xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_enet.c,v 1.4 2015/04/27 17:34:51 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu <ryo@nerv.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.4 2015/04/27 17:34:51 christos Exp $");
35 
36 #include "imxocotp.h"
37 #include "imxccm.h"
38 #include "vlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/mbuf.h>
43 #include <sys/device.h>
44 #include <sys/sockio.h>
45 #include <sys/kernel.h>
46 #include <sys/rndsource.h>
47 
48 #include <lib/libkern/libkern.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_ether.h>
54 #include <net/bpf.h>
55 #include <net/if_vlanvar.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <arm/imx/imx6var.h>
65 #include <arm/imx/imx6_reg.h>
66 #include <arm/imx/imx6_ocotpreg.h>
67 #include <arm/imx/imx6_ocotpvar.h>
68 #include <arm/imx/imx6_ccmreg.h>
69 #include <arm/imx/imx6_ccmvar.h>
70 #include <arm/imx/if_enetreg.h>
71 #include "locators.h"
72 
73 #undef DEBUG_ENET
74 #undef ENET_EVENT_COUNTER
75 
76 #ifdef DEBUG_ENET
77 int enet_debug = 0;
78 # define DEVICE_DPRINTF(args...)	\
79 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
80 #else
81 # define DEVICE_DPRINTF(args...)
82 #endif
83 
84 
85 #define RXDESC_MAXBUFSIZE	0x07f0
86 				/* iMX6 ENET not work greather than 0x0800... */
87 
88 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
89 #ifdef ENET_SUPPORT_JUMBO
90 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
91 #else
92 # define ENET_MAX_PKT_LEN	1522
93 #endif
94 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
95 #define MTU2FRAMESIZE(n)	\
96 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
97 
98 
99 #define ENET_MAX_PKT_NSEGS	64
100 #define ENET_TX_RING_CNT	256	/* must be 2^n */
101 #define ENET_RX_RING_CNT	256	/* must be 2^n */
102 
103 #define ENET_TX_NEXTIDX(idx)	(((idx) + 1) & (ENET_TX_RING_CNT - 1))
104 #define ENET_RX_NEXTIDX(idx)	(((idx) + 1) & (ENET_RX_RING_CNT - 1))
105 
106 struct enet_txsoft {
107 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
108 	bus_dmamap_t txs_dmamap;	/* our DMA map */
109 };
110 
111 struct enet_rxsoft {
112 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
113 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
114 };
115 
116 struct enet_softc {
117 	device_t sc_dev;
118 
119 	bus_addr_t sc_addr;
120 	bus_space_tag_t sc_iot;
121 	bus_space_handle_t sc_ioh;
122 	bus_dma_tag_t sc_dmat;
123 
124 	/* interrupts */
125 	void *sc_ih;
126 	callout_t sc_tick_ch;
127 	bool sc_stopping;
128 
129 	/* TX */
130 	struct enet_txdesc *sc_txdesc_ring;	/* [ENET_TX_RING_CNT] */
131 	bus_dmamap_t sc_txdesc_dmamap;
132 	struct enet_rxdesc *sc_rxdesc_ring;	/* [ENET_RX_RING_CNT] */
133 	bus_dmamap_t sc_rxdesc_dmamap;
134 	struct enet_txsoft sc_txsoft[ENET_TX_RING_CNT];
135 	int sc_tx_considx;
136 	int sc_tx_prodidx;
137 	int sc_tx_free;
138 
139 	/* RX */
140 	struct enet_rxsoft sc_rxsoft[ENET_RX_RING_CNT];
141 	int sc_rx_readidx;
142 
143 	/* misc */
144 	int sc_if_flags;			/* local copy of if_flags */
145 	int sc_flowflags;			/* 802.3x flow control flags */
146 	struct ethercom sc_ethercom;		/* interface info */
147 	struct mii_data sc_mii;
148 	uint8_t sc_enaddr[ETHER_ADDR_LEN];
149 	krndsource_t sc_rnd_source;
150 
151 #ifdef ENET_EVENT_COUNTER
152 	struct evcnt sc_ev_t_drop;
153 	struct evcnt sc_ev_t_packets;
154 	struct evcnt sc_ev_t_bc_pkt;
155 	struct evcnt sc_ev_t_mc_pkt;
156 	struct evcnt sc_ev_t_crc_align;
157 	struct evcnt sc_ev_t_undersize;
158 	struct evcnt sc_ev_t_oversize;
159 	struct evcnt sc_ev_t_frag;
160 	struct evcnt sc_ev_t_jab;
161 	struct evcnt sc_ev_t_col;
162 	struct evcnt sc_ev_t_p64;
163 	struct evcnt sc_ev_t_p65to127n;
164 	struct evcnt sc_ev_t_p128to255n;
165 	struct evcnt sc_ev_t_p256to511;
166 	struct evcnt sc_ev_t_p512to1023;
167 	struct evcnt sc_ev_t_p1024to2047;
168 	struct evcnt sc_ev_t_p_gte2048;
169 	struct evcnt sc_ev_t_octets;
170 	struct evcnt sc_ev_r_packets;
171 	struct evcnt sc_ev_r_bc_pkt;
172 	struct evcnt sc_ev_r_mc_pkt;
173 	struct evcnt sc_ev_r_crc_align;
174 	struct evcnt sc_ev_r_undersize;
175 	struct evcnt sc_ev_r_oversize;
176 	struct evcnt sc_ev_r_frag;
177 	struct evcnt sc_ev_r_jab;
178 	struct evcnt sc_ev_r_p64;
179 	struct evcnt sc_ev_r_p65to127;
180 	struct evcnt sc_ev_r_p128to255;
181 	struct evcnt sc_ev_r_p256to511;
182 	struct evcnt sc_ev_r_p512to1023;
183 	struct evcnt sc_ev_r_p1024to2047;
184 	struct evcnt sc_ev_r_p_gte2048;
185 	struct evcnt sc_ev_r_octets;
186 #endif /* ENET_EVENT_COUNTER */
187 };
188 
189 #define TXDESC_WRITEOUT(idx)					\
190 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
191 	    sizeof(struct enet_txdesc) * (idx),			\
192 	    sizeof(struct enet_txdesc),				\
193 	    BUS_DMASYNC_PREWRITE)
194 
195 #define TXDESC_READIN(idx)					\
196 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
197 	    sizeof(struct enet_txdesc) * (idx),			\
198 	    sizeof(struct enet_txdesc),				\
199 	    BUS_DMASYNC_PREREAD)
200 
201 #define RXDESC_WRITEOUT(idx)					\
202 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
203 	    sizeof(struct enet_rxdesc) * (idx),			\
204 	    sizeof(struct enet_rxdesc),				\
205 	    BUS_DMASYNC_PREWRITE)
206 
207 #define RXDESC_READIN(idx)					\
208 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
209 	    sizeof(struct enet_rxdesc) * (idx),			\
210 	    sizeof(struct enet_rxdesc),				\
211 	    BUS_DMASYNC_PREREAD)
212 
213 #define ENET_REG_READ(sc, reg)					\
214 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
215 
216 #define ENET_REG_WRITE(sc, reg, value)				\
217 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
218 
219 static int enet_match(device_t, struct cfdata *, void *);
220 static void enet_attach(device_t, device_t, void *);
221 #ifdef ENET_EVENT_COUNTER
222 static void enet_attach_evcnt(struct enet_softc *);
223 static void enet_update_evcnt(struct enet_softc *);
224 #endif
225 
226 static int enet_intr(void *);
227 static void enet_tick(void *);
228 static int enet_tx_intr(void *);
229 static int enet_rx_intr(void *);
230 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
231                          int);
232 
233 static void enet_start(struct ifnet *);
234 static int enet_ifflags_cb(struct ethercom *);
235 static int enet_ioctl(struct ifnet *, u_long, void *);
236 static int enet_init(struct ifnet *);
237 static void enet_stop(struct ifnet *, int);
238 static void enet_watchdog(struct ifnet *);
239 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
240 
