xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_enet.c,v 1.23 2019/05/28 07:41:46 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu <ryo@nerv.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.23 2019/05/28 07:41:46 msaitoh Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45 
46 #include <lib/libkern/libkern.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64 
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67 
68 #define ENET_TICK	hz
69 
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...)	\
73 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77 
78 
79 #define RXDESC_MAXBUFSIZE	0x07f0
80 				/* ENET does not work greather than 0x0800... */
81 
82 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN	1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
89 #define MTU2FRAMESIZE(n)	\
90 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91 
92 
93 #define ENET_MAX_PKT_NSEGS	64
94 
95 #define ENET_TX_NEXTIDX(idx)	\
96 	(((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx)	\
98 	(((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99 
100 #define TXDESC_WRITEOUT(idx)					\
101 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
102 	    sizeof(struct enet_txdesc) * (idx),			\
103 	    sizeof(struct enet_txdesc),				\
104 	    BUS_DMASYNC_PREWRITE)
105 
106 #define TXDESC_READIN(idx)					\
107 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
108 	    sizeof(struct enet_txdesc) * (idx),			\
109 	    sizeof(struct enet_txdesc),				\
110 	    BUS_DMASYNC_PREREAD)
111 
112 #define RXDESC_WRITEOUT(idx)					\
113 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
114 	    sizeof(struct enet_rxdesc) * (idx),			\
115 	    sizeof(struct enet_rxdesc),				\
116 	    BUS_DMASYNC_PREWRITE)
117 
118 #define RXDESC_READIN(idx)					\
119 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
120 	    sizeof(struct enet_rxdesc) * (idx),			\
121 	    sizeof(struct enet_rxdesc),				\
122 	    BUS_DMASYNC_PREREAD)
123 
124 #define ENET_REG_READ(sc, reg)					\
125 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126 
127 #define ENET_REG_WRITE(sc, reg, value)				\
128 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129 
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134 
135 static int enet_intr(void *);
136 static void enet_tick(void *);
137 static int enet_tx_intr(void *);
138 static int enet_rx_intr(void *);
139 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
140 			 int);
141 
142 static void enet_start(struct ifnet *);
143 static int enet_ifflags_cb(struct ethercom *);
144 static int enet_ioctl(struct ifnet *, u_long, void *);
145 static int enet_init(struct ifnet *);
146 static void enet_stop(struct ifnet *, int);
147 static void enet_watchdog(struct ifnet *);
148 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
149 
150 static int enet_miibus_readreg(device_t, int, int, uint16_t *);
151 static int enet_miibus_writereg(device_t, int, int, uint16_t);
152 static void enet_miibus_statchg(struct ifnet *);
153 
154 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
156 static void enet_setmulti(struct enet_softc *);
157 static int enet_encap_mbufalign(struct mbuf **);
158 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
159 static int enet_init_regs(struct enet_softc *, int);
160 static int enet_alloc_ring(struct enet_softc *);
161 static void enet_init_txring(struct enet_softc *);
162 static int enet_init_rxring(struct enet_softc *);
163 static void enet_reset_rxdesc(struct enet_softc *, int);
164 static int enet_alloc_rxbuf(struct enet_softc *, int);
165 static void enet_drain_txbuf(struct enet_softc *);
166 static void enet_drain_rxbuf(struct enet_softc *);
167 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
168 			  bus_dmamap_t *);
169 
170 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
171     enet_match, enet_attach, NULL, NULL);
172 
173 void
174 enet_attach_common(device_t self, bus_space_tag_t iot,
175     bus_dma_tag_t dmat, bus_addr_t addr, bus_size_t size, int irq)
176 {
177 	struct enet_softc *sc = device_private(self);
178 	struct ifnet *ifp;
179 	struct mii_data * const mii = &sc->sc_mii;
180 
181 	sc->sc_dev = self;
182 	sc->sc_iot = iot;
183 	sc->sc_addr = addr;
184 	sc->sc_dmat = dmat;
185 
186 	aprint_naive("\n");
187 	aprint_normal(": Gigabit Ethernet Controller\n");
188 	if (bus_space_map(sc->sc_iot, sc->sc_addr, size, 0,
189 	    &sc->sc_ioh)) {
190 		aprint_error_dev(self, "cannot map registers\n");
191 		return;
192 	}
193 
194 	/* allocate dma buffer */
195 	if (enet_alloc_ring(sc))
196 		return;
197 
198 #define IS_ENADDR_ZERO(enaddr)				\
199 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
200 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
201 
202 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
203 		/* by any chance, mac-address is already set by bootloader? */
204 		enet_gethwaddr(sc, sc->sc_enaddr);
205 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
206 			/* give up. set randomly */
207 			uint32_t eaddr = random();
208 			/* not multicast */
209 			sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
210 			sc->sc_enaddr[1] = eaddr >> 16;
211 			sc->sc_enaddr[2] = eaddr >> 8;
212 			sc->sc_enaddr[3] = eaddr;
213 			eaddr = random();
214 			sc->sc_enaddr[4] = eaddr >> 8;
215 			sc->sc_enaddr[5] = eaddr;
216 
217 			aprint_error_dev(self,
218 			    "cannot get mac address. set randomly\n");
219 		}
220 	}
221 	enet_sethwaddr(sc, sc->sc_enaddr);
222 
223 	aprint_normal_dev(self, "Ethernet address %s\n",
224 	    ether_sprintf(sc->sc_enaddr));
225 
226 	enet_init_regs(sc, 1);
227 
228 	/* setup interrupt handlers */
229 	if ((sc->sc_ih = intr_establish(irq, IPL_NET,
230 	    IST_LEVEL, enet_intr, sc)) == NULL) {
231 		aprint_error_dev(self, "unable to establish interrupt\n");
232 		goto failure;
233 	}
234 
235 	if (sc->sc_imxtype == 7) {
236 		/* i.MX7 use 3 interrupts */
237 		if ((sc->sc_ih2 = intr_establish(irq + 1, IPL_NET,
238 		    IST_LEVEL, enet_intr, sc)) == NULL) {
239 			aprint_error_dev(self,
240 			    "unable to establish 2nd interrupt\n");
241 			intr_disestablish(sc->sc_ih);
242 			goto failure;
243 		}
244 		if ((sc->sc_ih3 = intr_establish(irq + 2, IPL_NET,
245 		    IST_LEVEL, enet_intr, sc)) == NULL) {
246 			aprint_error_dev(self,
247 			    "unable to establish 3rd interrupt\n");
248 			intr_disestablish(sc->sc_ih2);
249 			intr_disestablish(sc->sc_ih);
250 			goto failure;
251 		}
252 	}
253 
254 	/* callout will be scheduled from enet_init() */
255 	callout_init(&sc->sc_tick_ch, 0);
256 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
257 
258 	/* setup ifp */
259 	ifp = &sc->sc_ethercom.ec_if;
260 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
261 	ifp->if_softc = sc;
262 	ifp->if_mtu = ETHERMTU;
263 	ifp->if_baudrate = IF_Gbps(1);
264 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
265 	ifp->if_ioctl = enet_ioctl;
266 	ifp->if_start = enet_start;
267 	ifp->if_init = enet_init;
268 	ifp->if_stop = enet_stop;
269 	ifp->if_watchdog = enet_watchdog;
270 
271 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
272 #ifdef ENET_SUPPORT_JUMBO
273 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
274 #endif
275 
276 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
277 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
278 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
279 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
280 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
281 
282 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
283 	IFQ_SET_READY(&ifp->if_snd);
284 
285 	/* setup MII */
286 	sc->sc_ethercom.ec_mii = mii;
287 	mii->mii_ifp = ifp;
288 	mii->mii_readreg = enet_miibus_readreg;
289 	mii->mii_writereg = enet_miibus_writereg;
290 	mii->mii_statchg = enet_miibus_statchg;
291 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, enet_mediastatus);
292 
293 	/* try to attach PHY */
