094 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2); 1095 sc->sc_ucr2 = ucr2; 1096 } 1097 1098 int 1099 imxuart_to_tiocm(struct imxuart_softc *sc) 1100 { 1101 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1102 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1103 int ttybits = 0; 1104 uint32_t usr[2]; 1105 1106 if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR)) 1107 SET(ttybits, TIOCM_DTR); 1108 if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS)) 1109 SET(ttybits, TIOCM_RTS); 1110 1111 bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2); 1112 1113 if (ISSET(usr[0], IMX_USR1_RTSS)) 1114 SET(ttybits, TIOCM_CTS); 1115 1116 if (ISSET(usr[1], IMX_USR2_DCDIN)) 1117 SET(ttybits, TIOCM_CD); 1118 1119 #if 0 1120 /* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal, 1121 although there are bits in UART registers to detect delta of DSR. 1122 */ 1123 if (ISSET(imxubits, MSR_DSR)) 1124 SET(ttybits, TIOCM_DSR); 1125 #endif 1126 1127 if (ISSET(usr[1], IMX_USR2_RIIN)) 1128 SET(ttybits, TIOCM_RI); 1129 1130 1131 #ifdef notyet 1132 if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC)) 1133 SET(ttybits, TIOCM_LE); 1134 #endif 1135 1136 return (ttybits); 1137 } 1138 1139 static uint32_t 1140 cflag_to_ucr2(tcflag_t cflag, uint32_t oldval) 1141 { 1142 uint32_t val = oldval; 1143 1144 CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB); 1145 1146 switch (cflag & CSIZE) { 1147 case CS5: 1148 case CS6: 1149 /* not suppreted. use 7-bits */ 1150 case CS7: 1151 break; 1152 case CS8: 1153 SET(val, IMX_UCR2_WS); 1154 break; 1155 } 1156 1157 1158 if (ISSET(cflag, PARENB)) { 1159 SET(val, IMX_UCR2_PREN); 1160 1161 /* odd parity */ 1162 if (!ISSET(cflag, PARODD)) 1163 SET(val, IMX_UCR2_PROE); 1164 } 1165 1166 if (ISSET(cflag, CSTOPB)) 1167 SET(val, IMX_UCR2_STPB); 1168 1169 val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST; 1170 1171 return val; 1172 } 1173 1174 int 1175 imxuparam(struct tty *tp, struct termios *t) 1176 { 1177 struct imxuart_softc *sc = 1178 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1179 struct imxuart_baudrate_ratio ratio; 1180 uint32_t ucr2; 1181 bool change_speed = tp->t_ospeed != t->c_ospeed; 1182 1183 if (IMXUART_ISALIVE(sc) == 0) 1184 return (EIO); 1185 1186 /* Check requested parameters. */ 1187 if (t->c_ispeed && t->c_ispeed != t->c_ospeed) 1188 return (EINVAL); 1189 1190 /* 1191 * For the console, always force CLOCAL and !HUPCL, so that the port 1192 * is always active. 1193 */ 1194 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || 1195 ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) { 1196 SET(t->c_cflag, CLOCAL); 1197 CLR(t->c_cflag, HUPCL); 1198 } 1199 1200 /* 1201 * If there were no changes, don't do anything. This avoids dropping 1202 * input and improves performance when all we did was frob things like 1203 * VMIN and VTIME. 1204 */ 1205 if ( !change_speed && tp->t_cflag == t->c_cflag) 1206 return (0); 1207 1208 if (change_speed) { 1209 /* calculate baudrate modulator value */ 1210 if (imxuspeed(t->c_ospeed, &ratio) < 0) 1211 return (EINVAL); 1212 sc->sc_ratio = ratio; 1213 } 1214 1215 ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d); 1216 1217 mutex_spin_enter(&sc->sc_lock); 1218 1219 #if 0 /* flow control stuff. not yet */ 1220 /* 1221 * If we're not in a mode that assumes a connection is present, then 1222 * ignore carrier changes. 1223 */ 1224 if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) 1225 sc->sc_msr_dcd = 0; 1226 else 1227 sc->sc_msr_dcd = MSR_DCD; 1228 /* 1229 * Set the flow control pins depending on the current flow control 1230 * mode. 1231 */ 1232 if (ISSET(t->c_cflag, CRTSCTS)) { 1233 sc->sc_mcr_dtr = MCR_DTR; 1234 sc->sc_mcr_rts = MCR_RTS; 1235 sc->sc_msr_cts = MSR_CTS; 1236 sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS; 1237 } else if (ISSET(t->c_cflag, MDMBUF)) { 1238 /* 1239 * For DTR/DCD flow control, make sure we don't toggle DTR for 1240 * carrier detection. 1241 */ 1242 sc->sc_mcr_dtr = 0; 1243 sc->sc_mcr_rts = MCR_DTR; 1244 sc->sc_msr_cts = MSR_DCD; 1245 sc->sc_efr = 0; 1246 } else { 1247 /* 1248 * If no flow control, then always set RTS. This will make 1249 * the other side happy if it mistakenly thinks we're doing 1250 * RTS/CTS flow control. 