241 static int enet_miibus_readreg(device_t, int, int);
242 static void enet_miibus_writereg(device_t, int, int, int);
243 static void enet_miibus_statchg(struct ifnet *);
244 
245 static void enet_ocotp_getmacaddr(uint8_t *);
246 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
247 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
248 static void enet_setmulti(struct enet_softc *);
249 static int enet_encap_mbufalign(struct mbuf **);
250 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
251 static int enet_init_plls(struct enet_softc *);
252 static int enet_init_regs(struct enet_softc *, int);
253 static int enet_alloc_ring(struct enet_softc *);
254 static void enet_init_txring(struct enet_softc *);
255 static int enet_init_rxring(struct enet_softc *);
256 static void enet_reset_rxdesc(struct enet_softc *, int);
257 static int enet_alloc_rxbuf(struct enet_softc *, int);
258 static void enet_drain_txbuf(struct enet_softc *);
259 static void enet_drain_rxbuf(struct enet_softc *);
260 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
261                           bus_dmamap_t *);
262 
263 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
264     enet_match, enet_attach, NULL, NULL);
265 
266 /* ARGSUSED */
267 static int
268 enet_match(device_t parent __unused, struct cfdata *match __unused, void *aux)
269 {
270 	struct axi_attach_args *aa;
271 
272 	aa = aux;
273 
274 	switch (aa->aa_addr) {
275 	case (IMX6_AIPS2_BASE + AIPS2_ENET_BASE):
276 		return 1;
277 	}
278 
279 	return 0;
280 }
281 
282 /* ARGSUSED */
283 static void
284 enet_attach(device_t parent __unused, device_t self, void *aux)
285 {
286 	struct enet_softc *sc;
287 	struct axi_attach_args *aa;
288 	struct ifnet *ifp;
289 
290 	aa = aux;
291 	sc = device_private(self);
292 	sc->sc_dev = self;
293 	sc->sc_iot = aa->aa_iot;
294 	sc->sc_addr = aa->aa_addr;
295 	sc->sc_dmat = aa->aa_dmat;
296 
297 	if (aa->aa_size == AXICF_SIZE_DEFAULT)
298 		aa->aa_size = AIPS2_ENET_SIZE;
299 
300 	aprint_naive("\n");
301 	aprint_normal(": Gigabit Ethernet Controller\n");
302 	if (bus_space_map(sc->sc_iot, sc->sc_addr, aa->aa_size, 0,
303 	    &sc->sc_ioh)) {
304 		aprint_error_dev(self, "cannot map registers\n");
305 		return;
306 	}
307 
308 	/* allocate dma buffer */
309 	if (enet_alloc_ring(sc))
310 		return;
311 
312 #define IS_ENADDR_ZERO(enaddr)				\
313 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
314 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
315 
316 	/* get mac-address from SoC eFuse */
317 	enet_ocotp_getmacaddr(sc->sc_enaddr);
318 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
319 		/* by any chance, mac-address is already set by bootloader? */
320 		enet_gethwaddr(sc, sc->sc_enaddr);
321 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
322 			/* give up. set randomly */
323 			uint32_t addr = random();
324 			/* not multicast */
325 			sc->sc_enaddr[0] = (addr >> 24) & 0xfc;
326 			sc->sc_enaddr[1] = addr >> 16;
327 			sc->sc_enaddr[2] = addr >> 8;
328 			sc->sc_enaddr[3] = addr;
329 			addr = random();
330 			sc->sc_enaddr[4] = addr >> 8;
331 			sc->sc_enaddr[5] = addr;
332 
333 			aprint_error_dev(self,
334 			    "cannot get mac address. set randomly\n");
335 		}
336 	}
337 	enet_sethwaddr(sc, sc->sc_enaddr);
338 
339 	aprint_normal_dev(self, "Ethernet address %s\n",
340 	    ether_sprintf(sc->sc_enaddr));
341 
342 	/* power up and init */
343 	if (enet_init_plls(sc) != 0)
344 		goto failure;
345 	enet_init_regs(sc, 1);
346 
347 	/* setup interrupt handlers */
348 	if ((sc->sc_ih = intr_establish(aa->aa_irq, IPL_NET,
349 	    IST_LEVEL, enet_intr, sc)) == NULL) {
350 		aprint_error_dev(self, "unable to establish interrupt\n");
351 		goto failure;
352 	}
353 
354 	/* callout will be scheduled from enet_init() */
355 	callout_init(&sc->sc_tick_ch, 0);
356 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
357 
358 	/* setup ifp */
359 	ifp = &sc->sc_ethercom.ec_if;
360 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
361 	ifp->if_softc = sc;
362 	ifp->if_mtu = ETHERMTU;
363 	ifp->if_baudrate = IF_Gbps(1);
364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
365 	ifp->if_ioctl = enet_ioctl;
366 	ifp->if_start = enet_start;
367 	ifp->if_init = enet_init;
368 	ifp->if_stop = enet_stop;
369 	ifp->if_watchdog = enet_watchdog;
370 
371 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
372 #ifdef ENET_SUPPORT_JUMBO
373 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
374 #endif
375 
376 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
377 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
378 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
379 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
380 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
381 
382 	IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
383 	IFQ_SET_READY(&ifp->if_snd);
384 
385 	/* setup MII */
386 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
387 	sc->sc_mii.mii_ifp = ifp;
388 	sc->sc_mii.mii_readreg = enet_miibus_readreg;
389 	sc->sc_mii.mii_writereg = enet_miibus_writereg;
390 	sc->sc_mii.mii_statchg = enet_miibus_statchg;
391 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
392 	    enet_mediastatus);
393 
394 	/* try to attach PHY */
395 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
396 	    MII_OFFSET_ANY, 0);
397 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
398 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
399 		    0, NULL);
400 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
401 	} else {
402 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
403 	}
404 
405 	if_attach(ifp);
406 	ether_ifattach(ifp, sc->sc_enaddr);
407 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
408 
409 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
410 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
411 
412 #ifdef ENET_EVENT_COUNTER
413 	enet_attach_evcnt(sc);
414 #endif
415 
416 	sc->sc_stopping = false;
417 
418 	return;
419 
420  failure:
421 	bus_space_unmap(sc->sc_iot, sc->sc_ioh, aa->aa_size);
422 	return;
423 }
424 
425 #ifdef ENET_EVENT_COUNTER
426 static void
427 enet_attach_evcnt(struct enet_softc *sc)
428 {
429 	const char *xname;
430 
431 	xname = device_xname(sc->sc_dev);
432 
433 #define ENET_EVCNT_ATTACH(name)	\
434 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
435 	    NULL, xname, #name);
436 
437 	ENET_EVCNT_ATTACH(t_drop);
438 	ENET_EVCNT_ATTACH(t_packets);
439 	ENET_EVCNT_ATTACH(t_bc_pkt);
440 	ENET_EVCNT_ATTACH(t_mc_pkt);