294 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
295 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
296 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
297 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
298 	} else {
299 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
300 	}
301 
302 	if_attach(ifp);
303 	ether_ifattach(ifp, sc->sc_enaddr);
304 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
305 
306 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
307 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
308 
309 #ifdef ENET_EVENT_COUNTER
310 	enet_attach_evcnt(sc);
311 #endif
312 
313 	sc->sc_stopping = false;
314 
315 	return;
316 
317  failure:
318 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, size);
319 	return;
320 }
321 
322 #ifdef ENET_EVENT_COUNTER
323 static void
324 enet_attach_evcnt(struct enet_softc *sc)
325 {
326 	const char *xname;
327 
328 	xname = device_xname(sc->sc_dev);
329 
330 #define ENET_EVCNT_ATTACH(name)	\
331 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
332 	    NULL, xname, #name);
333 
334 	ENET_EVCNT_ATTACH(t_drop);
335 	ENET_EVCNT_ATTACH(t_packets);
336 	ENET_EVCNT_ATTACH(t_bc_pkt);
337 	ENET_EVCNT_ATTACH(t_mc_pkt);
338 	ENET_EVCNT_ATTACH(t_crc_align);
339 	ENET_EVCNT_ATTACH(t_undersize);
340 	ENET_EVCNT_ATTACH(t_oversize);
341 	ENET_EVCNT_ATTACH(t_frag);
342 	ENET_EVCNT_ATTACH(t_jab);
343 	ENET_EVCNT_ATTACH(t_col);
344 	ENET_EVCNT_ATTACH(t_p64);
345 	ENET_EVCNT_ATTACH(t_p65to127n);
346 	ENET_EVCNT_ATTACH(t_p128to255n);
347 	ENET_EVCNT_ATTACH(t_p256to511);
348 	ENET_EVCNT_ATTACH(t_p512to1023);
349 	ENET_EVCNT_ATTACH(t_p1024to2047);
350 	ENET_EVCNT_ATTACH(t_p_gte2048);
351 	ENET_EVCNT_ATTACH(t_octets);
352 	ENET_EVCNT_ATTACH(r_packets);
353 	ENET_EVCNT_ATTACH(r_bc_pkt);
354 	ENET_EVCNT_ATTACH(r_mc_pkt);
355 	ENET_EVCNT_ATTACH(r_crc_align);
356 	ENET_EVCNT_ATTACH(r_undersize);
357 	ENET_EVCNT_ATTACH(r_oversize);
358 	ENET_EVCNT_ATTACH(r_frag);
359 	ENET_EVCNT_ATTACH(r_jab);
360 	ENET_EVCNT_ATTACH(r_p64);
361 	ENET_EVCNT_ATTACH(r_p65to127);
362 	ENET_EVCNT_ATTACH(r_p128to255);
363 	ENET_EVCNT_ATTACH(r_p256to511);
364 	ENET_EVCNT_ATTACH(r_p512to1023);
365 	ENET_EVCNT_ATTACH(r_p1024to2047);
366 	ENET_EVCNT_ATTACH(r_p_gte2048);
367 	ENET_EVCNT_ATTACH(r_octets);
368 }
369 
370 static void
371 enet_update_evcnt(struct enet_softc *sc)
372 {
373 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
374 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
375 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
376 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
377 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
378 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
379 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
380 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
381 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
382 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
383 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
384 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
385 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
386 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
387 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
388 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
389 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
390 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
391 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
392 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
393 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
394 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
395 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
396 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
397 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
398 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
399 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
400 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
401 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
402 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
403 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
404 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
405 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
406 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
407 }
408 #endif /* ENET_EVENT_COUNTER */
409 
410 static void
411 enet_tick(void *arg)
412 {
413 	struct enet_softc *sc;
414 	struct mii_data *mii;
415 	struct ifnet *ifp;
416 	int s;
417 
418 	sc = arg;
419 	mii = &sc->sc_mii;
420 	ifp = &sc->sc_ethercom.ec_if;
421 
422 	s = splnet();
423 
424 	if (sc->sc_stopping)
425 		goto out;
426 
427 #ifdef ENET_EVENT_COUNTER
428 	enet_update_evcnt(sc);
429 #endif
430 
431 	/* update counters */
432 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
433 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
434 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
435 
436 	/* clear counters */
437 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
438 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
439 
440 	mii_tick(mii);
441  out:
442 
443 	if (!sc->sc_stopping)
444 		callout_schedule(&sc->sc_tick_ch, ENET_TICK);
445 
446 	splx(s);
447 }
448 
449 static int
450 enet_intr(void *arg)
451 {
452 	struct enet_softc *sc;
453 	struct ifnet *ifp;
454 	uint32_t status;
455 
456 	sc = arg;
457 	status = ENET_REG_READ(sc, ENET_EIR);
458 
459 	if (sc->sc_imxtype == 7) {
460 		if (status & (ENET_EIR_TXF | ENET_EIR_TXF1 | ENET_EIR_TXF2))
461 			enet_tx_intr(arg);
462 		if (status & (ENET_EIR_RXF | ENET_EIR_RXF1 | ENET_EIR_RXF2))
463 			enet_rx_intr(arg);
464 	} else {
465 		if (status & ENET_EIR_TXF)
466 			enet_tx_intr(arg);
467 		if (status & ENET_EIR_RXF)
468 			enet_rx_intr(arg);
469 	}
470 
471 	if (status & ENET_EIR_EBERR) {
472 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
473 		ifp = &sc->sc_ethercom.ec_if;
474 		enet_stop(ifp, 1);
475 		enet_init(ifp);
476 	} else {
477 		ENET_REG_WRITE(sc, ENET_EIR, status);
478 	}
479 
480 	rnd_add_uint32(&sc->sc_rnd_source, status);
481 
482 	return 1;
483 }
484 
485 static int
486 enet_tx_intr(void *arg)
487 {
488 	struct enet_softc *sc;
489 	struct ifnet *ifp;
490 	struct enet_txsoft *txs;
491 	int idx;
492 
493 	sc = (struct enet_softc *)arg;
494 	ifp = &sc->sc_ethercom.ec_if;
495 
496 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
497 	    idx = ENET_TX_NEXTIDX(idx)) {
498 
499 		txs = &sc->sc_txsoft[idx];
500 
501 		TXDESC_READIN(idx);
502 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
503 			/* This TX Descriptor has not been transmitted yet */
504 			break;
505 		}
506 
507 		/* txsoft is available on first segment (TXFLAGS1_T1) */
508 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
509 			bus_dmamap_unload(sc->sc_dmat,
510 			    txs->txs_dmamap);
511 			m_freem(txs->txs_mbuf);
512 			ifp->if_opackets++;
513 		}
514 
515 		/* checking error */
516 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
517 			uint32_t flags2;
518 
519 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
520 
521 			if (flags2 & (TXFLAGS2_TXE |
522 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
523 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
524 #ifdef DEBUG_ENET
525 				if (enet_debug) {
526 					char flagsbuf[128];
527 
528 					snprintb(flagsbuf, sizeof(flagsbuf),
529 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
530 					    "\15COLLISION" "\14FRAME"
531 					    "\13LATECOLLISION" "\12OVERFLOW",
532 					    flags2);
533 
534 					device_printf(sc->sc_dev,
535 					    "txdesc[%d]: transmit error: "
536 					    "flags2=%s\n", idx, flagsbuf);
537 				}
538 #endif /* DEBUG_ENET */
539 				ifp->if_oerrors++;
540 			}
541 		}
542 
543 		sc->sc_tx_free++;
544 	}
545 	sc->sc_tx_considx = idx;
546 
547 	if (sc->sc_tx_free > 0)
548 		ifp->if_flags &= ~IFF_OACTIVE;
549 
550 	/*
551 	 * No more pending TX descriptor,
552 	 * cancel the watchdog timer.
