xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: if_enet.c,v 1.8 2016/06/15 07:26:11 ryo Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu <ryo@nerv.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.8 2016/06/15 07:26:11 ryo Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45 
46 #include <lib/libkern/libkern.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64 
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67 
68 #define ENET_TICK	hz
69 
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...)	\
73 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77 
78 
79 #define RXDESC_MAXBUFSIZE	0x07f0
80 				/* ENET does not work greather than 0x0800... */
81 
82 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN	1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
89 #define MTU2FRAMESIZE(n)	\
90 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91 
92 
93 #define ENET_MAX_PKT_NSEGS	64
94 
95 #define ENET_TX_NEXTIDX(idx)	(((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
96 #define ENET_RX_NEXTIDX(idx)	(((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 
98 #define TXDESC_WRITEOUT(idx)					\
99 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
100 	    sizeof(struct enet_txdesc) * (idx),			\
101 	    sizeof(struct enet_txdesc),				\
102 	    BUS_DMASYNC_PREWRITE)
103 
104 #define TXDESC_READIN(idx)					\
105 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
106 	    sizeof(struct enet_txdesc) * (idx),			\
107 	    sizeof(struct enet_txdesc),				\
108 	    BUS_DMASYNC_PREREAD)
109 
110 #define RXDESC_WRITEOUT(idx)					\
111 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
112 	    sizeof(struct enet_rxdesc) * (idx),			\
113 	    sizeof(struct enet_rxdesc),				\
114 	    BUS_DMASYNC_PREWRITE)
115 
116 #define RXDESC_READIN(idx)					\
117 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
118 	    sizeof(struct enet_rxdesc) * (idx),			\
119 	    sizeof(struct enet_rxdesc),				\
120 	    BUS_DMASYNC_PREREAD)
121 
122 #define ENET_REG_READ(sc, reg)					\
123 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
124 
125 #define ENET_REG_WRITE(sc, reg, value)				\
126 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
127 
128 #ifdef ENET_EVENT_COUNTER
129 static void enet_attach_evcnt(struct enet_softc *);
130 static void enet_update_evcnt(struct enet_softc *);
131 #endif
132 
133 static int enet_intr(void *);
134 static void enet_tick(void *);
135 static int enet_tx_intr(void *);
136 static int enet_rx_intr(void *);
137 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
138                          int);
139 
140 static void enet_start(struct ifnet *);
141 static int enet_ifflags_cb(struct ethercom *);
142 static int enet_ioctl(struct ifnet *, u_long, void *);
143 static int enet_init(struct ifnet *);
144 static void enet_stop(struct ifnet *, int);
145 static void enet_watchdog(struct ifnet *);
146 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
147 
148 static int enet_miibus_readreg(device_t, int, int);
149 static void enet_miibus_writereg(device_t, int, int, int);
150 static void enet_miibus_statchg(struct ifnet *);
151 
152 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
153 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_setmulti(struct enet_softc *);
155 static int enet_encap_mbufalign(struct mbuf **);
156 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
157 static int enet_init_regs(struct enet_softc *, int);
158 static int enet_alloc_ring(struct enet_softc *);
159 static void enet_init_txring(struct enet_softc *);
160 static int enet_init_rxring(struct enet_softc *);
161 static void enet_reset_rxdesc(struct enet_softc *, int);
162 static int enet_alloc_rxbuf(struct enet_softc *, int);
163 static void enet_drain_txbuf(struct enet_softc *);
164 static void enet_drain_rxbuf(struct enet_softc *);
165 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
166                           bus_dmamap_t *);
167 
168 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
169     enet_match, enet_attach, NULL, NULL);
170 
171 void
172 enet_attach_common(device_t self, bus_space_tag_t iot,
173     bus_dma_tag_t dmat, bus_addr_t addr, bus_size_t size, int irq)
174 {
175 	struct enet_softc *sc;
176 	struct ifnet *ifp;
177 
178 	sc = device_private(self);
179 	sc->sc_dev = self;
180 	sc->sc_iot = iot;
181 	sc->sc_addr = addr;
182 	sc->sc_dmat = dmat;
183 
184 	aprint_naive("\n");
185 	aprint_normal(": Gigabit Ethernet Controller\n");
186 	if (bus_space_map(sc->sc_iot, sc->sc_addr, size, 0,
187 	    &sc->sc_ioh)) {
188 		aprint_error_dev(self, "cannot map registers\n");
189 		return;
190 	}
191 
192 	/* allocate dma buffer */
193 	if (enet_alloc_ring(sc))
194 		return;
195 
196 #define IS_ENADDR_ZERO(enaddr)				\
197 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
198 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
199 
200 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
201 		/* by any chance, mac-address is already set by bootloader? */
202 		enet_gethwaddr(sc, sc->sc_enaddr);
203 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
204 			/* give up. set randomly */
205 			uint32_t eaddr = random();
206 			/* not multicast */
207 			sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
208 			sc->sc_enaddr[1] = eaddr >> 16;
209 			sc->sc_enaddr[2] = eaddr >> 8;
210 			sc->sc_enaddr[3] = eaddr;
211 			eaddr = random();
212 			sc->sc_enaddr[4] = eaddr >> 8;
213 			sc->sc_enaddr[5] = eaddr;
214 
215 			aprint_error_dev(self,
216 			    "cannot get mac address. set randomly\n");
217 		}
218 	}
219 	enet_sethwaddr(sc, sc->sc_enaddr);
220 
221 	aprint_normal_dev(self, "Ethernet address %s\n",
222 	    ether_sprintf(sc->sc_enaddr));
223 
224 	enet_init_regs(sc, 1);
225 
226 	/* setup interrupt handlers */
227 	if ((sc->sc_ih = intr_establish(irq, IPL_NET,
228 	    IST_LEVEL, enet_intr, sc)) == NULL) {
229 		aprint_error_dev(self, "unable to establish interrupt\n");
230 		goto failure;
231 	}
232 
233 	if (sc->sc_imxtype == 7) {
234 		/* i.MX7 use 3 interrupts */
235 		if ((sc->sc_ih2 = intr_establish(irq + 1, IPL_NET,
236 		    IST_LEVEL, enet_intr, sc)) == NULL) {
237 			aprint_error_dev(self, "unable to establish 2nd interrupt\n");
238 			intr_disestablish(sc->sc_ih);
239 			goto failure;
240 		}
241 		if ((sc->sc_ih3 = intr_establish(irq + 2, IPL_NET,
242 		    IST_LEVEL, enet_intr, sc)) == NULL) {
243 			aprint_error_dev(self, "unable to establish 3rd interrupt\n");
244 			intr_disestablish(sc->sc_ih2);
245 			intr_disestablish(sc->sc_ih);
246 			goto failure;
247 		}
248 	}
249 
250 	/* callout will be scheduled from enet_init() */
251 	callout_init(&sc->sc_tick_ch, 0);
252 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
253 
254 	/* setup ifp */
255 	ifp = &sc->sc_ethercom.ec_if;
256 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
257 	ifp->if_softc = sc;
258 	ifp->if_mtu = ETHERMTU;
259 	ifp->if_baudrate = IF_Gbps(1);
260 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
261 	ifp->if_ioctl = enet_ioctl;
262 	ifp->if_start = enet_start;