441 	ENET_EVCNT_ATTACH(t_crc_align);
442 	ENET_EVCNT_ATTACH(t_undersize);
443 	ENET_EVCNT_ATTACH(t_oversize);
444 	ENET_EVCNT_ATTACH(t_frag);
445 	ENET_EVCNT_ATTACH(t_jab);
446 	ENET_EVCNT_ATTACH(t_col);
447 	ENET_EVCNT_ATTACH(t_p64);
448 	ENET_EVCNT_ATTACH(t_p65to127n);
449 	ENET_EVCNT_ATTACH(t_p128to255n);
450 	ENET_EVCNT_ATTACH(t_p256to511);
451 	ENET_EVCNT_ATTACH(t_p512to1023);
452 	ENET_EVCNT_ATTACH(t_p1024to2047);
453 	ENET_EVCNT_ATTACH(t_p_gte2048);
454 	ENET_EVCNT_ATTACH(t_octets);
455 	ENET_EVCNT_ATTACH(r_packets);
456 	ENET_EVCNT_ATTACH(r_bc_pkt);
457 	ENET_EVCNT_ATTACH(r_mc_pkt);
458 	ENET_EVCNT_ATTACH(r_crc_align);
459 	ENET_EVCNT_ATTACH(r_undersize);
460 	ENET_EVCNT_ATTACH(r_oversize);
461 	ENET_EVCNT_ATTACH(r_frag);
462 	ENET_EVCNT_ATTACH(r_jab);
463 	ENET_EVCNT_ATTACH(r_p64);
464 	ENET_EVCNT_ATTACH(r_p65to127);
465 	ENET_EVCNT_ATTACH(r_p128to255);
466 	ENET_EVCNT_ATTACH(r_p256to511);
467 	ENET_EVCNT_ATTACH(r_p512to1023);
468 	ENET_EVCNT_ATTACH(r_p1024to2047);
469 	ENET_EVCNT_ATTACH(r_p_gte2048);
470 	ENET_EVCNT_ATTACH(r_octets);
471 }
472 
473 static void
474 enet_update_evcnt(struct enet_softc *sc)
475 {
476 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
477 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
478 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
479 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
480 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
481 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
482 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
483 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
484 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
485 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
486 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
487 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
488 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
489 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
490 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
491 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
492 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
493 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
494 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
495 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
496 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
497 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
498 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
499 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
500 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
501 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
502 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
503 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
504 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
505 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
506 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
507 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
508 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
509 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
510 }
511 #endif /* ENET_EVENT_COUNTER */
512 
513 static void
514 enet_tick(void *arg)
515 {
516 	struct enet_softc *sc;
517 	struct mii_data *mii;
518 	struct ifnet *ifp;
519 	int s;
520 
521 	sc = arg;
522 	mii = &sc->sc_mii;
523 	ifp = &sc->sc_ethercom.ec_if;
524 
525 	s = splnet();
526 
527 	if (sc->sc_stopping)
528 		goto out;
529 
530 
531 #ifdef ENET_EVENT_COUNTER
532 	enet_update_evcnt(sc);
533 #endif
534 
535 	/* update counters */
536 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
537 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
538 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
539 
540 	/* clear counters */
541 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
542 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
543 
544 	mii_tick(mii);
545  out:
546 
547 	if (!sc->sc_stopping)
548 		callout_schedule(&sc->sc_tick_ch, hz);
549 
550 	splx(s);
551 }
552 
553 static int
554 enet_intr(void *arg)
555 {
556 	struct enet_softc *sc;
557 	struct ifnet *ifp;
558 	uint32_t status;
559 
560 	sc = arg;
561 	status = ENET_REG_READ(sc, ENET_EIR);
562 
563 	if (status & ENET_EIR_TXF)
564 		enet_tx_intr(arg);
565 
566 	if (status & ENET_EIR_RXF)
567 		enet_rx_intr(arg);
568 
569 	if (status & ENET_EIR_EBERR) {
570 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
571 		ifp = &sc->sc_ethercom.ec_if;
572 		enet_stop(ifp, 1);
573 		enet_init(ifp);
574 	} else {
575 		ENET_REG_WRITE(sc, ENET_EIR, status);
576 	}
577 
578 	rnd_add_uint32(&sc->sc_rnd_source, status);
579 
580 	return 1;
581 }
582 
583 static int
584 enet_tx_intr(void *arg)
585 {
586 	struct enet_softc *sc;
587 	struct ifnet *ifp;
588 	struct enet_txsoft *txs;
589 	int idx;
590 
591 	sc = (struct enet_softc *)arg;
592 	ifp = &sc->sc_ethercom.ec_if;
593 
594 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
595 	    idx = ENET_TX_NEXTIDX(idx)) {
596 
597 		txs = &sc->sc_txsoft[idx];
598 
599 		TXDESC_READIN(idx);
600 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
601 			/* This TX Descriptor has not been transmitted yet */
602 			break;
603 		}
604 
605 		/* txsoft is available on first segment (TXFLAGS1_T1) */
606 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
607 			bus_dmamap_unload(sc->sc_dmat,
608 			    txs->txs_dmamap);
609 			m_freem(txs->txs_mbuf);
610 			ifp->if_opackets++;
611 		}
612 
613 		/* checking error */
614 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
615 			uint32_t flags2;
616 
617 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
618 
619 			if (flags2 & (TXFLAGS2_TXE |
620 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
621 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
622 #ifdef DEBUG_ENET
623 				if (enet_debug) {
624 					char flagsbuf[128];
625 
626 					snprintb(flagsbuf, sizeof(flagsbuf),
627 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
628 					    "\15COLLISION" "\14FRAME"
629 					    "\13LATECOLLISION" "\12OVERFLOW",
630 					    flags2);
631 
632 					device_printf(sc->sc_dev,
633 					    "txdesc[%d]: transmit error: "
634 					    "flags2=%s\n", idx, flagsbuf);
635 				}
636 #endif /* DEBUG_ENET */
637 				ifp->if_oerrors++;
638 			}
639 		}
640 
641 		sc->sc_tx_free++;
642 	}
643 	sc->sc_tx_considx = idx;
644 
645 	if (sc->sc_tx_free > 0)
646 		ifp->if_flags &= ~IFF_OACTIVE;
647 
648 	/*
649 	 * No more pending TX descriptor,
650 	 * cancel the watchdog timer.