553 	 */
554 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
555 		ifp->if_timer = 0;
556 
557 	return 1;
558 }
559 
560 static int
561 enet_rx_intr(void *arg)
562 {
563 	struct enet_softc *sc;
564 	struct ifnet *ifp;
565 	struct enet_rxsoft *rxs;
566 	int idx, len, amount;
567 	uint32_t flags1, flags2;
568 	struct mbuf *m, *m0, *mprev;
569 
570 	sc = arg;
571 	ifp = &sc->sc_ethercom.ec_if;
572 
573 	m0 = mprev = NULL;
574 	amount = 0;
575 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
576 
577 		rxs = &sc->sc_rxsoft[idx];
578 
579 		RXDESC_READIN(idx);
580 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
581 			/* This RX Descriptor has not been received yet */
582 			break;
583 		}
584 
585 		/*
586 		 * build mbuf from RX Descriptor if needed
587 		 */
588 		m = rxs->rxs_mbuf;
589 		rxs->rxs_mbuf = NULL;
590 
591 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
592 		len = RXFLAGS1_LEN(flags1);
593 
594 #define RACC_SHIFT16	2
595 		if (m0 == NULL) {
596 			m0 = m;
597 			m_adj(m0, RACC_SHIFT16);
598 			len -= RACC_SHIFT16;
599 			m->m_len = len;
600 			amount = len;
601 		} else {
602 			if (flags1 & RXFLAGS1_L)
603 				len = len - amount - RACC_SHIFT16;
604 
605 			m->m_len = len;
606 			amount += len;
607 			if (m->m_flags & M_PKTHDR)
608 				m_remove_pkthdr(m);
609 			mprev->m_next = m;
610 		}
611 		mprev = m;
612 
613 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
614 
615 		if (flags1 & RXFLAGS1_L) {
616 			/* last buffer */
617 			if ((amount < ETHER_HDR_LEN) ||
618 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
619 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
620 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
621 			    RXFLAGS2_CE)))) {
622 
623 #ifdef DEBUG_ENET
624 				if (enet_debug) {
625 					char flags1buf[128], flags2buf[128];
626 					snprintb(flags1buf, sizeof(flags1buf),
627 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
628 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
629 					    "\21TRUNCATED", flags1);
630 					snprintb(flags2buf, sizeof(flags2buf),
631 					    "\20" "\40MAC" "\33PHY"
632 					    "\32COLLISION", flags2);
633 
634 					DEVICE_DPRINTF(
635 					    "rxdesc[%d]: receive error: "
636 					    "flags1=%s,flags2=%s,len=%d\n",
637 					    idx, flags1buf, flags2buf, amount);
638 				}
639 #endif /* DEBUG_ENET */
640 				ifp->if_ierrors++;
641 				m_freem(m0);
642 
643 			} else {
644 				/* packet receive ok */
645 				m_set_rcvif(m0, ifp);
646 				m0->m_pkthdr.len = amount;
647 
648 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
649 				    rxs->rxs_dmamap->dm_mapsize,
650 				    BUS_DMASYNC_PREREAD);
651 
652 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
653 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
654 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
655 					enet_rx_csum(sc, ifp, m0, idx);
656 
657 				if_percpuq_enqueue(ifp->if_percpuq, m0);
658 			}
659 
660 			m0 = NULL;
661 			mprev = NULL;
662 			amount = 0;
663 
664 		} else {
665 			/* continued from previous buffer */
666 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
667 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
668 		}
669 
670 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
671 		if (enet_alloc_rxbuf(sc, idx) != 0) {
672 			panic("enet_alloc_rxbuf NULL\n");
673 		}
674 	}
675 	sc->sc_rx_readidx = idx;
676 
677 	/* re-enable RX DMA to make sure */
678 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
679 
680 	return 1;
681 }
682 
683 static void
684 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
685 {
686 	uint32_t flags2;
687 	uint8_t proto;
688 
689 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
690 
691 	if (flags2 & RXFLAGS2_IPV6) {
692 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
693 
694 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
695 		if ((proto == IPPROTO_TCP) &&
696 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
697 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
698 		else if ((proto == IPPROTO_UDP) &&
699 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
700 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
701 		else
702 			return;
703 
704 		/* IPv6 protocol checksum error */
705 		if (flags2 & RXFLAGS2_PCR)
706 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
707 
708 	} else {
709 		struct ether_header *eh;
710 		uint8_t *ip;
711 
712 		eh = mtod(m, struct ether_header *);
713 
714 		/* XXX: is an IPv4? */
715 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
716 			return;
717 		ip = (uint8_t *)(eh + 1);
718 		if ((ip[0] & 0xf0) == 0x40)
719 			return;
720 
721 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
722 		if (flags2 & RXFLAGS2_ICE) {
723 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
724 				m->m_pkthdr.csum_flags |=
725 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
726 			}
727 		} else {
728 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
729 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
730 			}
731 
732 			/*
733 			 * PCR is valid when
734 			 * ICE == 0 and FRAG == 0
735 			 */
736 			if (flags2 & RXFLAGS2_FRAG)
737 				return;
738 
739 			/*
740 			 * PCR is valid when proto is TCP or UDP
741 			 */
742 			if ((proto == IPPROTO_TCP) &&
743 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
744 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
745 			else if ((proto == IPPROTO_UDP) &&
746 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
747 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
748 			else
749 				return;
750 
751 			/* IPv4 protocol cksum error */
752 			if (flags2 & RXFLAGS2_PCR)
753 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
754 		}
755 	}
756 }
757 
758 static void
759 enet_setmulti(struct enet_softc *sc)
760 {
761 	struct ethercom *ec = &sc->sc_ethercom;
762 	struct ifnet *ifp = &ec->ec_if;
763 	struct ether_multi *enm;
764 	struct ether_multistep step;
765 	int promisc;
766 	uint32_t crc;
767 	uint32_t gaddr[2];
768 
769 	promisc = 0;
770 	if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
771 		ifp->if_flags |= IFF_ALLMULTI;
772 		if (ifp->if_flags & IFF_PROMISC)
773 			promisc = 1;
774 		gaddr[0] = gaddr[1] = 0xffffffff;
775 	} else {
776 		gaddr[0] = gaddr[1] = 0;
777 
778 		ETHER_LOCK(ec);
779 		ETHER_FIRST_MULTI(step, ec, enm);
780 		while (enm != NULL) {
781 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
782 			gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
783 			ETHER_NEXT_MULTI(step, enm);
784 		}
785 		ETHER_UNLOCK(ec);
786 	}
787 