1251 */ 1252 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS; 1253 sc->sc_mcr_rts = 0; 1254 sc->sc_msr_cts = 0; 1255 sc->sc_efr = 0; 1256 if (ISSET(sc->sc_mcr, MCR_DTR)) 1257 SET(sc->sc_mcr, MCR_RTS); 1258 else 1259 CLR(sc->sc_mcr, MCR_RTS); 1260 } 1261 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; 1262 #endif 1263 1264 /* And copy to tty. */ 1265 tp->t_ispeed = t->c_ospeed; 1266 tp->t_ospeed = t->c_ospeed; 1267 tp->t_cflag = t->c_cflag; 1268 1269 if (!change_speed && ucr2 == sc->sc_ucr2_d) { 1270 /* noop */ 1271 } 1272 else if (!sc->sc_pending && !sc->sc_tx_busy) { 1273 if (ucr2 != sc->sc_ucr2_d) { 1274 sc->sc_ucr2_d = ucr2; 1275 imxuart_load_params(sc); 1276 } 1277 if (change_speed) 1278 imxuart_load_speed(sc); 1279 } 1280 else { 1281 if (!sc->sc_pending) { 1282 sc->sc_heldtbc = sc->sc_tbc; 1283 sc->sc_tbc = 0; 1284 } 1285 sc->sc_pending |= 1286 (ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) | 1287 (change_speed ? 0 : IMXUART_PEND_SPEED); 1288 sc->sc_ucr2_d = ucr2; 1289 } 1290 1291 if (!ISSET(t->c_cflag, CHWFLOW)) { 1292 /* Disable the high water mark. */ 1293 sc->sc_r_hiwat = 0; 1294 sc->sc_r_lowat = 0; 1295 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) { 1296 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1297 imxuart_schedrx(sc); 1298 } 1299 if (ISSET(sc->sc_rx_flags, 1300 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) { 1301 CLR(sc->sc_rx_flags, 1302 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED); 1303 imxuart_hwiflow(sc); 1304 } 1305 } else { 1306 sc->sc_r_hiwat = imxuart_rbuf_hiwat; 1307 sc->sc_r_lowat = imxuart_rbuf_lowat; 1308 } 1309 1310 mutex_spin_exit(&sc->sc_lock); 1311 1312 #if 0 1313 /* 1314 * Update the tty layer's idea of the carrier bit, in case we changed 1315 * CLOCAL or MDMBUF. We don't hang up here; we only do that by 1316 * explicit request. 1317 */ 1318 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD)); 1319 #else 1320 /* XXX: always report that we have DCD */ 1321 (void) (*tp->t_linesw->l_modem)(tp, 1); 1322 #endif 1323 1324 #ifdef IMXUART_DEBUG 1325 if (imxuart_debug) 1326 imxustatus(sc, "imxuparam "); 1327 #endif 1328 1329 if (!ISSET(t->c_cflag, CHWFLOW)) { 1330 if (sc->sc_tx_stopped) { 1331 sc->sc_tx_stopped = 0; 1332 imxustart(tp); 1333 } 1334 } 1335 1336 return (0); 1337 } 1338 1339 void 1340 imxuart_iflush(struct imxuart_softc *sc) 1341 { 1342 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1343 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1344 #ifdef DIAGNOSTIC 1345 uint32_t reg = 0xffff; 1346 #endif 1347 int timo; 1348 1349 timo = 50000; 1350 /* flush any pending I/O */ 1351 while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR) 1352 && --timo) 1353 #ifdef DIAGNOSTIC 1354 reg = 1355 #else 1356 (void) 1357 #endif 1358 bus_space_read_4(iot, ioh, IMX_URXD); 1359 #ifdef DIAGNOSTIC 1360 if (!timo) 1361 aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg); 1362 #endif 1363 } 1364 1365 int 1366 imxuhwiflow(struct tty *tp, int block) 1367 { 1368 struct imxuart_softc *sc = 1369 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1370 1371 if (IMXUART_ISALIVE(sc) == 0) 1372 return (0); 1373 1374 #ifdef notyet 1375 if (sc->sc_mcr_rts == 0) 1376 return (0); 1377 #endif 1378 1379 mutex_spin_enter(&sc->sc_lock); 1380 1381 if (block) { 1382 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1383 SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED); 1384 imxuart_hwiflow(sc); 1385 } 1386 } else { 1387 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) { 1388 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1389 imxuart_schedrx(sc); 1390 } 1391 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1392 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED); 1393 imxuart_hwiflow(sc); 1394 } 1395 } 1396 1397 mutex_spin_exit(&sc->sc_lock); 1398 return (1); 1399 } 1400 1401 /* 1402 * (un)block input via hw flowcontrol 1403 */ 1404 void 1405 imxuart_hwiflow(struct imxuart_softc *sc) 1406 { 1407 #ifdef notyet 1408 struct imxuart_regs *regsp= &sc->sc_regs; 1409 1410 if (sc->sc_mcr_rts == 0) 1411 return; 1412 1413 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { 1414 CLR(sc->sc_mcr, sc->sc_mcr_rts); 1415 CLR(sc->sc_mcr_active, sc->sc_mcr_rts); 1416 } else { 1417 SET(sc->sc_mcr, sc->sc_mcr_rts); 1418 SET(sc->sc_mcr_active, sc->sc_mcr_rts); 1419 } 1420 UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active); 1421 #endif 1422 } 1423 1424 1425 void 1426 imxustart(struct tty *tp) 1427 { 1428 struct imxuart_softc *sc = 1429 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1430 int s; 