651 	 */
652 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
653 		ifp->if_timer = 0;
654 
655 	return 1;
656 }
657 
658 static int
659 enet_rx_intr(void *arg)
660 {
661 	struct enet_softc *sc;
662 	struct ifnet *ifp;
663 	struct enet_rxsoft *rxs;
664 	int idx, len, amount;
665 	uint32_t flags1, flags2;
666 	struct mbuf *m, *m0, *mprev;
667 
668 	sc = arg;
669 	ifp = &sc->sc_ethercom.ec_if;
670 
671 	m0 = mprev = NULL;
672 	amount = 0;
673 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
674 
675 		rxs = &sc->sc_rxsoft[idx];
676 
677 		RXDESC_READIN(idx);
678 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
679 			/* This RX Descriptor has not been received yet */
680 			break;
681 		}
682 
683 		/*
684 		 * build mbuf from RX Descriptor if needed
685 		 */
686 		m = rxs->rxs_mbuf;
687 		rxs->rxs_mbuf = NULL;
688 
689 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
690 		len = RXFLAGS1_LEN(flags1);
691 
692 #define RACC_SHIFT16	2
693 		if (m0 == NULL) {
694 			m0 = m;
695 			m_adj(m0, RACC_SHIFT16);
696 			len -= RACC_SHIFT16;
697 			m->m_len = len;
698 			amount = len;
699 		} else {
700 			if (flags1 & RXFLAGS1_L)
701 				len = len - amount - RACC_SHIFT16;
702 
703 			m->m_len = len;
704 			amount += len;
705 			m->m_flags &= ~M_PKTHDR;
706 			mprev->m_next = m;
707 		}
708 		mprev = m;
709 
710 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
711 
712 		if (flags1 & RXFLAGS1_L) {
713 			/* last buffer */
714 			if ((amount < ETHER_HDR_LEN) ||
715 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
716 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
717 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
718 			    RXFLAGS2_CE)))) {
719 
720 #ifdef DEBUG_ENET
721 				if (enet_debug) {
722 					char flags1buf[128], flags2buf[128];
723 					snprintb(flags1buf, sizeof(flags1buf),
724 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
725 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
726 					    "\21TRUNCATED", flags1);
727 					snprintb(flags2buf, sizeof(flags2buf),
728 					    "\20" "\40MAC" "\33PHY"
729 					    "\32COLLISION", flags2);
730 
731 					DEVICE_DPRINTF(
732 					    "rxdesc[%d]: receive error: "
733 					    "flags1=%s,flags2=%s,len=%d\n",
734 					    idx, flags1buf, flags2buf, amount);
735 				}
736 #endif /* DEBUG_ENET */
737 				ifp->if_ierrors++;
738 				m_freem(m0);
739 
740 			} else {
741 				/* packet receive ok */
742 				ifp->if_ipackets++;
743 				m0->m_pkthdr.rcvif = ifp;
744 				m0->m_pkthdr.len = amount;
745 
746 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
747 				    rxs->rxs_dmamap->dm_mapsize,
748 				    BUS_DMASYNC_PREREAD);
749 
750 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
751 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
752 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
753 					enet_rx_csum(sc, ifp, m0, idx);
754 
755 				/* Pass this up to any BPF listeners */
756 				bpf_mtap(ifp, m0);
757 
758 				(*ifp->if_input)(ifp, m0);
759 			}
760 
761 			m0 = NULL;
762 			mprev = NULL;
763 			amount = 0;
764 
765 		} else {
766 			/* continued from previous buffer */
767 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
768 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
769 		}
770 
771 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
772 		if (enet_alloc_rxbuf(sc, idx) != 0) {
773 			panic("enet_alloc_rxbuf NULL\n");
774 		}
775 	}
776 	sc->sc_rx_readidx = idx;
777 
778 	/* re-enable RX DMA to make sure */
779 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
780 
781 	return 1;
782 }
783 
784 static void
785 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
786 {
787 	uint32_t flags2;
788 	uint8_t proto;
789 
790 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
791 
792 	if (flags2 & RXFLAGS2_IPV6) {
793 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
794 
795 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
796 		if ((proto == IPPROTO_TCP) &&
797 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
798 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
799 		else if ((proto == IPPROTO_UDP) &&
800 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
801 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
802 		else
803 			return;
804 
805 		/* IPv6 protocol checksum error */
806 		if (flags2 & RXFLAGS2_PCR)
807 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
808 
809 	} else {
810 		struct ether_header *eh;
811 		uint8_t *ip;
812 
813 		eh = mtod(m, struct ether_header *);
814 
815 		/* XXX: is an IPv4? */
816 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
817 			return;
818 		ip = (uint8_t *)(eh + 1);
819 		if ((ip[0] & 0xf0) == 0x40)
820 			return;
821 
822 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
823 		if (flags2 & RXFLAGS2_ICE) {
824 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
825 				m->m_pkthdr.csum_flags |=
826 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
827 			}
828 		} else {
829 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
830 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
831 			}
832 
833 			/*
834 			 * PCR is valid when
835 			 * ICE == 0 and FRAG == 0
836 			 */
837 			if (flags2 & RXFLAGS2_FRAG)
838 				return;
839 
840 			/*
841 			 * PCR is valid when proto is TCP or UDP
842 			 */
843 			if ((proto == IPPROTO_TCP) &&
844 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
845 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
846 			else if ((proto == IPPROTO_UDP) &&
847 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
848 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
849 			else
850 				return;
851 
852 			/* IPv4 protocol cksum error */
853 			if (flags2 & RXFLAGS2_PCR)
854 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
855 		}
856 	}
857 }
858 
859 static void
860 enet_setmulti(struct enet_softc *sc)
861 {
862 	struct ifnet *ifp;
863 	struct ether_multi *enm;
864 	struct ether_multistep step;
865 	int promisc;
866 	uint32_t crc;
867 	uint32_t gaddr[2];
868 
869 	ifp = &sc->sc_ethercom.ec_if;
870 
871 	promisc = 0;
872 	if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
873 		ifp->if_flags |= IFF_ALLMULTI;
874 		if (ifp->if_flags & IFF_PROMISC)
875 			promisc = 1;
876 		gaddr[0] = gaddr[1] = 0xffffffff;
877 	} else {
878 		gaddr[0] = gaddr[1] = 0;
879 
880 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
881 		while (enm != NULL) {
882 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
883 			gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
884 			ETHER_NEXT_MULTI(step, enm);
885 		}
886 	}
887 
888 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
889 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
890 
891 	if (promisc) {
892 		/* match all packet */
893 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
894 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
895 	} else {
896 		/* don't match any packet */
897 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
898 		ENET_REG_WRITE(sc, ENET_IALR, 0);
899 	}
900 }
901 
902 static void
903 enet_ocotp_getmacaddr(uint8_t *macaddr)
904 {
905 #if NIMXOCOTP > 0
906 	uint32_t addr;
907 
908 	addr = imxocotp_read(OCOTP_MAC1);
909 	macaddr[0] = addr >> 8;
910 	macaddr[1] = addr;
911 
912 	addr = imxocotp_read(OCOTP_MAC0);
913 	macaddr[2] = addr >> 24;
914 	macaddr[3] = addr >> 16;
915 	macaddr[4] = addr >> 8;
916 	macaddr[5] = addr;
917 #endif
918 }
919 
920 static void
921 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
922 {
923 	uint32_t paddr;
924 
925 	paddr = ENET_REG_READ(sc, ENET_PALR);
926 	hwaddr[0] = paddr >> 24;
927 	hwaddr[1] = paddr >> 16;
928 	hwaddr[2] = paddr >> 8;
929 	hwaddr[3] = paddr;
930 
931 	paddr = ENET_REG_READ(sc, ENET_PAUR);
932 	hwaddr[4] = paddr >> 24;
933 	hwaddr[5] = paddr >> 16;
934 }
935 
936 static void
937 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
938 {
939 	uint32_t paddr;
940 
941 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
942 	    hwaddr[3];
943 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
944 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
945 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
946 }
947 
948 /*
949  * ifnet interfaces
950  */
951 static int
952 enet_init(struct ifnet *ifp)
953 {
954 	struct enet_softc *sc;
955 	int s, error;
956 
957 	sc = ifp->if_softc;
958 
959 	s = splnet();
960 
961 	enet_init_regs(sc, 0);
962 	enet_init_txring(sc);
963 	error = enet_init_rxring(sc);