788 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
789 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
790 
791 	if (promisc) {
792 		/* match all packet */
793 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
794 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
795 	} else {
796 		/* don't match any packet */
797 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
798 		ENET_REG_WRITE(sc, ENET_IALR, 0);
799 	}
800 }
801 
802 static void
803 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
804 {
805 	uint32_t paddr;
806 
807 	paddr = ENET_REG_READ(sc, ENET_PALR);
808 	hwaddr[0] = paddr >> 24;
809 	hwaddr[1] = paddr >> 16;
810 	hwaddr[2] = paddr >> 8;
811 	hwaddr[3] = paddr;
812 
813 	paddr = ENET_REG_READ(sc, ENET_PAUR);
814 	hwaddr[4] = paddr >> 24;
815 	hwaddr[5] = paddr >> 16;
816 }
817 
818 static void
819 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
820 {
821 	uint32_t paddr;
822 
823 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
824 	    hwaddr[3];
825 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
826 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
827 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
828 }
829 
830 /*
831  * ifnet interfaces
832  */
833 static int
834 enet_init(struct ifnet *ifp)
835 {
836 	struct enet_softc *sc;
837 	int s, error;
838 
839 	sc = ifp->if_softc;
840 
841 	s = splnet();
842 
843 	enet_init_regs(sc, 0);
844 	enet_init_txring(sc);
845 	error = enet_init_rxring(sc);
846 	if (error != 0) {
847 		enet_drain_rxbuf(sc);
848 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
849 		goto init_failure;
850 	}
851 
852 	/* reload mac address */
853 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
854 	enet_sethwaddr(sc, sc->sc_enaddr);
855 
856 	/* program multicast address */
857 	enet_setmulti(sc);
858 
859 	/* update if_flags */
860 	ifp->if_flags |= IFF_RUNNING;
861 	ifp->if_flags &= ~IFF_OACTIVE;
862 
863 	/* update local copy of if_flags */
864 	sc->sc_if_flags = ifp->if_flags;
865 
866 	/* mii */
867 	mii_mediachg(&sc->sc_mii);
868 
869 	/* enable RX DMA */
870 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
871 
872 	sc->sc_stopping = false;
873 	callout_schedule(&sc->sc_tick_ch, ENET_TICK);
874 
875  init_failure:
876 	splx(s);
877 
878 	return error;
879 }
880 
881 static void
882 enet_start(struct ifnet *ifp)
883 {
884 	struct enet_softc *sc;
885 	struct mbuf *m;
886 	int npkt;
887 
888 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
889 		return;
890 
891 	sc = ifp->if_softc;
892 	for (npkt = 0; ; npkt++) {
893 		IFQ_POLL(&ifp->if_snd, m);
894 		if (m == NULL)
895 			break;
896 
897 		if (sc->sc_tx_free <= 0) {
898 			/* no tx descriptor now... */
899 			ifp->if_flags |= IFF_OACTIVE;
900 			DEVICE_DPRINTF("TX descriptor is full\n");
901 			break;
902 		}
903 
904 		IFQ_DEQUEUE(&ifp->if_snd, m);
905 
906 		if (enet_encap_txring(sc, &m) != 0) {
907 			/* too many mbuf chains? */
908 			ifp->if_flags |= IFF_OACTIVE;
909 			DEVICE_DPRINTF(
910 			    "TX descriptor is full. dropping packet\n");
911 			m_freem(m);
912 			ifp->if_oerrors++;
913 			break;
914 		}
915 
916 		/* Pass the packet to any BPF listeners */
917 		bpf_mtap(ifp, m, BPF_D_OUT);
918 	}
919 
920 	if (npkt) {
921 		/* enable TX DMA */
922 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
923 
924 		ifp->if_timer = 5;
925 	}
926 }
927 
928 static void
929 enet_stop(struct ifnet *ifp, int disable)
930 {
931 	struct enet_softc *sc;
932 	int s;
933 	uint32_t v;
934 
935 	sc = ifp->if_softc;
936 
937 	s = splnet();
938 
939 	sc->sc_stopping = true;
940 	callout_stop(&sc->sc_tick_ch);
941 
942 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
943 	v = ENET_REG_READ(sc, ENET_ECR);
944 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
945 
946 	/* Mark the interface as down and cancel the watchdog timer. */
947 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
948 	ifp->if_timer = 0;
949 
950 	if (disable) {
951 		enet_drain_txbuf(sc);
952 		enet_drain_rxbuf(sc);
953 	}
954 
955 	splx(s);
956 }
957 
958 static void
959 enet_watchdog(struct ifnet *ifp)
960 {
961 	struct enet_softc *sc;
962 	int s;
963 
964 	sc = ifp->if_softc;
965 	s = splnet();
966 
967 	device_printf(sc->sc_dev, "watchdog timeout\n");
968 	ifp->if_oerrors++;
969 
970 	/* salvage packets left in descriptors */
971 	enet_tx_intr(sc);
972 	enet_rx_intr(sc);
973 
974 	/* reset */
975 	enet_stop(ifp, 1);
976 	enet_init(ifp);
977 
978 	splx(s);
979 }
980 
981 static void
982 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
983 {
984 	struct enet_softc *sc = ifp->if_softc;
985 
986 	ether_mediastatus(ifp, ifmr);
987 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
988 	    | sc->sc_flowflags;
989 }
990 
991 static int
992 enet_ifflags_cb(struct ethercom *ec)
993 {
994 	struct ifnet *ifp = &ec->ec_if;
995 	struct enet_softc *sc = ifp->if_softc;
996 	int change = ifp->if_flags ^ sc->sc_if_flags;
997 
998 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
999 		return ENETRESET;
1000 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1001 		return 0;
1002 
1003 	enet_setmulti(sc);
1004 
1005 	sc->sc_if_flags = ifp->if_flags;
1006 	return 0;
1007 }
1008 
1009 static int
1010 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1011 {
1012 	struct enet_softc *sc;
1013 	struct ifreq *ifr;
1014 	int s, error;
1015 	uint32_t v;
1016 
1017 	sc = ifp->if_softc;
1018 	ifr = data;
1019 
1020 	error = 0;
1021 
1022 	s = splnet();
1023 
1024 	switch (command) {
1025 	case SIOCSIFMTU:
1026 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1027 			error = EINVAL;
1028 		} else {
1029 			ifp->if_mtu = ifr->ifr_mtu;
1030 
1031 			/* set maximum frame length */
1032 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
1033 			ENET_REG_WRITE(sc, ENET_FTRL, v);
1034 			v = ENET_REG_READ(sc, ENET_RCR);
1035 			v &= ~ENET_RCR_MAX_FL(0x3fff);
1036 			v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
1037 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1038 			ENET_REG_WRITE(sc, ENET_RCR, v);
1039 		}
1040 		break;
1041 	case SIOCSIFMEDIA:
1042 		/* Flow control requires full-duplex mode. */
1043 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1044 		    (ifr->ifr_media & IFM_FDX) == 0)
1045 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1046 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1047 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1048 				/* We can do both TXPAUSE and RXPAUSE. */
1049 				ifr->ifr_media |=
1050 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1051 			}
1052 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1053 		}