1431 u_char *tba; 1432 int tbc; 1433 u_int n; 1434 u_int space; 1435 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1436 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1437 1438 if (IMXUART_ISALIVE(sc) == 0) 1439 return; 1440 1441 s = spltty(); 1442 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1443 goto out; 1444 if (sc->sc_tx_stopped) 1445 goto out; 1446 if (!ttypull(tp)) 1447 goto out; 1448 1449 /* Grab the first contiguous region of buffer space. */ 1450 tba = tp->t_outq.c_cf; 1451 tbc = ndqb(&tp->t_outq, 0); 1452 1453 mutex_spin_enter(&sc->sc_lock); 1454 1455 sc->sc_tba = tba; 1456 sc->sc_tbc = tbc; 1457 1458 SET(tp->t_state, TS_BUSY); 1459 sc->sc_tx_busy = 1; 1460 1461 space = imxuart_txfifo_space(sc); 1462 n = MIN(sc->sc_tbc, space); 1463 1464 if (n > 0) { 1465 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n); 1466 sc->sc_tbc -= n; 1467 sc->sc_tba += n; 1468 } 1469 1470 /* Enable transmit completion interrupts */ 1471 imxuart_control_txint(sc, true); 1472 1473 mutex_spin_exit(&sc->sc_lock); 1474 out: 1475 splx(s); 1476 return; 1477 } 1478 1479 /* 1480 * Stop output on a line. 1481 */ 1482 void 1483 imxustop(struct tty *tp, int flag) 1484 { 1485 struct imxuart_softc *sc = 1486 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev)); 1487 1488 mutex_spin_enter(&sc->sc_lock); 1489 if (ISSET(tp->t_state, TS_BUSY)) { 1490 /* Stop transmitting at the next chunk. */ 1491 sc->sc_tbc = 0; 1492 sc->sc_heldtbc = 0; 1493 if (!ISSET(tp->t_state, TS_TTSTOP)) 1494 SET(tp->t_state, TS_FLUSH); 1495 } 1496 mutex_spin_exit(&sc->sc_lock); 1497 } 1498 1499 void 1500 imxudiag(void *arg) 1501 { 1502 #ifdef notyet 1503 struct imxuart_softc *sc = arg; 1504 int overflows, floods; 1505 1506 mutex_spin_enter(&sc->sc_lock); 1507 overflows = sc->sc_overflows; 1508 sc->sc_overflows = 0; 1509 floods = sc->sc_floods; 1510 sc->sc_floods = 0; 1511 sc->sc_errors = 0; 1512 mutex_spin_exit(&sc->sc_lock); 1513 1514 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1515 device_xname(sc->sc_dev), 1516 overflows, overflows == 1 ? "" : "s", 1517 floods, floods == 1 ? "" : "s"); 1518 #endif 1519 } 1520 1521 integrate void 1522 imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp) 1523 { 1524 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint; 1525 u_int cc, scc, outp; 1526 uint16_t data; 1527 u_int code; 1528 1529 scc = cc = IMXUART_RBUF_AVAIL(sc); 1530 1531 #if 0 1532 if (cc == imxuart_rbuf_size-1) { 1533 sc->sc_floods++; 1534 if (sc->sc_errors++ == 0) 1535 callout_reset(&sc->sc_diag_callout, 60 * hz, 1536 imxudiag, sc); 1537 } 1538 #endif 1539 1540 /* If not yet open, drop the entire buffer content here */ 1541 if (!ISSET(tp->t_state, TS_ISOPEN)) { 1542 sc->sc_rbuf_out = sc->sc_rbuf_in; 1543 cc = 0; 1544 } 1545 1546 outp = sc->sc_rbuf_out; 1547 1548 #define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN) 1549 1550 while (cc) { 1551 data = sc->sc_rbuf[outp]; 1552 code = data & IMX_URXD_RX_DATA; 1553 if (ISSET(data, ERRBITS)) { 1554 if (sc->sc_errors.err == 0) 1555 callout_reset(&sc->sc_diag_callout, 1556 60 * hz, imxudiag, sc); 1557 if (ISSET(data, IMX_URXD_OVRRUN)) 1558 sc->sc_errors.ovrrun++; 1559 if (ISSET(data, IMX_URXD_BRK)) { 1560 sc->sc_errors.brk++; 1561 SET(code, TTY_FE); 1562 } 1563 if (ISSET(data, IMX_URXD_FRMERR)) { 1564 sc->sc_errors.frmerr++; 1565 SET(code, TTY_FE); 1566 } 1567 if (ISSET(data, IMX_URXD_PRERR)) { 1568 sc->sc_errors.prerr++; 1569 SET(code, TTY_PE); 1570 } 1571 } 1572 if ((*rint)(code, tp) == -1) { 1573 /* 1574 * The line discipline's buffer is out of space. 1575 */ 1576 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) { 1577 /* 1578 * We're either not using flow control, or the 1579 * line discipline didn't tell us to block for 1580 * some reason. Either way, we have no way to 1581 * know when there's more space available, so 1582 * just drop the rest of the data. 1583 */ 1584 sc->sc_rbuf_out = sc->sc_rbuf_in; 1585 cc = 0; 1586 } else { 1587 /* 1588 * Don't schedule any more receive processing 1589 * until the line discipline tells us there's 1590 * space available (through imxuhwiflow()). 1591 * Leave the rest of the data in the input 1592 * buffer. 