263 	ifp->if_init = enet_init;
264 	ifp->if_stop = enet_stop;
265 	ifp->if_watchdog = enet_watchdog;
266 
267 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
268 #ifdef ENET_SUPPORT_JUMBO
269 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
270 #endif
271 
272 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
273 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
274 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
275 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
276 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
277 
278 	IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
279 	IFQ_SET_READY(&ifp->if_snd);
280 
281 	/* setup MII */
282 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
283 	sc->sc_mii.mii_ifp = ifp;
284 	sc->sc_mii.mii_readreg = enet_miibus_readreg;
285 	sc->sc_mii.mii_writereg = enet_miibus_writereg;
286 	sc->sc_mii.mii_statchg = enet_miibus_statchg;
287 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
288 	    enet_mediastatus);
289 
290 	/* try to attach PHY */
291 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
292 	    MII_OFFSET_ANY, 0);
293 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
294 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
295 		    0, NULL);
296 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
297 	} else {
298 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
299 	}
300 
301 	if_attach(ifp);
302 	ether_ifattach(ifp, sc->sc_enaddr);
303 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
304 
305 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
306 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
307 
308 #ifdef ENET_EVENT_COUNTER
309 	enet_attach_evcnt(sc);
310 #endif
311 
312 	sc->sc_stopping = false;
313 
314 	return;
315 
316  failure:
317 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, size);
318 	return;
319 }
320 
321 #ifdef ENET_EVENT_COUNTER
322 static void
323 enet_attach_evcnt(struct enet_softc *sc)
324 {
325 	const char *xname;
326 
327 	xname = device_xname(sc->sc_dev);
328 
329 #define ENET_EVCNT_ATTACH(name)	\
330 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
331 	    NULL, xname, #name);
332 
333 	ENET_EVCNT_ATTACH(t_drop);
334 	ENET_EVCNT_ATTACH(t_packets);
335 	ENET_EVCNT_ATTACH(t_bc_pkt);
336 	ENET_EVCNT_ATTACH(t_mc_pkt);
337 	ENET_EVCNT_ATTACH(t_crc_align);
338 	ENET_EVCNT_ATTACH(t_undersize);
339 	ENET_EVCNT_ATTACH(t_oversize);
340 	ENET_EVCNT_ATTACH(t_frag);
341 	ENET_EVCNT_ATTACH(t_jab);
342 	ENET_EVCNT_ATTACH(t_col);
343 	ENET_EVCNT_ATTACH(t_p64);
344 	ENET_EVCNT_ATTACH(t_p65to127n);
345 	ENET_EVCNT_ATTACH(t_p128to255n);
346 	ENET_EVCNT_ATTACH(t_p256to511);
347 	ENET_EVCNT_ATTACH(t_p512to1023);
348 	ENET_EVCNT_ATTACH(t_p1024to2047);
349 	ENET_EVCNT_ATTACH(t_p_gte2048);
350 	ENET_EVCNT_ATTACH(t_octets);
351 	ENET_EVCNT_ATTACH(r_packets);
352 	ENET_EVCNT_ATTACH(r_bc_pkt);
353 	ENET_EVCNT_ATTACH(r_mc_pkt);
354 	ENET_EVCNT_ATTACH(r_crc_align);
355 	ENET_EVCNT_ATTACH(r_undersize);
356 	ENET_EVCNT_ATTACH(r_oversize);
357 	ENET_EVCNT_ATTACH(r_frag);
358 	ENET_EVCNT_ATTACH(r_jab);
359 	ENET_EVCNT_ATTACH(r_p64);
360 	ENET_EVCNT_ATTACH(r_p65to127);
361 	ENET_EVCNT_ATTACH(r_p128to255);
362 	ENET_EVCNT_ATTACH(r_p256to511);
363 	ENET_EVCNT_ATTACH(r_p512to1023);
364 	ENET_EVCNT_ATTACH(r_p1024to2047);
365 	ENET_EVCNT_ATTACH(r_p_gte2048);
366 	ENET_EVCNT_ATTACH(r_octets);
367 }
368 
369 static void
370 enet_update_evcnt(struct enet_softc *sc)
371 {
372 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
373 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
374 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
375 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
376 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
377 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
378 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
379 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
380 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
381 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
382 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
383 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
384 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
385 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
386 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
387 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
388 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
389 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
390 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
391 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
392 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
393 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
394 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
395 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
396 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
397 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
398 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
399 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
400 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
401 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
402 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
403 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
404 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
405 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
406 }
407 #endif /* ENET_EVENT_COUNTER */
408 
409 static void
410 enet_tick(void *arg)
411 {
412 	struct enet_softc *sc;
413 	struct mii_data *mii;
414 	struct ifnet *ifp;
415 	int s;
416 
417 	sc = arg;
418 	mii = &sc->sc_mii;
419 	ifp = &sc->sc_ethercom.ec_if;
420 
421 	s = splnet();
422 
423 	if (sc->sc_stopping)
424 		goto out;
425 
426 #ifdef ENET_EVENT_COUNTER
427 	enet_update_evcnt(sc);
428 #endif
429 
430 	/* update counters */
431 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
432 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
433 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
434 
435 	/* clear counters */
436 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
437 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
438 
439 	mii_tick(mii);
440  out:
441 
442 	if (!sc->sc_stopping)
443 		callout_schedule(&sc->sc_tick_ch, ENET_TICK);
444 
445 	splx(s);
446 }
447 
448 static int
449 enet_intr(void *arg)
450 {
451 	struct enet_softc *sc;
452 	struct ifnet *ifp;
453 	uint32_t status;
454 
455 	sc = arg;
456 	status = ENET_REG_READ(sc, ENET_EIR);
457 
458 	if (sc->sc_imxtype == 7) {
459 		if (status & (ENET_EIR_TXF|ENET_EIR_TXF1|ENET_EIR_TXF2))
460 			enet_tx_intr(arg);
461 		if (status & (ENET_EIR_RXF|ENET_EIR_RXF1|ENET_EIR_RXF2))
462 			enet_rx_intr(arg);
463 	} else {
464 		if (status & ENET_EIR_TXF)
465 			enet_tx_intr(arg);
466 		if (status & ENET_EIR_RXF)
467 			enet_rx_intr(arg);
468 	}
469 
470 	if (status & ENET_EIR_EBERR) {
471 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
472 		ifp = &sc->sc_ethercom.ec_if;
473 		enet_stop(ifp, 1);
474 		enet_init(ifp);
475 	} else {