1054 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1055 		break;
1056 	default:
1057 		error = ether_ioctl(ifp, command, data);
1058 		if (error != ENETRESET)
1059 			break;
1060 
1061 		/* post-process */
1062 		error = 0;
1063 		switch (command) {
1064 		case SIOCSIFCAP:
1065 			error = (*ifp->if_init)(ifp);
1066 			break;
1067 		case SIOCADDMULTI:
1068 		case SIOCDELMULTI:
1069 			if (ifp->if_flags & IFF_RUNNING)
1070 				enet_setmulti(sc);
1071 			break;
1072 		}
1073 		break;
1074 	}
1075 
1076 	splx(s);
1077 
1078 	return error;
1079 }
1080 
1081 /*
1082  * for MII
1083  */
1084 static int
1085 enet_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1086 {
1087 	struct enet_softc *sc;
1088 	int timeout;
1089 	uint32_t status;
1090 
1091 	sc = device_private(dev);
1092 
1093 	/* clear MII update */
1094 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1095 
1096 	/* read command */
1097 	ENET_REG_WRITE(sc, ENET_MMFR,
1098 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1099 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1100 
1101 	/* check MII update */
1102 	for (timeout = 5000; timeout > 0; --timeout) {
1103 		status = ENET_REG_READ(sc, ENET_EIR);
1104 		if (status & ENET_EIR_MII)
1105 			break;
1106 	}
1107 	if (timeout <= 0) {
1108 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1109 		    reg);
1110 		return ETIMEDOUT;
1111 	} else
1112 		*val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1113 
1114 	return 0;
1115 }
1116 
1117 static int
1118 enet_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1119 {
1120 	struct enet_softc *sc;
1121 	int timeout;
1122 
1123 	sc = device_private(dev);
1124 
1125 	/* clear MII update */
1126 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1127 
1128 	/* write command */
1129 	ENET_REG_WRITE(sc, ENET_MMFR,
1130 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1131 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1132 	    (ENET_MMFR_DATAMASK & val));
1133 
1134 	/* check MII update */
1135 	for (timeout = 5000; timeout > 0; --timeout) {
1136 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1137 			break;
1138 	}
1139 	if (timeout <= 0) {
1140 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n", reg);
1141 		return ETIMEDOUT;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static void
1148 enet_miibus_statchg(struct ifnet *ifp)
1149 {
1150 	struct enet_softc *sc;
1151 	struct mii_data *mii;
1152 	struct ifmedia_entry *ife;
1153 	uint32_t ecr, ecr0;
1154 	uint32_t rcr, rcr0;
1155 	uint32_t tcr, tcr0;
1156 
1157 	sc = ifp->if_softc;
1158 	mii = &sc->sc_mii;
1159 	ife = mii->mii_media.ifm_cur;
1160 
1161 	/* get current status */
1162 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1163 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1164 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1165 
1166 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1167 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1168 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1169 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1170 	}
1171 
1172 	if ((ife->ifm_media & IFM_FDX) != 0) {
1173 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1174 		rcr &= ~ENET_RCR_DRT;;	/* enable receive on transmit */
1175 	} else {
1176 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1177 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1178 	}
1179 
1180 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1181 		/*
1182 		 * need to reset because
1183 		 * FDEN can change when ECR[ETHEREN] is 0
1184 		 */
1185 		enet_init_regs(sc, 0);
1186 		return;
1187 	}
1188 
1189 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1190 	case IFM_AUTO:
1191 	case IFM_1000_T:
1192 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1193 		rcr &= ~ENET_RCR_RMII_10T;
1194 		break;
1195 	case IFM_100_TX:
1196 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1197 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1198 		break;
1199 	case IFM_10_T:
1200 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1201 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1202 		break;
1203 	default:
1204 		ecr = ecr0;
1205 		rcr = rcr0;
1206 		tcr = tcr0;
1207 		break;
1208 	}
1209 
1210 	if (sc->sc_rgmii == 0)
1211 		ecr &= ~ENET_ECR_SPEED;
1212 
1213 	if (sc->sc_flowflags & IFM_FLOW)
1214 		rcr |= ENET_RCR_FCE;
1215 	else
1216 		rcr &= ~ENET_RCR_FCE;
1217 
1218 	/* update registers if need change */
1219 	if (ecr != ecr0)
1220 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1221 	if (rcr != rcr0)
1222 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1223 	if (tcr != tcr0)
1224 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1225 }
1226 
1227 /*
1228  * handling descriptors
1229  */
1230 static void
1231 enet_init_txring(struct enet_softc *sc)
1232 {
1233 	int i;
1234 
1235 	/* build TX ring */
1236 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1237 		sc->sc_txdesc_ring[i].tx_flags1_len =
1238 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1239 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1240 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1241 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1242 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1243 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1244 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1245 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1246 
1247 		TXDESC_WRITEOUT(i);
1248 	}
1249 
1250 	sc->sc_tx_free = ENET_TX_RING_CNT;
1251 	sc->sc_tx_considx = 0;
1252 	sc->sc_tx_prodidx = 0;
1253 }
1254 
1255 static int
1256 enet_init_rxring(struct enet_softc *sc)
1257 {
1258 	int i, error;
1259 
1260 	/* build RX ring */
1261 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1262 		error = enet_alloc_rxbuf(sc, i);
1263 		if (error != 0)
1264 			return error;
1265 	}
1266 
1267 	sc->sc_rx_readidx = 0;
1268 
1269 	return 0;
1270 }
1271 
1272 static int
1273 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1274 {
1275 	struct mbuf *m;
1276 	int error;
1277 
1278 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1279 
1280 	/* free mbuf if already allocated */
1281 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1282 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1283 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1284 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1285 	}
1286 
1287 	/* allocate new mbuf cluster */
1288 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1289 	if (m == NULL)
1290 		return ENOBUFS;