1593 */ 1594 SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED); 1595 } 1596 break; 1597 } 1598 outp = IMXUART_RBUF_INC(sc, outp, 1); 1599 cc--; 1600 } 1601 1602 if (cc != scc) { 1603 sc->sc_rbuf_out = outp; 1604 mutex_spin_enter(&sc->sc_lock); 1605 1606 cc = IMXUART_RBUF_SPACE(sc); 1607 1608 /* Buffers should be ok again, release possible block. */ 1609 if (cc >= sc->sc_r_lowat) { 1610 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) { 1611 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED); 1612 imxuart_control_rxint(sc, true); 1613 } 1614 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) { 1615 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED); 1616 imxuart_hwiflow(sc); 1617 } 1618 } 1619 mutex_spin_exit(&sc->sc_lock); 1620 } 1621 } 1622 1623 integrate void 1624 imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp) 1625 { 1626 1627 CLR(tp->t_state, TS_BUSY); 1628 if (ISSET(tp->t_state, TS_FLUSH)) 1629 CLR(tp->t_state, TS_FLUSH); 1630 else 1631 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); 1632 (*tp->t_linesw->l_start)(tp); 1633 } 1634 1635 integrate void 1636 imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp) 1637 { 1638 #ifdef notyet 1639 u_char msr, delta; 1640 1641 mutex_spin_enter(&sc->sc_lock); 1642 msr = sc->sc_msr; 1643 delta = sc->sc_msr_delta; 1644 sc->sc_msr_delta = 0; 1645 mutex_spin_exit(&sc->sc_lock); 1646 1647 if (ISSET(delta, sc->sc_msr_dcd)) { 1648 /* 1649 * Inform the tty layer that carrier detect changed. 1650 */ 1651 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD)); 1652 } 1653 1654 if (ISSET(delta, sc->sc_msr_cts)) { 1655 /* Block or unblock output according to flow control. */ 1656 if (ISSET(msr, sc->sc_msr_cts)) { 1657 sc->sc_tx_stopped = 0; 1658 (*tp->t_linesw->l_start)(tp); 1659 } else { 1660 sc->sc_tx_stopped = 1; 1661 } 1662 } 1663 1664 #endif 1665 #ifdef IMXUART_DEBUG 1666 if (imxuart_debug) 1667 imxustatus(sc, "imxuart_stsoft"); 1668 #endif 1669 } 1670 1671 void 1672 imxusoft(void *arg) 1673 { 1674 struct imxuart_softc *sc = arg; 1675 struct tty *tp; 1676 1677 if (IMXUART_ISALIVE(sc) == 0) 1678 return; 1679 1680 tp = sc->sc_tty; 1681 1682 if (sc->sc_rx_ready) { 1683 sc->sc_rx_ready = 0; 1684 imxuart_rxsoft(sc, tp); 1685 } 1686 1687 if (sc->sc_st_check) { 1688 sc->sc_st_check = 0; 1689 imxuart_stsoft(sc, tp); 1690 } 1691 1692 if (sc->sc_tx_done) { 1693 sc->sc_tx_done = 0; 1694 imxuart_txsoft(sc, tp); 1695 } 1696 } 1697 1698 int 1699 imxuintr(void *arg) 1700 { 1701 struct imxuart_softc *sc = arg; 1702 uint32_t usr1, usr2; 1703 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1704 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1705 1706 1707 if (IMXUART_ISALIVE(sc) == 0) 1708 return (0); 1709 1710 mutex_spin_enter(&sc->sc_lock); 1711 1712 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1713 1714 1715 do { 1716 bus_space_write_4(iot, ioh, IMX_USR2, 1717 usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE)); 1718 if (usr2 & IMX_USR2_BRCD) { 1719 /* Break signal detected */ 1720 int cn_trapped = 0; 1721 1722 cn_check_magic(sc->sc_tty->t_dev, 1723 CNC_BREAK, imxuart_cnm_state); 1724 if (cn_trapped) 1725 goto next; 1726 #if defined(KGDB) && !defined(DDB) 1727 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) { 1728 kgdb_connect(1); 1729 goto next; 1730 } 1731 #endif 1732 } 1733 1734 if (usr2 & IMX_USR2_RDR) 1735 imxuintr_read(sc); 1736 1737 #ifdef IMXUART_PPS 1738 { 1739 u_char msr, delta; 1740 1741 msr = CSR_READ_1(regsp, IMXUART_REG_MSR); 1742 delta = msr ^ sc->sc_msr; 1743 sc->sc_msr = msr; 1744 if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) && 1745 (delta & MSR_DCD)) { 1746 mutex_spin_enter(&timecounter_lock); 1747 pps_capture(&sc->sc_pps_state); 1748 pps_event(&sc->sc_pps_state, 1749 (msr & MSR_DCD) ? 1750 PPS_CAPTUREASSERT : 1751 PPS_CAPTURECLEAR); 1752 mutex_spin_exit(&timecounter_lock); 1753 } 1754 } 1755 #endif 1756 1757 #ifdef notyet 1758 /* 1759 * Process normal status changes 1760 */ 1761 if (ISSET(delta, sc->sc_msr_mask)) { 1762 SET(sc->sc_msr_delta, delta); 1763 1764 /* 1765 * Stop output immediately if we lose the output 1766 * flow control signal or carrier detect. 