964 	if (error != 0) {
965 		enet_drain_rxbuf(sc);
966 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
967 		goto init_failure;
968 	}
969 
970 	/* reload mac address */
971 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
972 	enet_sethwaddr(sc, sc->sc_enaddr);
973 
974 	/* program multicast address */
975 	enet_setmulti(sc);
976 
977 	/* update if_flags */
978 	ifp->if_flags |= IFF_RUNNING;
979 	ifp->if_flags &= ~IFF_OACTIVE;
980 
981 	/* update local copy of if_flags */
982 	sc->sc_if_flags = ifp->if_flags;
983 
984 	/* mii */
985 	mii_mediachg(&sc->sc_mii);
986 
987 	/* enable RX DMA */
988 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
989 
990 	sc->sc_stopping = false;
991 	callout_schedule(&sc->sc_tick_ch, hz);
992 
993  init_failure:
994 	splx(s);
995 
996 	return error;
997 }
998 
999 static void
1000 enet_start(struct ifnet *ifp)
1001 {
1002 	struct enet_softc *sc;
1003 	struct mbuf *m;
1004 	int npkt;
1005 
1006 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1007 		return;
1008 
1009 	sc = ifp->if_softc;
1010 	for (npkt = 0; ; npkt++) {
1011 		IFQ_POLL(&ifp->if_snd, m);
1012 		if (m == NULL)
1013 			break;
1014 
1015 		if (sc->sc_tx_free <= 0) {
1016 			/* no tx descriptor now... */
1017 			ifp->if_flags |= IFF_OACTIVE;
1018 			DEVICE_DPRINTF("TX descriptor is full\n");
1019 			break;
1020 		}
1021 
1022 		IFQ_DEQUEUE(&ifp->if_snd, m);
1023 
1024 		if (enet_encap_txring(sc, &m) != 0) {
1025 			/* too many mbuf chains? */
1026 			ifp->if_flags |= IFF_OACTIVE;
1027 			DEVICE_DPRINTF(
1028 			    "TX descriptor is full. dropping packet\n");
1029 			m_freem(m);
1030 			ifp->if_oerrors++;
1031 			break;
1032 		}
1033 
1034 		/* Pass the packet to any BPF listeners */
1035 		bpf_mtap(ifp, m);
1036 	}
1037 
1038 	if (npkt) {
1039 		/* enable TX DMA */
1040 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
1041 
1042 		ifp->if_timer = 5;
1043 	}
1044 }
1045 
1046 static void
1047 enet_stop(struct ifnet *ifp, int disable)
1048 {
1049 	struct enet_softc *sc;
1050 	int s;
1051 	uint32_t v;
1052 
1053 	sc = ifp->if_softc;
1054 
1055 	s = splnet();
1056 
1057 	sc->sc_stopping = true;
1058 	callout_stop(&sc->sc_tick_ch);
1059 
1060 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
1061 	v = ENET_REG_READ(sc, ENET_ECR);
1062 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
1063 
1064 	/* Mark the interface as down and cancel the watchdog timer. */
1065 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1066 	ifp->if_timer = 0;
1067 
1068 	if (disable) {
1069 		enet_drain_txbuf(sc);
1070 		enet_drain_rxbuf(sc);
1071 	}
1072 
1073 	splx(s);
1074 }
1075 
1076 static void
1077 enet_watchdog(struct ifnet *ifp)
1078 {
1079 	struct enet_softc *sc;
1080 	int s;
1081 
1082 	sc = ifp->if_softc;
1083 	s = splnet();
1084 
1085 	device_printf(sc->sc_dev, "watchdog timeout\n");
1086 	ifp->if_oerrors++;
1087 
1088 	/* salvage packets left in descriptors */
1089 	enet_tx_intr(sc);
1090 	enet_rx_intr(sc);
1091 
1092 	/* reset */
1093 	enet_stop(ifp, 1);
1094 	enet_init(ifp);
1095 
1096 	splx(s);
1097 }
1098 
1099 static void
1100 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1101 {
1102 	struct enet_softc *sc = ifp->if_softc;
1103 
1104 	ether_mediastatus(ifp, ifmr);
1105 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
1106 	    | sc->sc_flowflags;
1107 }
1108 
1109 static int
1110 enet_ifflags_cb(struct ethercom *ec)
1111 {
1112 	struct ifnet *ifp = &ec->ec_if;
1113 	struct enet_softc *sc = ifp->if_softc;
1114 	int change = ifp->if_flags ^ sc->sc_if_flags;
1115 
1116 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1117 		return ENETRESET;
1118 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1119 		return 0;
1120 
1121 	enet_setmulti(sc);
1122 
1123 	sc->sc_if_flags = ifp->if_flags;
1124 	return 0;
1125 }
1126 
1127 static int
1128 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1129 {
1130 	struct enet_softc *sc;
1131 	struct ifreq *ifr;
1132 	int s, error;
1133 	uint32_t v;
1134 
1135 	sc = ifp->if_softc;
1136 	ifr = data;
1137 
1138 	error = 0;
1139 
1140 	s = splnet();
1141 
1142 	switch (command) {
1143 	case SIOCSIFMTU:
1144 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1145 			error = EINVAL;
1146 		} else {
1147 			ifp->if_mtu = ifr->ifr_mtu;
1148 
1149 			/* set maximum frame length */
1150 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
1151 			ENET_REG_WRITE(sc, ENET_FTRL, v);
1152 			v = ENET_REG_READ(sc, ENET_RCR);
1153 			v &= ~ENET_RCR_MAX_FL(0x3fff);
1154 			v |= ENET_RCR_MAX_FL(ifp->if_mtu +
1155 			    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1156 			ENET_REG_WRITE(sc, ENET_RCR, v);
1157 		}
1158 		break;
1159 	case SIOCSIFMEDIA:
1160 	case SIOCGIFMEDIA:
1161 		/* Flow control requires full-duplex mode. */
1162 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1163 		    (ifr->ifr_media & IFM_FDX) == 0)
1164 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1165 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1166 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1167 				/* We can do both TXPAUSE and RXPAUSE. */
1168 				ifr->ifr_media |=
1169 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1170 			}
1171 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1172 		}
1173 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1174 		break;
1175 	default:
1176 		error = ether_ioctl(ifp, command, data);
1177 		if (error != ENETRESET)
1178 			break;
1179 
1180 		/* post-process */
1181 		error = 0;
1182 		switch (command) {
1183 		case SIOCSIFCAP:
1184 			error = (*ifp->if_init)(ifp);
1185 			break;
1186 		case SIOCADDMULTI:
1187 		case SIOCDELMULTI:
1188 			if (ifp->if_flags & IFF_RUNNING)
1189 				enet_setmulti(sc);
1190 			break;
1191 		}
1192 		break;
1193 	}
1194 
1195 	splx(s);
1196 
1197 	return error;
1198 }
1199 
1200 /*
1201  * for MII
1202  */
1203 static int
1204 enet_miibus_readreg(device_t dev, int phy, int reg)
1205 {
1206 	struct enet_softc *sc;
1207 	int timeout;
1208 	uint32_t val, status;
1209 
1210 	sc = device_private(dev);
1211 
1212 	/* clear MII update */
1213 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1214 
1215 	/* read command */
1216 	ENET_REG_WRITE(sc, ENET_MMFR,
1217 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1218 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1219 
1220 	/* check MII update */
1221 	for (timeout = 5000; timeout > 0; --timeout) {
1222 		status = ENET_REG_READ(sc, ENET_EIR);
1223 		if (status & ENET_EIR_MII)
1224 			break;
1225 	}
1226 	if (timeout <= 0) {
1227 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1228 		    reg);
1229 		val = -1;
1230 	} else {
1231 		val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1232 	}
1233 
1234 	return val;
1235 }
1236 
1237 static void
1238 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1239 {
1240 	struct enet_softc *sc;
1241 	int timeout;
1242 
1243 	sc = device_private(dev);
1244 
1245 	/* clear MII update */
1246 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1247 
1248 	/* write command */
1249 	ENET_REG_WRITE(sc, ENET_MMFR,
1250 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1251 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1252 	    (ENET_MMFR_DATAMASK & val));
1253 
1254 	/* check MII update */
1255 	for (timeout = 5000; timeout > 0; --timeout) {
1256 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1257 			break;
1258 	}
1259 	if (timeout <= 0) {
1260 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1261 		    reg);
1262 	}
1263 }
1264 
1265 static void
1266 enet_miibus_statchg(struct ifnet *ifp)
1267 {
1268 	struct enet_softc *sc;
1269 	struct mii_data *mii;
1270 	struct ifmedia_entry *ife;
1271 	uint32_t ecr, ecr0;
1272 	uint32_t rcr, rcr0;
1273 	uint32_t tcr, tcr0;
1274 
1275 	sc = ifp->if_softc;
1276 	mii = &sc->sc_mii;
1277 	ife = mii->mii_media.ifm_cur;
1278 
1279 	/* get current status */
1280 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1281 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1282 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1283 
1284 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1285 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1286 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1287 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1288 	}
1289 
1290 	if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1291 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1292 		rcr &= ~ENET_RCR_DRT;;	/* enable receive on transmit */