1291 	MCLGET(m, M_DONTWAIT);
1292 	if (!(m->m_flags & M_EXT)) {
1293 		m_freem(m);
1294 		return ENOBUFS;
1295 	}
1296 	m->m_len = MCLBYTES;
1297 	m->m_next = NULL;
1298 
1299 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1300 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1301 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1302 	if (error) {
1303 		m_freem(m);
1304 		return error;
1305 	}
1306 
1307 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1308 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1309 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1310 
1311 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1312 	enet_reset_rxdesc(sc, idx);
1313 	return 0;
1314 }
1315 
1316 static void
1317 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1318 {
1319 	uint32_t paddr;
1320 
1321 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1322 
1323 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1324 	    RXFLAGS1_E |
1325 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1326 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1327 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1328 	    RXFLAGS2_INT;
1329 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1330 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1331 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1332 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1333 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1334 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1335 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1336 
1337 	RXDESC_WRITEOUT(idx);
1338 }
1339 
1340 static void
1341 enet_drain_txbuf(struct enet_softc *sc)
1342 {
1343 	int idx;
1344 	struct enet_txsoft *txs;
1345 	struct ifnet *ifp;
1346 
1347 	ifp = &sc->sc_ethercom.ec_if;
1348 
1349 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1350 	    idx = ENET_TX_NEXTIDX(idx)) {
1351 
1352 		/* txsoft[] is used only first segment */
1353 		txs = &sc->sc_txsoft[idx];
1354 		TXDESC_READIN(idx);
1355 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1356 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1357 			bus_dmamap_unload(sc->sc_dmat,
1358 			    txs->txs_dmamap);
1359 			m_freem(txs->txs_mbuf);
1360 
1361 			ifp->if_oerrors++;
1362 		}
1363 		sc->sc_tx_free++;
1364 	}
1365 }
1366 
1367 static void
1368 enet_drain_rxbuf(struct enet_softc *sc)
1369 {
1370 	int i;
1371 
1372 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1373 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1374 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1375 			bus_dmamap_unload(sc->sc_dmat,
1376 			    sc->sc_rxsoft[i].rxs_dmamap);
1377 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1378 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1379 		}
1380 	}
1381 }
1382 
1383 static int
1384 enet_alloc_ring(struct enet_softc *sc)
1385 {
1386 	int i, error;
1387 
1388 	/*
1389 	 * build DMA maps for TX.
1390 	 * TX descriptor must be able to contain mbuf chains,
1391 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1392 	 */
1393 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1394 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1395 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1396 		    &sc->sc_txsoft[i].txs_dmamap);
1397 
1398 		if (error) {
1399 			aprint_error_dev(sc->sc_dev,
1400 			    "can't create DMA map for TX descs\n");
1401 			goto fail_1;
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * build DMA maps for RX.
1407 	 * RX descripter contains An mbuf cluster,
1408 	 * and make up a dmamap.
1409 	 */
1410 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1411 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1412 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1413 		    &sc->sc_rxsoft[i].rxs_dmamap);
1414 		if (error) {
1415 			aprint_error_dev(sc->sc_dev,
1416 			    "can't create DMA map for RX descs\n");
1417 			goto fail_2;
1418 		}
1419 	}
1420 
1421 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1422 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1423 		return -1;
1424 	memset(sc->sc_txdesc_ring, 0,
1425 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1426 
1427 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1428 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1429 		return -1;
1430 	memset(sc->sc_rxdesc_ring, 0,
1431 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1432 
1433 	return 0;
1434 
1435  fail_2:
1436 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1437 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1438 			bus_dmamap_destroy(sc->sc_dmat,
1439 			    sc->sc_rxsoft[i].rxs_dmamap);
1440 	}
1441  fail_1:
1442 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1443 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1444 			bus_dmamap_destroy(sc->sc_dmat,
1445 			    sc->sc_txsoft[i].txs_dmamap);
1446 	}
1447 	return error;
1448 }
1449 
1450 static int
1451 enet_encap_mbufalign(struct mbuf **mp)
1452 {
1453 	struct mbuf *m, *m0, *mt, *p, *x;
1454 	void *ap;
1455 	uint32_t alignoff, chiplen;
1456 
1457 	/*
1458 	 * iMX6 SoC ethernet controller requires
1459 	 * address of buffer must aligned 8, and
1460 	 * length of buffer must be greater than 10 (first fragment only?)
1461 	 */
1462 #define ALIGNBYTE	8
1463 #define MINBUFSIZE	10
1464 #define ALIGN_PTR(p, align)	\
1465 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1466 
1467 	m0 = *mp;
1468 	mt = p = NULL;
1469 	for (m = m0; m != NULL; m = m->m_next) {
1470 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1471 		if (m->m_len < (ALIGNBYTE * 2)) {
1472 			/*
1473 			 * rearrange mbuf data aligned
1474 			 *
1475 			 *        align 8 *       *       *       *       *
1476 			 *               +0123456789abcdef0123456789abcdef0
1477 			 * FROM m->m_data[___________abcdefghijklmn_______]
1478 			 *
1479 			 *               +0123456789abcdef0123456789abcdef0
1480 			 * TO   m->m_data[________abcdefghijklm___________] or
1481 			 *      m->m_data[________________abcdefghijklmn__]
1482 			 */
1483 			if ((alignoff != 0) && (m->m_len != 0)) {
1484 				chiplen = ALIGNBYTE - alignoff;
1485 				if (M_LEADINGSPACE(m) >= alignoff) {
1486 					ap = m->m_data - alignoff;
1487 					memmove(ap, m->m_data, m->m_len);
1488 					m->m_data = ap;
1489 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1490 					ap = m->m_data + chiplen;
1491 					memmove(ap, m->m_data, m->m_len);
1492 					m->m_data = ap;
1493 				} else {
1494 					/*
1495 					 * no space to align data. (M_READONLY?)
1496 					 * allocate new mbuf aligned,
1497 					 * and copy to it.