1767 */ 1768 if (ISSET(~msr, sc->sc_msr_mask)) { 1769 sc->sc_tbc = 0; 1770 sc->sc_heldtbc = 0; 1771 #ifdef IMXUART_DEBUG 1772 if (imxuart_debug) 1773 imxustatus(sc, "imxuintr "); 1774 #endif 1775 } 1776 1777 sc->sc_st_check = 1; 1778 } 1779 #endif 1780 1781 next: 1782 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1783 } while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD)); 1784 1785 usr1 = bus_space_read_4(iot, ioh, IMX_USR1); 1786 if (usr1 & IMX_USR1_TRDY) 1787 imxuintr_send(sc); 1788 1789 mutex_spin_exit(&sc->sc_lock); 1790 1791 /* Wake up the poller. */ 1792 softint_schedule(sc->sc_si); 1793 1794 #ifdef RND_COM 1795 rnd_add_uint32(&sc->rnd_source, iir | lsr); 1796 #endif 1797 1798 return (1); 1799 } 1800 1801 1802 /* 1803 * called when there is least one character in rxfifo 1804 * 1805 */ 1806 1807 static void 1808 imxuintr_read(struct imxuart_softc *sc) 1809 { 1810 int cc; 1811 uint16_t rd; 1812 uint32_t usr2; 1813 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1814 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1815 1816 cc = IMXUART_RBUF_SPACE(sc); 1817 1818 /* clear aging timer interrupt */ 1819 bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM); 1820 1821 while (cc > 0) { 1822 int cn_trapped = 0; 1823 1824 sc->sc_rbuf[sc->sc_rbuf_in] = rd = 1825 bus_space_read_4(iot, ioh, IMX_URXD); 1826 1827 cn_check_magic(sc->sc_tty->t_dev, 1828 rd & 0xff, imxuart_cnm_state); 1829 1830 if (!cn_trapped) { 1831 #if defined(DDB) && defined(DDB_KEYCODE) 1832 /* 1833 * Temporary hack so that I can force the kernel into 1834 * the debugger via the serial port 1835 */ 1836 if ((rd & 0xff) == DDB_KEYCODE) 1837 Debugger(); 1838 #endif 1839 sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1); 1840 cc--; 1841 } 1842 1843 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1844 if (!(usr2 & IMX_USR2_RDR)) 1845 break; 1846 } 1847 1848 /* 1849 * Current string of incoming characters ended because 1850 * no more data was available or we ran out of space. 1851 * Schedule a receive event if any data was received. 1852 * If we're out of space, turn off receive interrupts. 1853 */ 1854 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) 1855 sc->sc_rx_ready = 1; 1856 /* 1857 * See if we are in danger of overflowing a buffer. If 1858 * so, use hardware flow control to ease the pressure. 1859 */ 1860 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) && 1861 cc < sc->sc_r_hiwat) { 1862 sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED; 1863 imxuart_hwiflow(sc); 1864 } 1865 1866 /* 1867 * If we're out of space, disable receive interrupts 1868 * until the queue has drained a bit. 1869 */ 1870 if (!cc) { 1871 sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED; 1872 imxuart_control_rxint(sc, false); 1873 } 1874 } 1875 1876 1877 1878 /* 1879 * find how many chars we can put into tx-fifo 1880 */ 1881 static u_int 1882 imxuart_txfifo_space(struct imxuart_softc *sc) 1883 { 1884 uint32_t usr1, usr2; 1885 u_int cc; 1886 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1887 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1888 1889 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1890 if (usr2 & IMX_USR2_TXFE) 1891 cc = sc->sc_txfifo_len; 1892 else { 1893 usr1 = bus_space_read_4(iot, ioh, IMX_USR1); 1894 if (usr1 & IMX_USR1_TRDY) 1895 cc = sc->sc_txfifo_thresh; 1896 else 1897 cc = 0; 1898 } 1899 1900 return cc; 1901 } 1902 1903 void 1904 imxuintr_send(struct imxuart_softc *sc) 1905 { 1906 uint32_t usr2; 1907 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1908 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1909 int cc = 0; 1910 1911 usr2 = bus_space_read_4(iot, ioh, IMX_USR2); 1912 1913 if (sc->sc_pending) { 1914 if (usr2 & IMX_USR2_TXFE) { 1915 imxuart_load_pendings(sc); 1916 sc->sc_tbc = sc->sc_heldtbc; 1917 sc->sc_heldtbc = 0; 1918 } 1919 else { 1920 /* wait for TX fifo empty */ 1921 imxuart_control_txint(sc, true); 1922 return; 1923 } 1924 } 1925 1926 cc = imxuart_txfifo_space(sc); 1927 cc = MIN(cc, sc->sc_tbc); 1928 1929 if (cc > 0) { 1930 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc); 1931 sc->sc_tbc -= cc; 1932 sc->sc_tba += cc; 1933 } 1934 1935 if (sc->sc_tbc > 0) 1936 imxuart_control_txint(sc, true); 1937 else { 1938 /* no more chars to send. 1939 we don't need tx interrupt any more. */ 1940 imxuart_control_txint(sc, false); 1941 if (sc->sc_tx_busy) { 1942 sc->sc_tx_busy = 0; 1943 sc->sc_tx_done = 1; 1944 } 1945 } 1946 } 1947 1948 static void 1949 imxuart_disable_all_interrupts(struct imxuart_softc *sc) 1950 { 1951 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1952 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1953 1954 sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1; 1955 sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2; 1956 sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3; 1957 sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4; 