476 		ENET_REG_WRITE(sc, ENET_EIR, status);
477 	}
478 
479 	rnd_add_uint32(&sc->sc_rnd_source, status);
480 
481 	return 1;
482 }
483 
484 static int
485 enet_tx_intr(void *arg)
486 {
487 	struct enet_softc *sc;
488 	struct ifnet *ifp;
489 	struct enet_txsoft *txs;
490 	int idx;
491 
492 	sc = (struct enet_softc *)arg;
493 	ifp = &sc->sc_ethercom.ec_if;
494 
495 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
496 	    idx = ENET_TX_NEXTIDX(idx)) {
497 
498 		txs = &sc->sc_txsoft[idx];
499 
500 		TXDESC_READIN(idx);
501 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
502 			/* This TX Descriptor has not been transmitted yet */
503 			break;
504 		}
505 
506 		/* txsoft is available on first segment (TXFLAGS1_T1) */
507 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
508 			bus_dmamap_unload(sc->sc_dmat,
509 			    txs->txs_dmamap);
510 			m_freem(txs->txs_mbuf);
511 			ifp->if_opackets++;
512 		}
513 
514 		/* checking error */
515 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
516 			uint32_t flags2;
517 
518 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
519 
520 			if (flags2 & (TXFLAGS2_TXE |
521 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
522 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
523 #ifdef DEBUG_ENET
524 				if (enet_debug) {
525 					char flagsbuf[128];
526 
527 					snprintb(flagsbuf, sizeof(flagsbuf),
528 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
529 					    "\15COLLISION" "\14FRAME"
530 					    "\13LATECOLLISION" "\12OVERFLOW",
531 					    flags2);
532 
533 					device_printf(sc->sc_dev,
534 					    "txdesc[%d]: transmit error: "
535 					    "flags2=%s\n", idx, flagsbuf);
536 				}
537 #endif /* DEBUG_ENET */
538 				ifp->if_oerrors++;
539 			}
540 		}
541 
542 		sc->sc_tx_free++;
543 	}
544 	sc->sc_tx_considx = idx;
545 
546 	if (sc->sc_tx_free > 0)
547 		ifp->if_flags &= ~IFF_OACTIVE;
548 
549 	/*
550 	 * No more pending TX descriptor,
551 	 * cancel the watchdog timer.
552 	 */
553 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
554 		ifp->if_timer = 0;
555 
556 	return 1;
557 }
558 
559 static int
560 enet_rx_intr(void *arg)
561 {
562 	struct enet_softc *sc;
563 	struct ifnet *ifp;
564 	struct enet_rxsoft *rxs;
565 	int idx, len, amount;
566 	uint32_t flags1, flags2;
567 	struct mbuf *m, *m0, *mprev;
568 
569 	sc = arg;
570 	ifp = &sc->sc_ethercom.ec_if;
571 
572 	m0 = mprev = NULL;
573 	amount = 0;
574 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
575 
576 		rxs = &sc->sc_rxsoft[idx];
577 
578 		RXDESC_READIN(idx);
579 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
580 			/* This RX Descriptor has not been received yet */
581 			break;
582 		}
583 
584 		/*
585 		 * build mbuf from RX Descriptor if needed
586 		 */
587 		m = rxs->rxs_mbuf;
588 		rxs->rxs_mbuf = NULL;
589 
590 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
591 		len = RXFLAGS1_LEN(flags1);
592 
593 #define RACC_SHIFT16	2
594 		if (m0 == NULL) {
595 			m0 = m;
596 			m_adj(m0, RACC_SHIFT16);
597 			len -= RACC_SHIFT16;
598 			m->m_len = len;
599 			amount = len;
600 		} else {
601 			if (flags1 & RXFLAGS1_L)
602 				len = len - amount - RACC_SHIFT16;
603 
604 			m->m_len = len;
605 			amount += len;
606 			m->m_flags &= ~M_PKTHDR;
607 			mprev->m_next = m;
608 		}
609 		mprev = m;
610 
611 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
612 
613 		if (flags1 & RXFLAGS1_L) {
614 			/* last buffer */
615 			if ((amount < ETHER_HDR_LEN) ||
616 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
617 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
618 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
619 			    RXFLAGS2_CE)))) {
620 
621 #ifdef DEBUG_ENET
622 				if (enet_debug) {
623 					char flags1buf[128], flags2buf[128];
624 					snprintb(flags1buf, sizeof(flags1buf),
625 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
626 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
627 					    "\21TRUNCATED", flags1);
628 					snprintb(flags2buf, sizeof(flags2buf),
629 					    "\20" "\40MAC" "\33PHY"
630 					    "\32COLLISION", flags2);
631 
632 					DEVICE_DPRINTF(
633 					    "rxdesc[%d]: receive error: "
634 					    "flags1=%s,flags2=%s,len=%d\n",
635 					    idx, flags1buf, flags2buf, amount);
636 				}
637 #endif /* DEBUG_ENET */
638 				ifp->if_ierrors++;
639 				m_freem(m0);
640 
641 			} else {
642 				/* packet receive ok */
643 				ifp->if_ipackets++;
644 				m_set_rcvif(m0, ifp);
645 				m0->m_pkthdr.len = amount;
646 
647 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
648 				    rxs->rxs_dmamap->dm_mapsize,
649 				    BUS_DMASYNC_PREREAD);
650 
651 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
652 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
653 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
654 					enet_rx_csum(sc, ifp, m0, idx);
655 
656 				/* Pass this up to any BPF listeners */
657 				bpf_mtap(ifp, m0);
658 
659 				if_percpuq_enqueue(ifp->if_percpuq, m0);
660 			}
661 
662 			m0 = NULL;
663 			mprev = NULL;
664 			amount = 0;
665 
666 		} else {
667 			/* continued from previous buffer */
668 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
669 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
670 		}
671 
672 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
673 		if (enet_alloc_rxbuf(sc, idx) != 0) {
674 			panic("enet_alloc_rxbuf NULL\n");
675 		}
676 	}
677 	sc->sc_rx_readidx = idx;
678 
679 	/* re-enable RX DMA to make sure */
680 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
681 
682 	return 1;
683 }
684 
685 static void
686 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
687 {
688 	uint32_t flags2;
689 	uint8_t proto;
690 
691 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
692 
693 	if (flags2 & RXFLAGS2_IPV6) {
694 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
695 
696 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
697 		if ((proto == IPPROTO_TCP) &&
698 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
699 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
700 		else if ((proto == IPPROTO_UDP) &&
701 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
702 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
703 		else
704 			return;
705 
706 		/* IPv6 protocol checksum error */
707 		if (flags2 & RXFLAGS2_PCR)
708 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
709 
710 	} else {
711 		struct ether_header *eh;
712 		uint8_t *ip;
713 
714 		eh = mtod(m, struct ether_header *);
715 
716 		/* XXX: is an IPv4? */
717 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
718 			return;
719 		ip = (uint8_t *)(eh + 1);
720 		if ((ip[0] & 0xf0) == 0x40)
721 			return;
722 
723 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
724 		if (flags2 & RXFLAGS2_ICE) {
725 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
726 				m->m_pkthdr.csum_flags |=
727 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
728 			}
729 		} else {
730 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