1498 					 */
1499 					MGET(x, M_DONTWAIT, m->m_type);
1500 					if (x == NULL) {
1501 						m_freem(m);
1502 						return ENOBUFS;
1503 					}
1504 					MCLAIM(x, m->m_owner);
1505 					if (m->m_flags & M_PKTHDR)
1506 						m_move_pkthdr(x, m);
1507 					x->m_len = m->m_len;
1508 					x->m_data = ALIGN_PTR(x->m_data,
1509 					    ALIGNBYTE);
1510 					memcpy(mtod(x, void *), mtod(m, void *),
1511 					    m->m_len);
1512 					p->m_next = x;
1513 					x->m_next = m_free(m);
1514 					m = x;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * fill 1st mbuf at least 10byte
1520 			 *
1521 			 *        align 8 *       *       *       *       *
1522 			 *               +0123456789abcdef0123456789abcdef0
1523 			 * FROM m->m_data[________abcde___________________]
1524 			 *      m->m_data[__fg____________________________]
1525 			 *      m->m_data[_________________hi_____________]
1526 			 *      m->m_data[__________jk____________________]
1527 			 *      m->m_data[____l___________________________]
1528 			 *
1529 			 *               +0123456789abcdef0123456789abcdef0
1530 			 * TO   m->m_data[________abcdefghij______________]
1531 			 *      m->m_data[________________________________]
1532 			 *      m->m_data[________________________________]
1533 			 *      m->m_data[___________k____________________]
1534 			 *      m->m_data[____l___________________________]
1535 			 */
1536 			if (mt == NULL) {
1537 				mt = m;
1538 				while (mt->m_len == 0) {
1539 					mt = mt->m_next;
1540 					if (mt == NULL) {
1541 						m_freem(m);
1542 						return ENOBUFS;
1543 					}
1544 				}
1545 
1546 				/* mt = 1st mbuf, x = 2nd mbuf */
1547 				x = mt->m_next;
1548 				while (mt->m_len < MINBUFSIZE) {
1549 					if (x == NULL) {
1550 						m_freem(m);
1551 						return ENOBUFS;
1552 					}
1553 
1554 					alignoff = (uintptr_t)x->m_data &
1555 					    (ALIGNBYTE - 1);
1556 					chiplen = ALIGNBYTE - alignoff;
1557 					if (chiplen > x->m_len) {
1558 						chiplen = x->m_len;
1559 					} else if ((mt->m_len + chiplen) <
1560 					    MINBUFSIZE) {
1561 						/*
1562 						 * next mbuf should be greater
1563 						 * than ALIGNBYTE?
1564 						 */
1565 						if (x->m_len >= (chiplen +
1566 						    ALIGNBYTE * 2))
1567 							chiplen += ALIGNBYTE;
1568 						else
1569 							chiplen = x->m_len;
1570 					}
1571 
1572 					if (chiplen &&
1573 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1574 						/*
1575 						 * move data to the begining of
1576 						 * m_dat[] (aligned) to en-
1577 						 * large trailingspace
1578 						 */
1579 						if (mt->m_flags & M_EXT) {
1580 							ap = mt->m_ext.ext_buf;
1581 						} else if (mt->m_flags &
1582 						    M_PKTHDR) {
1583 							ap = mt->m_pktdat;
1584 						} else {
1585 							ap = mt->m_dat;
1586 						}
1587 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1588 						memcpy(ap, mt->m_data,
1589 						    mt->m_len);
1590 						mt->m_data = ap;
1591 					}
1592 
1593 					if (chiplen &&
1594 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1595 						memcpy(mt->m_data + mt->m_len,
1596 						    x->m_data, chiplen);
1597 						mt->m_len += chiplen;
1598 						m_adj(x, chiplen);
1599 					}
1600 
1601 					x = x->m_next;
1602 				}
1603 			}
1604 
1605 		} else {
1606 			mt = m;
1607 
1608 			/*
1609 			 * allocate new mbuf x, and rearrange as below;
1610 			 *
1611 			 *        align 8 *       *       *       *       *
1612 			 *               +0123456789abcdef0123456789abcdef0
1613 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1614 			 *
1615 			 *               +0123456789abcdef0123456789abcdef0
1616 			 * TO   x->m_data[________abcdefghijkl____________]
1617 			 *      m->m_data[________________________mnopq___]
1618 			 *
1619 			 */
1620 			if (alignoff != 0) {
1621 				/* at least ALIGNBYTE */
1622 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1623 
1624 				MGET(x, M_DONTWAIT, m->m_type);
1625 				if (x == NULL) {
1626 					m_freem(m);
1627 					return ENOBUFS;
1628 				}
1629 				MCLAIM(x, m->m_owner);
1630 				if (m->m_flags & M_PKTHDR)
1631 					m_move_pkthdr(x, m);
1632 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1633 				memcpy(mtod(x, void *), mtod(m, void *),
1634 				    chiplen);
1635 				x->m_len = chiplen;
1636 				x->m_next = m;
1637 				m_adj(m, chiplen);
1638 
1639 				if (p == NULL)
1640 					m0 = x;
1641 				else
1642 					p->m_next = x;
1643 			}
1644 		}
1645 		p = m;
1646 	}
1647 	*mp = m0;
1648 
1649 	return 0;
1650 }
1651 
1652 static int
1653 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1654 {
1655 	bus_dmamap_t map;
1656 	struct mbuf *m;
1657 	int csumflags, idx, i, error;
1658 	uint32_t flags1, flags2;
1659 
1660 	idx = sc->sc_tx_prodidx;
1661 	map = sc->sc_txsoft[idx].txs_dmamap;
1662 
1663 	/* align mbuf data for claim of ENET */
1664 	error = enet_encap_mbufalign(mp);
1665 	if (error != 0)
1666 		return error;
1667 
1668 	m = *mp;
1669 	csumflags = m->m_pkthdr.csum_flags;
1670 
1671 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1672 	    BUS_DMA_NOWAIT);
1673 	if (error != 0) {
1674 		device_printf(sc->sc_dev,
1675 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1676 		m_freem(m);
1677 		return error;
1678 	}
1679 
1680 	if (map->dm_nsegs > sc->sc_tx_free) {
1681 		bus_dmamap_unload(sc->sc_dmat, map);
1682 		device_printf(sc->sc_dev,
1683 		    "too many mbuf chain %d\n", map->dm_nsegs);
1684 		m_freem(m);
1685 		return ENOBUFS;
1686 	}
1687 
1688 	/* fill protocol cksum zero beforehand */
1689 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1690 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1691 		int ehlen;
1692 		uint16_t etype;
1693 
1694 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1695 		switch (ntohs(etype)) {
1696 		case ETHERTYPE_IP:
1697 		case ETHERTYPE_IPV6:
1698 			ehlen = ETHER_HDR_LEN;
1699 			break;
1700 		case ETHERTYPE_VLAN:
1701 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1702 			break;
1703 		default:
1704 			ehlen = 0;
1705 			break;
1706 		}
1707 
1708 		if (ehlen) {
1709 			const int off =
1710 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1711 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1712 			if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1713 				uint16_t zero = 0;
1714 				m_copyback(m, ehlen + off, sizeof(zero), &zero);
1715 			}
1716 		}
1717 	}
1718 
1719 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1720 	    BUS_DMASYNC_PREWRITE);
1721 
1722 	for (i = 0; i < map->dm_nsegs; i++) {
1723 		flags1 = TXFLAGS1_R;
1724 		flags2 = 0;
1725 
1726 		if (i == 0) {
1727 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1728 			sc->sc_txsoft[idx].txs_mbuf = m;
1729 		}
1730 
1731 		/* checksum offloading */
1732 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1733 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1734 			flags2 |= TXFLAGS2_PINS;