1958 1959 1960 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4); 1961 } 1962 1963 static void 1964 imxuart_control_rxint(struct imxuart_softc *sc, bool enable) 1965 { 1966 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1967 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1968 uint32_t ucr1, ucr2; 1969 1970 ucr1 = sc->sc_ucr1; 1971 ucr2 = sc->sc_ucr2; 1972 1973 if (enable) { 1974 ucr1 |= IMX_UCR1_RRDYEN; 1975 ucr2 |= IMX_UCR2_ATEN; 1976 } 1977 else { 1978 ucr1 &= ~IMX_UCR1_RRDYEN; 1979 ucr2 &= ~IMX_UCR2_ATEN; 1980 } 1981 1982 if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) { 1983 sc->sc_ucr1 = ucr1; 1984 sc->sc_ucr2 = ucr2; 1985 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2); 1986 } 1987 } 1988 1989 static void 1990 imxuart_control_txint(struct imxuart_softc *sc, bool enable) 1991 { 1992 bus_space_tag_t iot = sc->sc_regs.ur_iot; 1993 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 1994 uint32_t ucr1; 1995 uint32_t mask; 1996 1997 /* if parameter change is pending, get interrupt when Tx fifo 1998 is completely empty. otherwise, get interrupt when txfifo 1999 has less characters than threshold */ 2000 mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN; 2001 2002 ucr1 = sc->sc_ucr1; 2003 2004 CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN); 2005 if (enable) 2006 SET(ucr1, mask); 2007 2008 if (ucr1 != sc->sc_ucr1) { 2009 bus_space_write_4(iot, ioh, IMX_UCR1, ucr1); 2010 sc->sc_ucr1 = ucr1; 2011 } 2012 } 2013 2014 2015 static void 2016 imxuart_load_params(struct imxuart_softc *sc) 2017 { 2018 uint32_t ucr2; 2019 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2020 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2021 2022 ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) | 2023 (sc->sc_ucr2 & IMX_UCR2_ATEN); 2024 2025 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2); 2026 sc->sc_ucr2 = ucr2; 2027 } 2028 2029 static void 2030 imxuart_load_speed(struct imxuart_softc *sc) 2031 { 2032 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2033 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2034 int n, rfdiv, ufcr; 2035 2036 #ifdef notyet 2037 /* 2038 * Set the FIFO threshold based on the receive speed. 2039 * 2040 * * If it's a low speed, it's probably a mouse or some other 2041 * interactive device, so set the threshold low. 2042 * * If it's a high speed, trim the trigger level down to prevent 2043 * overflows. 2044 * * Otherwise set it a bit higher. 2045 */ 2046 if (t->c_ospeed <= 1200) 2047 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1; 2048 else if (t->c_ospeed <= 38400) 2049 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8; 2050 else 2051 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4; 2052 #endif 2053 2054 n = 32 - sc->sc_txfifo_thresh; 2055 n = MAX(2, n); 2056 2057 rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv); 2058 2059 ufcr = (n << IMX_UFCR_TXTL_SHIFT) | 2060 (rfdiv << IMX_UFCR_RFDIV_SHIFT) | 2061 (16 << IMX_UFCR_RXTL_SHIFT); 2062 2063 /* keep DCE/DTE bit */ 2064 ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE; 2065 2066 bus_space_write_4(iot, ioh, IMX_UFCR, ufcr); 2067 2068 /* UBIR must updated before UBMR */ 2069 bus_space_write_4(iot, ioh, 2070 IMX_UBIR, sc->sc_ratio.numerator); 2071 bus_space_write_4(iot, ioh, 2072 IMX_UBMR, sc->sc_ratio.modulator); 2073 2074 2075 } 2076 2077 2078 static void 2079 imxuart_load_pendings(struct imxuart_softc *sc) 2080 { 2081 if (sc->sc_pending & IMXUART_PEND_PARAM) 2082 imxuart_load_params(sc); 2083 if (sc->sc_pending & IMXUART_PEND_SPEED) 2084 imxuart_load_speed(sc); 2085 sc->sc_pending = 0; 2086 } 2087 2088 /* 2089 * The following functions are polled getc and putc routines, shared 2090 * by the console and kgdb glue. 2091 * 2092 * The read-ahead code is so that you can detect pending in-band 2093 * cn_magic in polled mode while doing output rather than having to 2094 * wait until the kernel decides it needs input. 