731 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
732 			}
733 
734 			/*
735 			 * PCR is valid when
736 			 * ICE == 0 and FRAG == 0
737 			 */
738 			if (flags2 & RXFLAGS2_FRAG)
739 				return;
740 
741 			/*
742 			 * PCR is valid when proto is TCP or UDP
743 			 */
744 			if ((proto == IPPROTO_TCP) &&
745 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
746 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
747 			else if ((proto == IPPROTO_UDP) &&
748 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
749 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
750 			else
751 				return;
752 
753 			/* IPv4 protocol cksum error */
754 			if (flags2 & RXFLAGS2_PCR)
755 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
756 		}
757 	}
758 }
759 
760 static void
761 enet_setmulti(struct enet_softc *sc)
762 {
763 	struct ifnet *ifp;
764 	struct ether_multi *enm;
765 	struct ether_multistep step;
766 	int promisc;
767 	uint32_t crc;
768 	uint32_t gaddr[2];
769 
770 	ifp = &sc->sc_ethercom.ec_if;
771 
772 	promisc = 0;
773 	if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
774 		ifp->if_flags |= IFF_ALLMULTI;
775 		if (ifp->if_flags & IFF_PROMISC)
776 			promisc = 1;
777 		gaddr[0] = gaddr[1] = 0xffffffff;
778 	} else {
779 		gaddr[0] = gaddr[1] = 0;
780 
781 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
782 		while (enm != NULL) {
783 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
784 			gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
785 			ETHER_NEXT_MULTI(step, enm);
786 		}
787 	}
788 
789 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
790 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
791 
792 	if (promisc) {
793 		/* match all packet */
794 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
795 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
796 	} else {
797 		/* don't match any packet */
798 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
799 		ENET_REG_WRITE(sc, ENET_IALR, 0);
800 	}
801 }
802 
803 static void
804 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
805 {
806 	uint32_t paddr;
807 
808 	paddr = ENET_REG_READ(sc, ENET_PALR);
809 	hwaddr[0] = paddr >> 24;
810 	hwaddr[1] = paddr >> 16;
811 	hwaddr[2] = paddr >> 8;
812 	hwaddr[3] = paddr;
813 
814 	paddr = ENET_REG_READ(sc, ENET_PAUR);
815 	hwaddr[4] = paddr >> 24;
816 	hwaddr[5] = paddr >> 16;
817 }
818 
819 static void
820 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
821 {
822 	uint32_t paddr;
823 
824 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
825 	    hwaddr[3];
826 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
827 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
828 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
829 }
830 
831 /*
832  * ifnet interfaces
833  */
834 static int
835 enet_init(struct ifnet *ifp)
836 {
837 	struct enet_softc *sc;
838 	int s, error;
839 
840 	sc = ifp->if_softc;
841 
842 	s = splnet();
843 
844 	enet_init_regs(sc, 0);
845 	enet_init_txring(sc);
846 	error = enet_init_rxring(sc);
847 	if (error != 0) {
848 		enet_drain_rxbuf(sc);
849 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
850 		goto init_failure;
851 	}
852 
853 	/* reload mac address */
854 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
855 	enet_sethwaddr(sc, sc->sc_enaddr);
856 
857 	/* program multicast address */
858 	enet_setmulti(sc);
859 
860 	/* update if_flags */
861 	ifp->if_flags |= IFF_RUNNING;
862 	ifp->if_flags &= ~IFF_OACTIVE;
863 
864 	/* update local copy of if_flags */
865 	sc->sc_if_flags = ifp->if_flags;
866 
867 	/* mii */
868 	mii_mediachg(&sc->sc_mii);
869 
870 	/* enable RX DMA */
871 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
872 
873 	sc->sc_stopping = false;
874 	callout_schedule(&sc->sc_tick_ch, ENET_TICK);
875 
876  init_failure:
877 	splx(s);
878 
879 	return error;
880 }
881 
882 static void
883 enet_start(struct ifnet *ifp)
884 {
885 	struct enet_softc *sc;
886 	struct mbuf *m;
887 	int npkt;
888 
889 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
890 		return;
891 
892 	sc = ifp->if_softc;
893 	for (npkt = 0; ; npkt++) {
894 		IFQ_POLL(&ifp->if_snd, m);
895 		if (m == NULL)
896 			break;
897 
898 		if (sc->sc_tx_free <= 0) {
899 			/* no tx descriptor now... */
900 			ifp->if_flags |= IFF_OACTIVE;
901 			DEVICE_DPRINTF("TX descriptor is full\n");
902 			break;
903 		}
904 
905 		IFQ_DEQUEUE(&ifp->if_snd, m);
906 
907 		if (enet_encap_txring(sc, &m) != 0) {
908 			/* too many mbuf chains? */
909 			ifp->if_flags |= IFF_OACTIVE;
910 			DEVICE_DPRINTF(
911 			    "TX descriptor is full. dropping packet\n");
912 			m_freem(m);
913 			ifp->if_oerrors++;
914 			break;
915 		}
916 
917 		/* Pass the packet to any BPF listeners */
918 		bpf_mtap(ifp, m);
919 	}
920 
921 	if (npkt) {
922 		/* enable TX DMA */
923 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
924 
925 		ifp->if_timer = 5;
926 	}
927 }
928 
929 static void
930 enet_stop(struct ifnet *ifp, int disable)
931 {
932 	struct enet_softc *sc;
933 	int s;
934 	uint32_t v;
935 
936 	sc = ifp->if_softc;
937 
938 	s = splnet();
939 
940 	sc->sc_stopping = true;
941 	callout_stop(&sc->sc_tick_ch);
942 
943 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
944 	v = ENET_REG_READ(sc, ENET_ECR);
945 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
946 
947 	/* Mark the interface as down and cancel the watchdog timer. */
948 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
949 	ifp->if_timer = 0;
950 
951 	if (disable) {
952 		enet_drain_txbuf(sc);
953 		enet_drain_rxbuf(sc);
954 	}
955 
956 	splx(s);
957 }
958 
959 static void
960 enet_watchdog(struct ifnet *ifp)
961 {
962 	struct enet_softc *sc;
963 	int s;
964 
965 	sc = ifp->if_softc;
966 	s = splnet();
967 
968 	device_printf(sc->sc_dev, "watchdog timeout\n");
969 	ifp->if_oerrors++;
970 
971 	/* salvage packets left in descriptors */
972 	enet_tx_intr(sc);
973 	enet_rx_intr(sc);
974 
975 	/* reset */
976 	enet_stop(ifp, 1);
977 	enet_init(ifp);
978 
979 	splx(s);
980 }
981 
982 static void
983 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
984 {
985 	struct enet_softc *sc = ifp->if_softc;
986 
987 	ether_mediastatus(ifp, ifmr);
988 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
989 	    | sc->sc_flowflags;
990 }
991 
992 static int
993 enet_ifflags_cb(struct ethercom *ec)
994 {
995 	struct ifnet *ifp = &ec->ec_if;
996 	struct enet_softc *sc = ifp->if_softc;
997 	int change = ifp->if_flags ^ sc->sc_if_flags;
998 
999 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1000 		return ENETRESET;
1001 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1002 		return 0;
1003 
1004 	enet_setmulti(sc);
1005 
1006 	sc->sc_if_flags = ifp->if_flags;
1007 	return 0;
1008 }
1009 
1010 static int
1011 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1012 {
1013 	struct enet_softc *sc;
1014 	struct ifreq *ifr;
1015 	int s, error;
1016 	uint32_t v;
1017 
1018 	sc = ifp->if_softc;
1019 	ifr = data;
1020 
1021 	error = 0;
1022 
1023 	s = splnet();
1024 
1025 	switch (command) {
1026 	case SIOCSIFMTU:
1027 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1028 			error = EINVAL;
1029 		} else {
1030 			ifp->if_mtu = ifr->ifr_mtu;
1031 
1032 			/* set maximum frame length */
1033 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
1034 			ENET_REG_WRITE(sc, ENET_FTRL, v);
1035 			v = ENET_REG_READ(sc, ENET_RCR);
1036 			v &= ~ENET_RCR_MAX_FL(0x3fff);
1037 			v |= ENET_RCR_MAX_FL(ifp->if_mtu +
1038 			    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1039 			ENET_REG_WRITE(sc, ENET_RCR, v);
1040 		}
1041 		break;
1042 	case SIOCSIFMEDIA:
1043 	case SIOCGIFMEDIA:
1044 		/* Flow control requires full-duplex mode. */
1045 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1046 		    (ifr->ifr_media & IFM_FDX) == 0)
1047 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1048 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1049 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1050 				/* We can do both TXPAUSE and RXPAUSE. */
1051 				ifr->ifr_media |=
1052 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1053 			}
1054 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1055 		}
1056 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1057 		break;
1058 	default:
1059 		error = ether_ioctl(ifp, command, data);
1060 		if (error != ENETRESET)
1061 			break;
1062 
1063 		/* post-process */
1064 		error = 0;
1065 		switch (command) {
1066 		case SIOCSIFCAP:
1067 			error = (*ifp->if_init)(ifp);
1068 			break;
1069 		case SIOCADDMULTI:
1070 		case SIOCDELMULTI:
1071 			if (ifp->if_flags & IFF_RUNNING)
1072 				enet_setmulti(sc);
1073 			break;
1074 		}
1075 		break;
1076 	}
1077 
1078 	splx(s);
1079 
1080 	return error;
1081 }
1082 
1083 /*
1084  * for MII
1085  */
1086 static int
1087 enet_miibus_readreg(device_t dev, int phy, int reg)
1088 {
1089 	struct enet_softc *sc;
1090 	int timeout;
1091 	uint32_t val, status;
1092 
1093 	sc = device_private(dev);
1094 
1095 	/* clear MII update */
1096 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1097 
1098 	/* read command */
1099 	ENET_REG_WRITE(sc, ENET_MMFR,
1100 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1101 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1102 
1103 	/* check MII update */
1104 	for (timeout = 5000; timeout > 0; --timeout) {
1105 		status = ENET_REG_READ(sc, ENET_EIR);
1106 		if (status & ENET_EIR_MII)
1107 			break;
1108 	}
1109 	if (timeout <= 0) {
1110 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1111 		    reg);
1112 		val = -1;
1113 	} else {
1114 		val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1115 	}
1116 
1117 	return val;
1118 }
1119 
1120 static void
1121 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1122 {
1123 	struct enet_softc *sc;
1124 	int timeout;
1125 
1126 	sc = device_private(dev);
1127 
1128 	/* clear MII update */
1129 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1130 
1131 	/* write command */
1132 	ENET_REG_WRITE(sc, ENET_MMFR,
1133 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1134 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1135 	    (ENET_MMFR_DATAMASK & val));
1136 
1137 	/* check MII update */
1138 	for (timeout = 5000; timeout > 0; --timeout) {
1139 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1140 			break;
1141 	}
1142 	if (timeout <= 0) {
1143 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1144 		    reg);
1145 	}
1146 }
1147 
1148 static void
1149 enet_miibus_statchg(struct ifnet *ifp)
1150 {
1151 	struct enet_softc *sc;
1152 	struct mii_data *mii;
1153 	struct ifmedia_entry *ife;
1154 	uint32_t ecr, ecr0;
1155 	uint32_t rcr, rcr0;
1156 	uint32_t tcr, tcr0;
1157 
1158 	sc = ifp->if_softc;
1159 	mii = &sc->sc_mii;
1160 	ife = mii->mii_media.ifm_cur;
1161 
1162 	/* get current status */
1163 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1164 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1165 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1166 
1167 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1168 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1169 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1170 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1171 	}
1172 
1173 	if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1174 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1175 		rcr &= ~ENET_RCR_DRT;;	/* enable receive on transmit */
1176 	} else {
1177 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1178 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1179 	}
1180 
1181 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1182 		/*
1183 		 * need to reset because
1184 		 * FDEN can change when ECR[ETHEREN] is 0
1185 		 */
1186 		enet_init_regs(sc, 0);
1187 		return;
1188 	}
1189 
1190 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1191 	case IFM_AUTO:
1192 	case IFM_1000_T:
1193 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1194 		break;
1195 	case IFM_100_TX:
1196 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1197 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1198 		break;
1199 	case IFM_10_T:
1200 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1201 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1202 		break;
1203 	default:
1204 		ecr = ecr0;
1205 		rcr = rcr0;
1206 		tcr = tcr0;
1207 		break;
1208 	}
1209 
1210 	if (sc->sc_flowflags & IFM_FLOW)
1211 		rcr |= ENET_RCR_FCE;
1212 	else
1213 		rcr &= ~ENET_RCR_FCE;
1214 
1215 	/* update registers if need change */
1216 	if (ecr != ecr0)
1217 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1218 	if (rcr != rcr0)
1219 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1220 	if (tcr != tcr0)
1221 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1222 }
1223 
1224 /*
1225  * handling descriptors
1226  */
1227 static void
1228 enet_init_txring(struct enet_softc *sc)
1229 {
1230 	int i;
1231 
1232 	/* build TX ring */
1233 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1234 		sc->sc_txdesc_ring[i].tx_flags1_len =
1235 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1236 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1237 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1238 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1239 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1240 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1241 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1242 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1243 
1244 		TXDESC_WRITEOUT(i);
1245 	}
1246 
1247 	sc->sc_tx_free = ENET_TX_RING_CNT;
1248 	sc->sc_tx_considx = 0;
1249 	sc->sc_tx_prodidx = 0;
1250 }
1251 
1252 static int
1253 enet_init_rxring(struct enet_softc *sc)
1254 {
1255 	int i, error;
1256 
1257 	/* build RX ring */
1258 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1259 		error = enet_alloc_rxbuf(sc, i);
1260 		if (error != 0)
1261 			return error;
1262 	}
1263 
1264 	sc->sc_rx_readidx = 0;
1265 
1266 	return 0;
1267 }
1268 
1269 static int
1270 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1271 {
1272 	struct mbuf *m;
1273 	int error;
1274 