1735 		if (csumflags & (M_CSUM_IPv4))
1736 			flags2 |= TXFLAGS2_IINS;
1737 
1738 		if (i == map->dm_nsegs - 1) {
1739 			/* mark last segment */
1740 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1741 			flags2 |= TXFLAGS2_INT;
1742 		}
1743 		if (idx == ENET_TX_RING_CNT - 1) {
1744 			/* mark end of ring */
1745 			flags1 |= TXFLAGS1_W;
1746 		}
1747 
1748 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1749 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1750 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1751 		TXDESC_WRITEOUT(idx);
1752 
1753 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1754 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1755 		TXDESC_WRITEOUT(idx);
1756 
1757 		idx = ENET_TX_NEXTIDX(idx);
1758 		sc->sc_tx_free--;
1759 	}
1760 
1761 	sc->sc_tx_prodidx = idx;
1762 
1763 	return 0;
1764 }
1765 
1766 /*
1767  * device initialize
1768  */
1769 static int
1770 enet_init_regs(struct enet_softc *sc, int init)
1771 {
1772 	struct mii_data *mii;
1773 	struct ifmedia_entry *ife;
1774 	paddr_t paddr;
1775 	uint32_t val;
1776 	int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1777 
1778 	if (init) {
1779 		fulldup = 1;
1780 		ecr_speed = ENET_ECR_SPEED;
1781 		rcr_speed = 0;
1782 		flowctrl = 0;
1783 	} else {
1784 		mii = &sc->sc_mii;
1785 		ife = mii->mii_media.ifm_cur;
1786 
1787 		if ((ife->ifm_media & IFM_FDX) != 0)
1788 			fulldup = 1;
1789 		else
1790 			fulldup = 0;
1791 
1792 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1793 		case IFM_10_T:
1794 			ecr_speed = 0;
1795 			rcr_speed = ENET_RCR_RMII_10T;
1796 			break;
1797 		case IFM_100_TX:
1798 			ecr_speed = 0;
1799 			rcr_speed = 0;
1800 			break;
1801 		default:
1802 			ecr_speed = ENET_ECR_SPEED;
1803 			rcr_speed = 0;
1804 			break;
1805 		}
1806 
1807 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1808 	}
1809 
1810 	if (sc->sc_rgmii == 0)
1811 		ecr_speed = 0;
1812 
1813 	/* reset */
1814 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1815 
1816 	/* mask and clear all interrupt */
1817 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1818 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1819 
1820 	/* full duplex */
1821 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1822 
1823 	/* clear and enable MIB register */
1824 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1825 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1826 
1827 	/* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1828 	val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1829 	ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1830 
1831 	/* Opcode/Pause Duration */
1832 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1833 
1834 	/* Receive FIFO */
1835 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1836 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1837 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1838 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1839 
1840 	/* Transmit FIFO */
1841 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1842 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1843 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1844 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1845 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1846 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1847 
1848 	/* hardware checksum is default off (override in TX descripter) */
1849 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1850 
1851 	/*
1852 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1853 	 * and don't discard checksum error
1854 	 */
1855 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1856 
1857 	/* maximum frame size */
1858 	val = ENET_DEFAULT_PKT_LEN;
1859 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1860 
1861 	if (sc->sc_rgmii == 0)
1862 		miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1863 	else
1864 		miimode = ENET_RCR_RGMII_EN;
1865 	ENET_REG_WRITE(sc, ENET_RCR,
1866 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1867 	    miimode |
1868 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1869 	    rcr_speed |
1870 	    (fulldup ? 0 : ENET_RCR_DRT) |
1871 	    ENET_RCR_MAX_FL(val));
1872 
1873 	/* Maximum Receive BufSize per one descriptor */
1874 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1875 
1876 
1877 	/* TX/RX Descriptor Physical Address */
1878 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1879 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1880 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1881 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1882 	/* sync cache */
1883 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1884 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1885 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1886 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1887 
1888 	/* enable interrupts */
1889 	val = ENET_EIMR | ENET_EIR_TXF | ENET_EIR_RXF | ENET_EIR_EBERR;
1890 	if (sc->sc_imxtype == 7)
1891 		val |= ENET_EIR_TXF2 | ENET_EIR_RXF2 | ENET_EIR_TXF1 |
1892 		    ENET_EIR_RXF1;
1893 	ENET_REG_WRITE(sc, ENET_EIMR, val);
1894 
1895 	/* enable ether */
1896 	ENET_REG_WRITE(sc, ENET_ECR,
1897 #if _BYTE_ORDER == _LITTLE_ENDIAN
1898 	    ENET_ECR_DBSWP |
1899 #endif
1900 	    ecr_speed |
1901 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
1902 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
1903 
1904 	return 0;
1905 }
1906 
1907 static int
1908 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1909     bus_dmamap_t *mapp)
1910 {
1911 	bus_dma_segment_t seglist[1];
1912 	int nsegs, error;
1913 
1914 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1915 	    1, &nsegs, M_NOWAIT)) != 0) {
1916 		device_printf(sc->sc_dev,
1917 		    "unable to allocate DMA buffer, error=%d\n", error);
1918 		goto fail_alloc;
1919 	}
1920 
1921 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1922 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1923 		device_printf(sc->sc_dev,
1924 		    "unable to map DMA buffer, error=%d\n",
1925 		    error);
1926 		goto fail_map;
1927 	}
1928 
1929 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1930 	    BUS_DMA_NOWAIT, mapp)) != 0) {
1931 		device_printf(sc->sc_dev,
1932 		    "unable to create DMA map, error=%d\n", error);
1933 		goto fail_create;
1934 	}
1935 
1936 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1937 	    BUS_DMA_NOWAIT)) != 0) {
1938 		aprint_error_dev(sc->sc_dev,
1939 		    "unable to load DMA map, error=%d\n", error);
1940 		goto fail_load;
1941 	}
1942 
1943 	return 0;
1944 
1945  fail_load:
1946 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
1947  fail_create:
1948 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1949  fail_map:
1950 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
1951  fail_alloc:
1952 	return error;
1953 }
1954