2095 */ 2096 2097 #define READAHEAD_RING_LEN 16 2098 static int imxuart_readahead[READAHEAD_RING_LEN]; 2099 static int imxuart_readahead_in = 0; 2100 static int imxuart_readahead_out = 0; 2101 #define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out) 2102 #define READAHEAD_IS_FULL() \ 2103 (((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out) 2104 2105 int 2106 imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp) 2107 { 2108 int s = splserial(); 2109 u_char c; 2110 bus_space_tag_t iot = regsp->ur_iot; 2111 bus_space_handle_t ioh = regsp->ur_ioh; 2112 uint32_t usr2; 2113 2114 /* got a character from reading things earlier */ 2115 if (!READAHEAD_IS_EMPTY()) { 2116 c = imxuart_readahead[imxuart_readahead_out]; 2117 imxuart_readahead_out = (imxuart_readahead_out + 1) & 2118 (READAHEAD_RING_LEN-1); 2119 splx(s); 2120 return (c); 2121 } 2122 2123 /* block until a character becomes available */ 2124 while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) 2125 continue; 2126 2127 c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD); 2128 2129 { 2130 int cn_trapped __unused = 0; 2131 if (!db_active) 2132 cn_check_magic(dev, c, imxuart_cnm_state); 2133 } 2134 splx(s); 2135 return (c); 2136 } 2137 2138 void 2139 imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c) 2140 { 2141 int s = splserial(); 2142 int cin, timo; 2143 bus_space_tag_t iot = regsp->ur_iot; 2144 bus_space_handle_t ioh = regsp->ur_ioh; 2145 uint32_t usr2; 2146 2147 if (!READAHEAD_IS_FULL() && 2148 ((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) { 2149 2150 int __attribute__((__unused__))cn_trapped = 0; 2151 cin = bus_space_read_4(iot, ioh, IMX_URXD); 2152 cn_check_magic(dev, cin & 0xff, imxuart_cnm_state); 2153 imxuart_readahead[imxuart_readahead_in] = cin & 0xff; 2154 imxuart_readahead_in = (imxuart_readahead_in + 1) & 2155 (READAHEAD_RING_LEN-1); 2156 } 2157 2158 /* wait for any pending transmission to finish */ 2159 timo = 150000; 2160 do { 2161 if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) { 2162 bus_space_write_4(iot, ioh, IMX_UTXD, c); 2163 break; 2164 } 2165 } while(--timo > 0); 2166 2167 IMXUART_BARRIER(regsp, BR | BW); 2168 2169 splx(s); 2170 } 2171 2172 /* 2173 * Initialize UART 2174 */ 2175 int 2176 imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag, int domap) 2177 { 2178 struct imxuart_baudrate_ratio ratio; 2179 int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv); 2180 uint32_t ufcr; 2181 int error; 2182 2183 if (domap && (error = bus_space_map(regsp->ur_iot, regsp->ur_iobase, 2184 IMX_UART_SIZE, 0, ®sp->ur_ioh)) != 0) 2185 return error; 2186 2187 if (imxuart_freq != 0) { 2188 if (imxuspeed(rate, &ratio) < 0) 2189 return EINVAL; 2190 2191 /* UBIR must updated before UBMR */ 2192 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, 2193 IMX_UBIR, ratio.numerator); 2194 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, 2195 IMX_UBMR, ratio.modulator); 2196 } 2197 2198 /* XXX: DTREN, DPEC */ 2199 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3, 2200 IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL); 2201 2202 ufcr = bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR); 2203 ufcr &= ~IMX_UFCR_TXTL; 2204 ufcr |= (8 << IMX_UFCR_TXTL_SHIFT); 2205 ufcr &= ~IMX_UFCR_RXTL; 2206 ufcr |= (1 << IMX_UFCR_RXTL_SHIFT); 2207 if (imxuart_freq != 0) { 2208 ufcr &= ~IMX_UFCR_RFDIV; 2209 ufcr |= (rfdiv << IMX_UFCR_RFDIV_SHIFT); 2210 } 2211 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr); 2212 2213 if (imxuart_freq != 0) { 2214 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS, 2215 imxuart_freq / imxuart_freqdiv / 1000); 2216 } 2217 2218 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2, 2219 IMX_UCR2_IRTS| 2220 IMX_UCR2_CTSC| 2221 IMX_UCR2_WS|IMX_UCR2_TXEN| 2222 IMX_UCR2_RXEN|IMX_UCR2_SRST); 2223 /* clear status registers */ 2224 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff); 2225 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff); 2226 2227 2228 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1, 2229 IMX_UCR1_UARTEN); 2230 2231 return (0); 2232 } 2233 2234 2235 /* 2236 * Following are all routines needed for UART to act as console 2237 */ 2238 struct consdev imxucons = { 2239 NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL, 2240 NODEV, CN_NORMAL 2241 }; 2242 2243 2244 int 2245 imxuart_cnattach(bus_space_tag_t iot, paddr_t iobase, u_int rate, 2246 tcflag_t cflag) 2247 { 2248 struct imxuart_regs regs; 2249 int res; 2250 2251 regs.ur_iot = iot; 2252 regs.ur_iobase = iobase; 2253 2254 res = imxuart_init(®s, rate, cflag, true); 2255 if (res) 2256 return (res); 2257 2258 cn_tab = &imxucons; 2259 cn_init_magic(&imxuart_cnm_state); 2260 cn_set_magic("\047\001"); /* default magic is BREAK */ 2261 2262 imxuconsrate = rate; 2263 imxuconscflag = cflag; 2264 2265 imxuconsregs = regs; 2266 2267 return 0; 2268 } 2269 2270 int 2271 imxucngetc(dev_t dev) 2272 { 2273 return (imxuart_common_getc(dev, &imxuconsregs)); 2274 } 2275 2276 /* 2277 * Console kernel output character routine. 