1275 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1276 
1277 	/* free mbuf if already allocated */
1278 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1279 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1280 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1281 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1282 	}
1283 
1284 	/* allocate new mbuf cluster */
1285 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1286 	if (m == NULL)
1287 		return ENOBUFS;
1288 	MCLGET(m, M_DONTWAIT);
1289 	if (!(m->m_flags & M_EXT)) {
1290 		m_freem(m);
1291 		return ENOBUFS;
1292 	}
1293 	m->m_len = MCLBYTES;
1294 	m->m_next = NULL;
1295 
1296 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1297 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1298 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1299 	if (error) {
1300 		m_freem(m);
1301 		return error;
1302 	}
1303 
1304 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1305 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1306 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1307 
1308 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1309 	enet_reset_rxdesc(sc, idx);
1310 	return 0;
1311 }
1312 
1313 static void
1314 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1315 {
1316 	uint32_t paddr;
1317 
1318 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1319 
1320 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1321 	    RXFLAGS1_E |
1322 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1323 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1324 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1325 	    RXFLAGS2_INT;
1326 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1327 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1328 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1329 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1330 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1331 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1332 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1333 
1334 	RXDESC_WRITEOUT(idx);
1335 }
1336 
1337 static void
1338 enet_drain_txbuf(struct enet_softc *sc)
1339 {
1340 	int idx;
1341 	struct enet_txsoft *txs;
1342 	struct ifnet *ifp;
1343 
1344 	ifp = &sc->sc_ethercom.ec_if;
1345 
1346 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1347 	    idx = ENET_TX_NEXTIDX(idx)) {
1348 
1349 		/* txsoft[] is used only first segment */
1350 		txs = &sc->sc_txsoft[idx];
1351 		TXDESC_READIN(idx);
1352 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1353 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1354 			bus_dmamap_unload(sc->sc_dmat,
1355 			    txs->txs_dmamap);
1356 			m_freem(txs->txs_mbuf);
1357 
1358 			ifp->if_oerrors++;
1359 		}
1360 		sc->sc_tx_free++;
1361 	}
1362 }
1363 
1364 static void
1365 enet_drain_rxbuf(struct enet_softc *sc)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1370 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1371 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1372 			bus_dmamap_unload(sc->sc_dmat,
1373 			    sc->sc_rxsoft[i].rxs_dmamap);
1374 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1375 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1376 		}
1377 	}
1378 }
1379 
1380 static int
1381 enet_alloc_ring(struct enet_softc *sc)
1382 {
1383 	int i, error;
1384 
1385 	/*
1386 	 * build DMA maps for TX.
1387 	 * TX descriptor must be able to contain mbuf chains,
1388 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1389 	 */
1390 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1391 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1392 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1393 		    &sc->sc_txsoft[i].txs_dmamap);
1394 
1395 		if (error) {
1396 			aprint_error_dev(sc->sc_dev,
1397 			    "can't create DMA map for TX descs\n");
1398 			goto fail_1;
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * build DMA maps for RX.
1404 	 * RX descripter contains An mbuf cluster,
1405 	 * and make up a dmamap.
1406 	 */
1407 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1408 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1409 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1410 		    &sc->sc_rxsoft[i].rxs_dmamap);
1411 		if (error) {
1412 			aprint_error_dev(sc->sc_dev,
1413 			    "can't create DMA map for RX descs\n");
1414 			goto fail_2;
1415 		}
1416 	}
1417 
1418 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1419 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1420 		return -1;
1421 	memset(sc->sc_txdesc_ring, 0,
1422 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1423 
1424 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1425 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1426 		return -1;
1427 	memset(sc->sc_rxdesc_ring, 0,
1428 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1429 
1430 	return 0;
1431 
1432  fail_2:
1433 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1434 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1435 			bus_dmamap_destroy(sc->sc_dmat,
1436 			    sc->sc_rxsoft[i].rxs_dmamap);
1437 	}
1438  fail_1:
1439 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1440 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1441 			bus_dmamap_destroy(sc->sc_dmat,
1442 			    sc->sc_txsoft[i].txs_dmamap);
1443 	}
1444 	return error;
1445 }
1446 
1447 static int
1448 enet_encap_mbufalign(struct mbuf **mp)
1449 {
1450 	struct mbuf *m, *m0, *mt, *p, *x;
1451 	void *ap;
1452 	uint32_t alignoff, chiplen;
1453 
1454 	/*
1455 	 * iMX6 SoC ethernet controller requires
1456 	 * address of buffer must aligned 8, and
1457 	 * length of buffer must be greater than 10 (first fragment only?)
1458 	 */
1459 #define ALIGNBYTE	8
1460 #define MINBUFSIZE	10
1461 #define ALIGN_PTR(p, align)	\
1462 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1463 
1464 	m0 = *mp;
1465 	mt = p = NULL;
1466 	for (m = m0; m != NULL; m = m->m_next) {
1467 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1468 		if (m->m_len < (ALIGNBYTE * 2)) {
1469 			/*
1470 			 * rearrange mbuf data aligned
1471 			 *
1472 			 *        align 8 *       *       *       *       *
1473 			 *               +0123456789abcdef0123456789abcdef0
1474 			 * FROM m->m_data[___________abcdefghijklmn_______]
1475 			 *
1476 			 *               +0123456789abcdef0123456789abcdef0
1477 			 * TO   m->m_data[________abcdefghijklm___________] or
1478 			 *      m->m_data[________________abcdefghijklmn__]
1479 			 */
1480 			if ((alignoff != 0) && (m->m_len != 0)) {
1481 				chiplen = ALIGNBYTE - alignoff;
1482 				if (M_LEADINGSPACE(m) >= alignoff) {
1483 					ap = m->m_data - alignoff;
1484 					memmove(ap, m->m_data, m->m_len);
1485 					m->m_data = ap;
1486 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1487 					ap = m->m_data + chiplen;
1488 					memmove(ap, m->m_data, m->m_len);
1489 					m->m_data = ap;
1490 				} else {
1491 					/*
1492 					 * no space to align data. (M_READONLY?)
1493 					 * allocate new mbuf aligned,
1494 					 * and copy to it.