1293 	} else {
1294 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1295 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1296 	}
1297 
1298 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1299 		/*
1300 		 * need to reset because
1301 		 * FDEN can change when ECR[ETHEREN] is 0
1302 		 */
1303 		enet_init_regs(sc, 0);
1304 		return;
1305 	}
1306 
1307 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1308 	case IFM_AUTO:
1309 	case IFM_1000_T:
1310 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1311 		break;
1312 	case IFM_100_TX:
1313 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1314 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1315 		break;
1316 	case IFM_10_T:
1317 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1318 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1319 		break;
1320 	default:
1321 		ecr = ecr0;
1322 		rcr = rcr0;
1323 		tcr = tcr0;
1324 		break;
1325 	}
1326 
1327 	if (sc->sc_flowflags & IFM_FLOW)
1328 		rcr |= ENET_RCR_FCE;
1329 	else
1330 		rcr &= ~ENET_RCR_FCE;
1331 
1332 	/* update registers if need change */
1333 	if (ecr != ecr0)
1334 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1335 	if (rcr != rcr0)
1336 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1337 	if (tcr != tcr0)
1338 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1339 }
1340 
1341 /*
1342  * handling descriptors
1343  */
1344 static void
1345 enet_init_txring(struct enet_softc *sc)
1346 {
1347 	int i;
1348 
1349 	/* build TX ring */
1350 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1351 		sc->sc_txdesc_ring[i].tx_flags1_len =
1352 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1353 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1354 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1355 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1356 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1357 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1358 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1359 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1360 
1361 		TXDESC_WRITEOUT(i);
1362 	}
1363 
1364 	sc->sc_tx_free = ENET_TX_RING_CNT;
1365 	sc->sc_tx_considx = 0;
1366 	sc->sc_tx_prodidx = 0;
1367 }
1368 
1369 static int
1370 enet_init_rxring(struct enet_softc *sc)
1371 {
1372 	int i, error;
1373 
1374 	/* build RX ring */
1375 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1376 		error = enet_alloc_rxbuf(sc, i);
1377 		if (error != 0)
1378 			return error;
1379 	}
1380 
1381 	sc->sc_rx_readidx = 0;
1382 
1383 	return 0;
1384 }
1385 
1386 static int
1387 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1388 {
1389 	struct mbuf *m;
1390 	int error;
1391 
1392 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1393 
1394 	/* free mbuf if already allocated */
1395 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1396 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1397 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1398 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1399 	}
1400 
1401 	/* allocate new mbuf cluster */
1402 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1403 	if (m == NULL)
1404 		return ENOBUFS;
1405 	MCLGET(m, M_DONTWAIT);
1406 	if (!(m->m_flags & M_EXT)) {
1407 		m_freem(m);
1408 		return ENOBUFS;
1409 	}
1410 	m->m_len = MCLBYTES;
1411 	m->m_next = NULL;
1412 
1413 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1414 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1415 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1416 	if (error) {
1417 		m_freem(m);
1418 		return error;
1419 	}
1420 
1421 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1422 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1423 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1424 
1425 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1426 	enet_reset_rxdesc(sc, idx);
1427 	return 0;
1428 }
1429 
1430 static void
1431 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1432 {
1433 	uint32_t paddr;
1434 
1435 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1436 
1437 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1438 	    RXFLAGS1_E |
1439 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1440 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1441 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1442 	    RXFLAGS2_INT;
1443 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1444 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1445 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1446 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1447 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1448 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1449 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1450 
1451 	RXDESC_WRITEOUT(idx);
1452 }
1453 
1454 static void
1455 enet_drain_txbuf(struct enet_softc *sc)
1456 {
1457 	int idx;
1458 	struct enet_txsoft *txs;
1459 	struct ifnet *ifp;
1460 
1461 	ifp = &sc->sc_ethercom.ec_if;
1462 
1463 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1464 	    idx = ENET_TX_NEXTIDX(idx)) {
1465 
1466 		/* txsoft[] is used only first segment */
1467 		txs = &sc->sc_txsoft[idx];
1468 		TXDESC_READIN(idx);
1469 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1470 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1471 			bus_dmamap_unload(sc->sc_dmat,
1472 			    txs->txs_dmamap);
1473 			m_freem(txs->txs_mbuf);
1474 
1475 			ifp->if_oerrors++;
1476 		}
1477 		sc->sc_tx_free++;
1478 	}
1479 }
1480 
1481 static void
1482 enet_drain_rxbuf(struct enet_softc *sc)
1483 {
1484 	int i;
1485 
1486 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1487 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1488 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1489 			bus_dmamap_unload(sc->sc_dmat,
1490 			    sc->sc_rxsoft[i].rxs_dmamap);
1491 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1492 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1493 		}
1494 	}
1495 }
1496 
1497 static int
1498 enet_alloc_ring(struct enet_softc *sc)
1499 {
1500 	int i, error;
1501 
1502 	/*
1503 	 * build DMA maps for TX.
1504 	 * TX descriptor must be able to contain mbuf chains,
1505 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1506 	 */
1507 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1508 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1509 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1510 		    &sc->sc_txsoft[i].txs_dmamap);
1511 
1512 		if (error) {
1513 			aprint_error_dev(sc->sc_dev,
1514 			    "can't create DMA map for TX descs\n");
1515 			goto fail_1;
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * build DMA maps for RX.
1521 	 * RX descripter contains An mbuf cluster,
1522 	 * and make up a dmamap.
1523 	 */
1524 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1525 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1526 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1527 		    &sc->sc_rxsoft[i].rxs_dmamap);
1528 		if (error) {
1529 			aprint_error_dev(sc->sc_dev,
1530 			    "can't create DMA map for RX descs\n");
1531 			goto fail_2;
1532 		}
1533 	}
1534 
1535 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1536 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1537 		return -1;
1538 	memset(sc->sc_txdesc_ring, 0,
1539 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1540 
1541 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1542 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1543 		return -1;
1544 	memset(sc->sc_rxdesc_ring, 0,
1545 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1546 
1547 	return 0;
1548 
1549  fail_2:
1550 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1551 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1552 			bus_dmamap_destroy(sc->sc_dmat,
1553 			    sc->sc_rxsoft[i].rxs_dmamap);
1554 	}
1555  fail_1:
1556 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1557 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1558 			bus_dmamap_destroy(sc->sc_dmat,
1559 			    sc->sc_txsoft[i].txs_dmamap);
1560 	}
1561 	return error;
1562 }
1563 
1564 static int
1565 enet_encap_mbufalign(struct mbuf **mp)
1566 {
1567 	struct mbuf *m, *m0, *mt, *p, *x;
1568 	void *ap;
1569 	uint32_t alignoff, chiplen;
1570 
1571 	/*
1572 	 * iMX6 SoC ethernet controller requires
1573 	 * address of buffer must aligned 8, and
1574 	 * length of buffer must be greater than 10 (first fragment only?)