2278 */ 2279 void 2280 imxucnputc(dev_t dev, int c) 2281 { 2282 imxuart_common_putc(dev, &imxuconsregs, c); 2283 } 2284 2285 void 2286 imxucnpollc(dev_t dev, int on) 2287 { 2288 2289 imxuart_readahead_in = 0; 2290 imxuart_readahead_out = 0; 2291 } 2292 2293 #ifdef KGDB 2294 int 2295 imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate, 2296 tcflag_t cflag) 2297 { 2298 int res; 2299 2300 if (iot == imxuconsregs.ur_iot && 2301 iobase == imxuconsregs.ur_iobase) { 2302 #if !defined(DDB) 2303 return (EBUSY); /* cannot share with console */ 2304 #else 2305 imxu_kgdb_regs.ur_iot = iot; 2306 imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh; 2307 imxu_kgdb_regs.ur_iobase = iobase; 2308 #endif 2309 } else { 2310 imxu_kgdb_regs.ur_iot = iot; 2311 imxu_kgdb_regs.ur_iobase = iobase; 2312 2313 res = imxuart_init(&imxu_kgdb_regs, rate, cflag, true); 2314 if (res) 2315 return (res); 2316 2317 /* 2318 * XXXfvdl this shouldn't be needed, but the cn_magic goo 2319 * expects this to be initialized 2320 */ 2321 cn_init_magic(&imxuart_cnm_state); 2322 cn_set_magic("\047\001"); 2323 } 2324 2325 kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs); 2326 kgdb_dev = 123; /* unneeded, only to satisfy some tests */ 2327 2328 return (0); 2329 } 2330 2331 /* ARGSUSED */ 2332 int 2333 imxuart_kgdb_getc(void *arg) 2334 { 2335 struct imxuart_regs *regs = arg; 2336 2337 return (imxuart_common_getc(NODEV, regs)); 2338 } 2339 2340 /* ARGSUSED */ 2341 void 2342 imxuart_kgdb_putc(void *arg, int c) 2343 { 2344 struct imxuart_regs *regs = arg; 2345 2346 imxuart_common_putc(NODEV, regs, c); 2347 } 2348 #endif /* KGDB */ 2349 2350 /* helper function to identify the imxu ports used by 2351 console or KGDB (and not yet autoconf attached) */ 2352 int 2353 imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh) 2354 { 2355 bus_space_handle_t help; 2356 2357 if (!imxuconsattached && 2358 iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase) 2359 help = imxuconsregs.ur_ioh; 2360 #ifdef KGDB 2361 else if (!imxu_kgdb_attached && 2362 iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase) 2363 help = imxu_kgdb_regs.ur_ioh; 2364 #endif 2365 else 2366 return (0); 2367 2368 if (ioh) 2369 *ioh = help; 2370 return (1); 2371 } 2372 2373 #ifdef notyet 2374 2375 bool 2376 imxuart_cleanup(device_t self, int how) 2377 { 2378 /* 2379 * this routine exists to serve as a shutdown hook for systems that 2380 * have firmware which doesn't interact properly with a imxuart device in 2381 * FIFO mode. 2382 */ 2383 struct imxuart_softc *sc = device_private(self); 2384 2385 if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO)) 2386 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0); 2387 2388 return true; 2389 } 2390 #endif 2391 2392 #ifdef notyet 2393 bool 2394 imxuart_suspend(device_t self PMF_FN_ARGS) 2395 { 2396 struct imxuart_softc *sc = device_private(self); 2397 2398 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0); 2399 (void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR); 2400 2401 return true; 2402 } 2403 #endif 2404 2405 #ifdef notyet 2406 bool 2407 imxuart_resume(device_t self PMF_FN_ARGS) 2408 { 2409 struct imxuart_softc *sc = device_private(self); 2410 2411 mutex_spin_enter(&sc->sc_lock); 2412 imxuart_loadchannelregs(sc); 2413 mutex_spin_exit(&sc->sc_lock); 2414 2415 return true; 2416 } 2417 #endif 2418 2419 static void 2420 imxuart_enable_debugport(struct imxuart_softc *sc) 2421 { 2422 bus_space_tag_t iot = sc->sc_regs.ur_iot; 2423 bus_space_handle_t ioh = sc->sc_regs.ur_ioh; 2424 2425 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) { 2426 2427 /* Turn on line break interrupt, set carrier. */ 2428 2429 sc->sc_ucr3 |= IMX_UCR3_DSR; 2430 bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3); 2431 2432 sc->sc_ucr4 |= IMX_UCR4_BKEN; 2433 bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4); 2434 2435 sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN| 2436 IMX_UCR2_CTS; 2437 bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2); 2438 2439 sc->sc_ucr1 |= IMX_UCR1_UARTEN; 2440 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1); 2441 } 2442 } 2443 2444 2445 void 2446 imxuart_set_frequency(u_int freq, u_int div) 2447 { 2448 imxuart_freq = freq; 2449 imxuart_freqdiv = div; 2450 } 2451