1495 					 */
1496 					MGET(x, M_DONTWAIT, m->m_type);
1497 					if (x == NULL) {
1498 						m_freem(m);
1499 						return ENOBUFS;
1500 					}
1501 					MCLAIM(x, m->m_owner);
1502 					if (m->m_flags & M_PKTHDR)
1503 						M_MOVE_PKTHDR(x, m);
1504 					x->m_len = m->m_len;
1505 					x->m_data = ALIGN_PTR(x->m_data,
1506 					    ALIGNBYTE);
1507 					memcpy(mtod(x, void *), mtod(m, void *),
1508 					    m->m_len);
1509 					p->m_next = x;
1510 					MFREE(m, x->m_next);
1511 					m = x;
1512 				}
1513 			}
1514 
1515 			/*
1516 			 * fill 1st mbuf at least 10byte
1517 			 *
1518 			 *        align 8 *       *       *       *       *
1519 			 *               +0123456789abcdef0123456789abcdef0
1520 			 * FROM m->m_data[________abcde___________________]
1521 			 *      m->m_data[__fg____________________________]
1522 			 *      m->m_data[_________________hi_____________]
1523 			 *      m->m_data[__________jk____________________]
1524 			 *      m->m_data[____l___________________________]
1525 			 *
1526 			 *               +0123456789abcdef0123456789abcdef0
1527 			 * TO   m->m_data[________abcdefghij______________]
1528 			 *      m->m_data[________________________________]
1529 			 *      m->m_data[________________________________]
1530 			 *      m->m_data[___________k____________________]
1531 			 *      m->m_data[____l___________________________]
1532 			 */
1533 			if (mt == NULL) {
1534 				mt = m;
1535 				while (mt->m_len == 0) {
1536 					mt = mt->m_next;
1537 					if (mt == NULL) {
1538 						m_freem(m);
1539 						return ENOBUFS;
1540 					}
1541 				}
1542 
1543 				/* mt = 1st mbuf, x = 2nd mbuf */
1544 				x = mt->m_next;
1545 				while (mt->m_len < MINBUFSIZE) {
1546 					if (x == NULL) {
1547 						m_freem(m);
1548 						return ENOBUFS;
1549 					}
1550 
1551 					alignoff = (uintptr_t)x->m_data &
1552 					    (ALIGNBYTE - 1);
1553 					chiplen = ALIGNBYTE - alignoff;
1554 					if (chiplen > x->m_len) {
1555 						chiplen = x->m_len;
1556 					} else if ((mt->m_len + chiplen) <
1557 					    MINBUFSIZE) {
1558 						/*
1559 						 * next mbuf should be greater
1560 						 * than ALIGNBYTE?
1561 						 */
1562 						if (x->m_len >= (chiplen +
1563 						    ALIGNBYTE * 2))
1564 							chiplen += ALIGNBYTE;
1565 						else
1566 							chiplen = x->m_len;
1567 					}
1568 
1569 					if (chiplen &&
1570 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1571 						/*
1572 						 * move data to the begining of
1573 						 * m_dat[] (aligned) to en-
1574 						 * large trailingspace
1575 						 */
1576 						if (mt->m_flags & M_EXT) {
1577 							ap = mt->m_ext.ext_buf;
1578 						} else if (mt->m_flags &
1579 						    M_PKTHDR) {
1580 							ap = mt->m_pktdat;
1581 						} else {
1582 							ap = mt->m_dat;
1583 						}
1584 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1585 						memcpy(ap, mt->m_data, mt->m_len);
1586 						mt->m_data = ap;
1587 					}
1588 
1589 					if (chiplen &&
1590 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1591 						memcpy(mt->m_data + mt->m_len,
1592 						    x->m_data, chiplen);
1593 						mt->m_len += chiplen;
1594 						m_adj(x, chiplen);
1595 					}
1596 
1597 					x = x->m_next;
1598 				}
1599 			}
1600 
1601 		} else {
1602 			mt = m;
1603 
1604 			/*
1605 			 * allocate new mbuf x, and rearrange as below;
1606 			 *
1607 			 *        align 8 *       *       *       *       *
1608 			 *               +0123456789abcdef0123456789abcdef0
1609 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1610 			 *
1611 			 *               +0123456789abcdef0123456789abcdef0
1612 			 * TO   x->m_data[________abcdefghijkl____________]
1613 			 *      m->m_data[________________________mnopq___]
1614 			 *
1615 			 */
1616 			if (alignoff != 0) {
1617 				/* at least ALIGNBYTE */
1618 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1619 
1620 				MGET(x, M_DONTWAIT, m->m_type);
1621 				if (x == NULL) {
1622 					m_freem(m);
1623 					return ENOBUFS;
1624 				}
1625 				MCLAIM(x, m->m_owner);
1626 				if (m->m_flags & M_PKTHDR)
1627 					M_MOVE_PKTHDR(x, m);
1628 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1629 				memcpy(mtod(x, void *), mtod(m, void *),
1630 				    chiplen);
1631 				x->m_len = chiplen;
1632 				x->m_next = m;
1633 				m_adj(m, chiplen);
1634 
1635 				if (p == NULL)
1636 					m0 = x;
1637 				else
1638 					p->m_next = x;
1639 			}
1640 		}
1641 		p = m;
1642 	}
1643 	*mp = m0;
1644 
1645 	return 0;
1646 }
1647 
1648 static int
1649 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1650 {
1651 	bus_dmamap_t map;
1652 	struct mbuf *m;
1653 	int csumflags, idx, i, error;
1654 	uint32_t flags1, flags2;
1655 
1656 	idx = sc->sc_tx_prodidx;
1657 	map = sc->sc_txsoft[idx].txs_dmamap;
1658 
1659 	/* align mbuf data for claim of ENET */
1660 	error = enet_encap_mbufalign(mp);
1661 	if (error != 0)
1662 		return error;
1663 
1664 	m = *mp;
1665 	csumflags = m->m_pkthdr.csum_flags;
1666 
1667 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1668 	    BUS_DMA_NOWAIT);
1669 	if (error != 0) {
1670 		device_printf(sc->sc_dev,
1671 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1672 		m_freem(m);
1673 		return error;
1674 	}
1675 
1676 	if (map->dm_nsegs > sc->sc_tx_free) {
1677 		bus_dmamap_unload(sc->sc_dmat, map);
1678 		device_printf(sc->sc_dev,
1679 		    "too many mbuf chain %d\n", map->dm_nsegs);
1680 		m_freem(m);
1681 		return ENOBUFS;
1682 	}
1683 
1684 	/* fill protocol cksum zero beforehand */
1685 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1686 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1687 		struct mbuf *m1;
1688 		int ehlen, moff;
1689 		uint16_t etype;
1690 
1691 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1692 		switch (ntohs(etype)) {
1693 		case ETHERTYPE_IP:
1694 		case ETHERTYPE_IPV6:
1695 			ehlen = ETHER_HDR_LEN;
1696 			break;
1697 		case ETHERTYPE_VLAN:
1698 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1699 			break;
1700 		default:
1701 			ehlen = 0;
1702 			break;
1703 		}
1704 
1705 		if (ehlen) {
1706 			m1 = m_getptr(m, ehlen +
1707 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1708 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data),
1709 			    &moff);
1710 			if (m1 != NULL)
1711 				*(uint16_t *)(mtod(m1, char *) + moff) = 0;
1712 		}
1713 	}
1714 
1715 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1716 	    BUS_DMASYNC_PREWRITE);
1717 
1718 	for (i = 0; i < map->dm_nsegs; i++) {
1719 		flags1 = TXFLAGS1_R;
1720 		flags2 = 0;
1721 
1722 		if (i == 0) {
1723 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1724 			sc->sc_txsoft[idx].txs_mbuf = m;
1725 		}
1726 
1727 		/* checksum offloading */
1728 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1729 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1730 			flags2 |= TXFLAGS2_PINS;