1575 	 */
1576 #define ALIGNBYTE	8
1577 #define MINBUFSIZE	10
1578 #define ALIGN_PTR(p, align)	\
1579 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1580 
1581 	m0 = *mp;
1582 	mt = p = NULL;
1583 	for (m = m0; m != NULL; m = m->m_next) {
1584 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1585 		if (m->m_len < (ALIGNBYTE * 2)) {
1586 			/*
1587 			 * rearrange mbuf data aligned
1588 			 *
1589 			 *        align 8 *       *       *       *       *
1590 			 *               +0123456789abcdef0123456789abcdef0
1591 			 * FROM m->m_data[___________abcdefghijklmn_______]
1592 			 *
1593 			 *               +0123456789abcdef0123456789abcdef0
1594 			 * TO   m->m_data[________abcdefghijklm___________] or
1595 			 *      m->m_data[________________abcdefghijklmn__]
1596 			 */
1597 			if ((alignoff != 0) && (m->m_len != 0)) {
1598 				chiplen = ALIGNBYTE - alignoff;
1599 				if (M_LEADINGSPACE(m) >= alignoff) {
1600 					ap = m->m_data - alignoff;
1601 					memmove(ap, m->m_data, m->m_len);
1602 					m->m_data = ap;
1603 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1604 					ap = m->m_data + chiplen;
1605 					memmove(ap, m->m_data, m->m_len);
1606 					m->m_data = ap;
1607 				} else {
1608 					/*
1609 					 * no space to align data. (M_READONLY?)
1610 					 * allocate new mbuf aligned,
1611 					 * and copy to it.
1612 					 */
1613 					MGET(x, M_DONTWAIT, m->m_type);
1614 					if (x == NULL) {
1615 						m_freem(m);
1616 						return ENOBUFS;
1617 					}
1618 					MCLAIM(x, m->m_owner);
1619 					if (m->m_flags & M_PKTHDR)
1620 						M_MOVE_PKTHDR(x, m);
1621 					x->m_len = m->m_len;
1622 					x->m_data = ALIGN_PTR(x->m_data,
1623 					    ALIGNBYTE);
1624 					memcpy(mtod(x, void *), mtod(m, void *),
1625 					    m->m_len);
1626 					p->m_next = x;
1627 					MFREE(m, x->m_next);
1628 					m = x;
1629 				}
1630 			}
1631 
1632 			/*
1633 			 * fill 1st mbuf at least 10byte
1634 			 *
1635 			 *        align 8 *       *       *       *       *
1636 			 *               +0123456789abcdef0123456789abcdef0
1637 			 * FROM m->m_data[________abcde___________________]
1638 			 *      m->m_data[__fg____________________________]
1639 			 *      m->m_data[_________________hi_____________]
1640 			 *      m->m_data[__________jk____________________]
1641 			 *      m->m_data[____l___________________________]
1642 			 *
1643 			 *               +0123456789abcdef0123456789abcdef0
1644 			 * TO   m->m_data[________abcdefghij______________]
1645 			 *      m->m_data[________________________________]
1646 			 *      m->m_data[________________________________]
1647 			 *      m->m_data[___________k____________________]
1648 			 *      m->m_data[____l___________________________]
1649 			 */
1650 			if (mt == NULL) {
1651 				mt = m;
1652 				while (mt->m_len == 0) {
1653 					mt = mt->m_next;
1654 					if (mt == NULL) {
1655 						m_freem(m);
1656 						return ENOBUFS;
1657 					}
1658 				}
1659 
1660 				/* mt = 1st mbuf, x = 2nd mbuf */
1661 				x = mt->m_next;
1662 				while (mt->m_len < MINBUFSIZE) {
1663 					if (x == NULL) {
1664 						m_freem(m);
1665 						return ENOBUFS;
1666 					}
1667 
1668 					alignoff = (uintptr_t)x->m_data &
1669 					    (ALIGNBYTE - 1);
1670 					chiplen = ALIGNBYTE - alignoff;
1671 					if (chiplen > x->m_len) {
1672 						chiplen = x->m_len;
1673 					} else if ((mt->m_len + chiplen) <
1674 					    MINBUFSIZE) {
1675 						/*
1676 						 * next mbuf should be greater
1677 						 * than ALIGNBYTE?
1678 						 */
1679 						if (x->m_len >= (chiplen +
1680 						    ALIGNBYTE * 2))
1681 							chiplen += ALIGNBYTE;
1682 						else
1683 							chiplen = x->m_len;
1684 					}
1685 
1686 					if (chiplen &&
1687 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1688 						/*
1689 						 * move data to the begining of
1690 						 * m_dat[] (aligned) to en-
1691 						 * large trailingspace
1692 						 */
1693 						if (mt->m_flags & M_EXT) {
1694 							ap = mt->m_ext.ext_buf;
1695 						} else if (mt->m_flags &
1696 						    M_PKTHDR) {
1697 							ap = mt->m_pktdat;
1698 						} else {
1699 							ap = mt->m_dat;
1700 						}
1701 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1702 						memcpy(ap, mt->m_data, mt->m_len);
1703 						mt->m_data = ap;
1704 					}
1705 
1706 					if (chiplen &&
1707 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1708 						memcpy(mt->m_data + mt->m_len,
1709 						    x->m_data, chiplen);
1710 						mt->m_len += chiplen;
1711 						m_adj(x, chiplen);
1712 					}
1713 
1714 					x = x->m_next;
1715 				}
1716 			}
1717 
1718 		} else {
1719 			mt = m;
1720 
1721 			/*
1722 			 * allocate new mbuf x, and rearrange as below;
1723 			 *
1724 			 *        align 8 *       *       *       *       *
1725 			 *               +0123456789abcdef0123456789abcdef0
1726 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1727 			 *
1728 			 *               +0123456789abcdef0123456789abcdef0
1729 			 * TO   x->m_data[________abcdefghijkl____________]
1730 			 *      m->m_data[________________________mnopq___]
1731 			 *
1732 			 */
1733 			if (alignoff != 0) {
1734 				/* at least ALIGNBYTE */
1735 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1736 
1737 				MGET(x, M_DONTWAIT, m->m_type);
1738 				if (x == NULL) {
1739 					m_freem(m);
1740 					return ENOBUFS;
1741 				}
1742 				MCLAIM(x, m->m_owner);
1743 				if (m->m_flags & M_PKTHDR)
1744 					M_MOVE_PKTHDR(x, m);
1745 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1746 				memcpy(mtod(x, void *), mtod(m, void *),
1747 				    chiplen);
1748 				x->m_len = chiplen;
1749 				x->m_next = m;
1750 				m_adj(m, chiplen);
1751 
1752 				if (p == NULL)
1753 					m0 = x;
1754 				else
1755 					p->m_next = x;
1756 			}
1757 		}
1758 		p = m;
1759 	}
1760 	*mp = m0;
1761 
1762 	return 0;
1763 }
1764 
1765 static int
1766 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1767 {
1768 	bus_dmamap_t map;
1769 	struct mbuf *m;
1770 	int csumflags, idx, i, error;
1771 	uint32_t flags1, flags2;
1772 
1773 	idx = sc->sc_tx_prodidx;
1774 	map = sc->sc_txsoft[idx].txs_dmamap;
1775 
1776 	/* align mbuf data for claim of ENET */
1777 	error = enet_encap_mbufalign(mp);
1778 	if (error != 0)
1779 		return error;
1780 
1781 	m = *mp;
1782 	csumflags = m->m_pkthdr.csum_flags;
1783 
1784 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1785 	    BUS_DMA_NOWAIT);
1786 	if (error != 0) {
1787 		device_printf(sc->sc_dev,
1788 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1789 		m_freem(m);
1790 		return error;
1791 	}
1792 
1793 	if (map->dm_nsegs > sc->sc_tx_free) {
1794 		bus_dmamap_unload(sc->sc_dmat, map);
1795 		device_printf(sc->sc_dev,
1796 		    "too many mbuf chain %d\n", map->dm_nsegs);
1797 		m_freem(m);
1798 		return ENOBUFS;
1799 	}
1800 
1801 	/* fill protocol cksum zero beforehand */
1802 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1803 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1804 		struct mbuf *m1;
1805 		int ehlen, moff;
1806 		uint16_t etype;
1807 
1808 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1809 		switch (ntohs(etype)) {
1810 		case ETHERTYPE_IP:
1811 		case ETHERTYPE_IPV6:
1812 			ehlen = ETHER_HDR_LEN;
1813 			break;
1814 		case ETHERTYPE_VLAN:
1815 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1816 			break;
1817 		default:
1818 			ehlen = 0;
1819 			break;
1820 		}
1821 
1822 		if (ehlen) {
1823 			m1 = m_getptr(m, ehlen +
1824 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1825 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data),