1731 		if (csumflags & (M_CSUM_IPv4))
1732 			flags2 |= TXFLAGS2_IINS;
1733 
1734 		if (i == map->dm_nsegs - 1) {
1735 			/* mark last segment */
1736 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1737 			flags2 |= TXFLAGS2_INT;
1738 		}
1739 		if (idx == ENET_TX_RING_CNT - 1) {
1740 			/* mark end of ring */
1741 			flags1 |= TXFLAGS1_W;
1742 		}
1743 
1744 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1745 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1746 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1747 		TXDESC_WRITEOUT(idx);
1748 
1749 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1750 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1751 		TXDESC_WRITEOUT(idx);
1752 
1753 		idx = ENET_TX_NEXTIDX(idx);
1754 		sc->sc_tx_free--;
1755 	}
1756 
1757 	sc->sc_tx_prodidx = idx;
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * device initialize
1764  */
1765 static int
1766 enet_init_regs(struct enet_softc *sc, int init)
1767 {
1768 	struct mii_data *mii;
1769 	struct ifmedia_entry *ife;
1770 	paddr_t paddr;
1771 	uint32_t val;
1772 	int fulldup, ecr_speed, rcr_speed, flowctrl;
1773 
1774 	if (init) {
1775 		fulldup = 1;
1776 		ecr_speed = ENET_ECR_SPEED;
1777 		rcr_speed = 0;
1778 		flowctrl = 0;
1779 	} else {
1780 		mii = &sc->sc_mii;
1781 		ife = mii->mii_media.ifm_cur;
1782 
1783 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1784 			fulldup = 1;
1785 		else
1786 			fulldup = 0;
1787 
1788 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1789 		case IFM_10_T:
1790 			ecr_speed = 0;
1791 			rcr_speed = ENET_RCR_RMII_10T;
1792 			break;
1793 		case IFM_100_TX:
1794 			ecr_speed = 0;
1795 			rcr_speed = 0;
1796 			break;
1797 		default:
1798 			ecr_speed = ENET_ECR_SPEED;
1799 			rcr_speed = 0;
1800 			break;
1801 		}
1802 
1803 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1804 	}
1805 
1806 	/* reset */
1807 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1808 
1809 	/* mask and clear all interrupt */
1810 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1811 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1812 
1813 	/* full duplex */
1814 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1815 
1816 	/* clear and enable MIB register */
1817 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1818 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1819 
1820 	/* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1821 	val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1822 	ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1823 
1824 	/* Opcode/Pause Duration */
1825 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1826 
1827 	/* Receive FIFO */
1828 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1829 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1830 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1831 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1832 
1833 	/* Transmit FIFO */
1834 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1835 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1836 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1837 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1838 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1839 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1840 
1841 	/* hardware checksum is default off (override in TX descripter) */
1842 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1843 
1844 	/*
1845 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1846 	 * and don't discard checksum error
1847 	 */
1848 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1849 
1850 	/* maximum frame size */
1851 	val = ENET_DEFAULT_PKT_LEN;
1852 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1853 	ENET_REG_WRITE(sc, ENET_RCR,
1854 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1855 	    ENET_RCR_RGMII_EN |			/* use RGMII */
1856 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1857 	    rcr_speed |
1858 	    (fulldup ? 0 : ENET_RCR_DRT) |
1859 	    ENET_RCR_MAX_FL(val));
1860 
1861 	/* Maximum Receive BufSize per one descriptor */
1862 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1863 
1864 
1865 	/* TX/RX Descriptor Physical Address */
1866 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1867 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1868 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1869 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1870 	/* sync cache */
1871 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1872 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1873 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1874 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1875 
1876 	/* enable interrupts */
1877 	val = ENET_EIMR|ENET_EIR_TXF|ENET_EIR_RXF|ENET_EIR_EBERR;
1878 	if (sc->sc_imxtype == 7)
1879 		val |= ENET_EIR_TXF2|ENET_EIR_RXF2|ENET_EIR_TXF1|ENET_EIR_RXF1;
1880 	ENET_REG_WRITE(sc, ENET_EIMR, val);
1881 
1882 	/* enable ether */
1883 	ENET_REG_WRITE(sc, ENET_ECR,
1884 #if _BYTE_ORDER == _LITTLE_ENDIAN
1885 	    ENET_ECR_DBSWP |
1886 #endif
1887 	    ENET_ECR_SPEED |	/* default 1000Mbps mode */
1888 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
1889 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
1890 
1891 	return 0;
1892 }
1893 
1894 static int
1895 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1896               bus_dmamap_t *mapp)
1897 {
1898 	bus_dma_segment_t seglist[1];
1899 	int nsegs, error;
1900 
1901 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1902 	    1, &nsegs, M_NOWAIT)) != 0) {
1903 		device_printf(sc->sc_dev,
1904 		    "unable to allocate DMA buffer, error=%d\n", error);
1905 		goto fail_alloc;
1906 	}
1907 
1908 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1909 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1910 		device_printf(sc->sc_dev,
1911 		    "unable to map DMA buffer, error=%d\n",
1912 		    error);
1913 		goto fail_map;
1914 	}
1915 
1916 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1917 	    BUS_DMA_NOWAIT, mapp)) != 0) {
1918 		device_printf(sc->sc_dev,
1919 		    "unable to create DMA map, error=%d\n", error);
1920 		goto fail_create;
1921 	}
1922 
1923 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1924 	    BUS_DMA_NOWAIT)) != 0) {
1925 		aprint_error_dev(sc->sc_dev,
1926 		    "unable to load DMA map, error=%d\n", error);
1927 		goto fail_load;
1928 	}
1929 
1930 	return 0;
1931 
1932  fail_load:
1933 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
1934  fail_create:
1935 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1936  fail_map:
1937 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
1938  fail_alloc:
1939 	return error;
1940 }
1941