1826 			    &moff);
1827 			if (m1 != NULL)
1828 				*(uint16_t *)(mtod(m1, char *) + moff) = 0;
1829 		}
1830 	}
1831 
1832 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1833 	    BUS_DMASYNC_PREWRITE);
1834 
1835 	for (i = 0; i < map->dm_nsegs; i++) {
1836 		flags1 = TXFLAGS1_R;
1837 		flags2 = 0;
1838 
1839 		if (i == 0) {
1840 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1841 			sc->sc_txsoft[idx].txs_mbuf = m;
1842 		}
1843 
1844 		/* checksum offloading */
1845 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1846 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1847 			flags2 |= TXFLAGS2_PINS;
1848 		if (csumflags & (M_CSUM_IPv4))
1849 			flags2 |= TXFLAGS2_IINS;
1850 
1851 		if (i == map->dm_nsegs - 1) {
1852 			/* mark last segment */
1853 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1854 			flags2 |= TXFLAGS2_INT;
1855 		}
1856 		if (idx == ENET_TX_RING_CNT - 1) {
1857 			/* mark end of ring */
1858 			flags1 |= TXFLAGS1_W;
1859 		}
1860 
1861 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1862 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1863 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1864 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1865 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1866 
1867 		TXDESC_WRITEOUT(idx);
1868 
1869 		idx = ENET_TX_NEXTIDX(idx);
1870 		sc->sc_tx_free--;
1871 	}
1872 
1873 	sc->sc_tx_prodidx = idx;
1874 
1875 	return 0;
1876 }
1877 
1878 /*
1879  * device initialize
1880  */
1881 static int
1882 enet_init_plls(struct enet_softc *sc)
1883 {
1884 #if NIMXCCM > 0
1885 	/* PLL power up */
1886 	if (imx6_pll_power(CCM_ANALOG_PLL_ENET, 1) != 0) {
1887 		aprint_error_dev(sc->sc_dev,
1888 		    "couldn't enable CCM_ANALOG_PLL_ENET\n");
1889 		return -1;
1890 	}
1891 #endif
1892 
1893 	return 0;
1894 }
1895 
1896 static int
1897 enet_init_regs(struct enet_softc *sc, int init)
1898 {
1899 	struct mii_data *mii;
1900 	struct ifmedia_entry *ife;
1901 	paddr_t paddr;
1902 	uint32_t val;
1903 	int fulldup, ecr_speed, rcr_speed, flowctrl;
1904 
1905 	if (init) {
1906 		fulldup = 1;
1907 		ecr_speed = ENET_ECR_SPEED;
1908 		rcr_speed = 0;
1909 		flowctrl = 0;
1910 	} else {
1911 		mii = &sc->sc_mii;
1912 		ife = mii->mii_media.ifm_cur;
1913 
1914 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1915 			fulldup = 1;
1916 		else
1917 			fulldup = 0;
1918 
1919 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1920 		case IFM_10_T:
1921 			ecr_speed = 0;
1922 			rcr_speed = ENET_RCR_RMII_10T;
1923 			break;
1924 		case IFM_100_TX:
1925 			ecr_speed = 0;
1926 			rcr_speed = 0;
1927 			break;
1928 		default:
1929 			ecr_speed = ENET_ECR_SPEED;
1930 			rcr_speed = 0;
1931 			break;
1932 		}
1933 
1934 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1935 	}
1936 
1937 	/* reset */
1938 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1939 
1940 	/* mask and clear all interrupt */
1941 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1942 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1943 
1944 	/* full duplex */
1945 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1946 
1947 	/* clear and enable MIB register */
1948 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1949 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1950 
1951 	/* MII speed setup. MDCclk(=2.5MHz) = PLL6clk/((val+1)*2) */
1952 	val = (imx6_get_clock(IMX6CLK_PLL6) / 500000 - 1) / 10;
1953 	ENET_REG_WRITE(sc, ENET_MSCR, val);
1954 
1955 	/* Opcode/Pause Duration */
1956 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1957 
1958 	/* Receive FIFO */
1959 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1960 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1961 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1962 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1963 
1964 	/* Transmit FIFO */
1965 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1966 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1967 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1968 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1969 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1970 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1971 
1972 	/* hardware checksum is default off (override in TX descripter) */
1973 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1974 
1975 	/*
1976 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1977 	 * and don't discard checksum error
1978 	 */
1979 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1980 
1981 	/* maximum frame size */
1982 	val = ENET_DEFAULT_PKT_LEN;
1983 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1984 	ENET_REG_WRITE(sc, ENET_RCR,
1985 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1986 	    ENET_RCR_RGMII_EN |			/* use RGMII */
1987 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1988 	    rcr_speed |
1989 	    (fulldup ? 0 : ENET_RCR_DRT) |
1990 	    ENET_RCR_MAX_FL(val));
1991 
1992 	/* Maximum Receive BufSize per one descriptor */
1993 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1994 
1995 
1996 	/* TX/RX Descriptor Physical Address */
1997 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1998 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1999 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
2000 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
2001 	/* sync cache */
2002 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
2003 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2004 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
2005 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2006 
2007 	/* enable interrupts */
2008 	ENET_REG_WRITE(sc, ENET_EIMR,
2009 	    ENET_EIR_TXF |
2010 	    ENET_EIR_RXF |
2011 	    ENET_EIR_EBERR |
2012 	    0);
2013 
2014 	/* enable ether */
2015 	ENET_REG_WRITE(sc, ENET_ECR,
2016 #if _BYTE_ORDER == _LITTLE_ENDIAN
2017 	    ENET_ECR_DBSWP |
2018 #endif
2019 	    ENET_ECR_SPEED |	/* default 1000Mbps mode */
2020 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
2021 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
2022 
2023 	return 0;
2024 }
2025 
2026 static int
2027 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
2028               bus_dmamap_t *mapp)
2029 {
2030 	bus_dma_segment_t seglist[1];
2031 	int nsegs, error;
2032 
2033 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
2034 	    1, &nsegs, M_NOWAIT)) != 0) {
2035 		device_printf(sc->sc_dev,
2036 		    "unable to allocate DMA buffer, error=%d\n", error);
2037 		goto fail_alloc;
2038 	}
2039 
2040 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
2041 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2042 		device_printf(sc->sc_dev,
2043 		    "unable to map DMA buffer, error=%d\n",
2044 		    error);
2045 		goto fail_map;
2046 	}
2047 
2048 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2049 	    BUS_DMA_NOWAIT, mapp)) != 0) {
2050 		device_printf(sc->sc_dev,
2051 		    "unable to create DMA map, error=%d\n", error);
2052 		goto fail_create;
2053 	}
2054 
2055 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
2056 	    BUS_DMA_NOWAIT)) != 0) {
2057 		aprint_error_dev(sc->sc_dev,
2058 		    "unable to load DMA map, error=%d\n", error);
2059 		goto fail_load;
2060 	}
2061 
2062 	return 0;
2063 
2064  fail_load:
2065 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
2066  fail_create:
2067 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
2068  fail_map:
2069 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
2070  fail_alloc:
2071 	return error;
2072 }
2073