xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision 7cf3371d55312f525e215559f184f32f105fde75)
1 /*	$NetBSD: if_enet.c,v 1.24 2019/07/23 06:36:36 hkenken Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu <ryo@nerv.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.24 2019/07/23 06:36:36 hkenken Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45 
46 #include <lib/libkern/libkern.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64 
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67 
68 #define ENET_TICK	hz
69 
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...)	\
73 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77 
78 
79 #define RXDESC_MAXBUFSIZE	0x07f0
80 				/* ENET does not work greather than 0x0800... */
81 
82 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN	1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
89 #define MTU2FRAMESIZE(n)	\
90 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91 
92 
93 #define ENET_MAX_PKT_NSEGS	64
94 
95 #define ENET_TX_NEXTIDX(idx)	\
96 	(((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx)	\
98 	(((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99 
100 #define TXDESC_WRITEOUT(idx)					\
101 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
102 	    sizeof(struct enet_txdesc) * (idx),			\
103 	    sizeof(struct enet_txdesc),				\
104 	    BUS_DMASYNC_PREWRITE)
105 
106 #define TXDESC_READIN(idx)					\
107 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
108 	    sizeof(struct enet_txdesc) * (idx),			\
109 	    sizeof(struct enet_txdesc),				\
110 	    BUS_DMASYNC_PREREAD)
111 
112 #define RXDESC_WRITEOUT(idx)					\
113 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
114 	    sizeof(struct enet_rxdesc) * (idx),			\
115 	    sizeof(struct enet_rxdesc),				\
116 	    BUS_DMASYNC_PREWRITE)
117 
118 #define RXDESC_READIN(idx)					\
119 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
120 	    sizeof(struct enet_rxdesc) * (idx),			\
121 	    sizeof(struct enet_rxdesc),				\
122 	    BUS_DMASYNC_PREREAD)
123 
124 #define ENET_REG_READ(sc, reg)					\
125 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126 
127 #define ENET_REG_WRITE(sc, reg, value)				\
128 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129 
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134 
135 static void enet_tick(void *);
136 static int enet_tx_intr(void *);
137 static int enet_rx_intr(void *);
138 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
139 			 int);
140 
141 static void enet_start(struct ifnet *);
142 static int enet_ifflags_cb(struct ethercom *);
143 static int enet_ioctl(struct ifnet *, u_long, void *);
144 static int enet_init(struct ifnet *);
145 static void enet_stop(struct ifnet *, int);
146 static void enet_watchdog(struct ifnet *);
147 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
148 
149 static int enet_miibus_readreg(device_t, int, int, uint16_t *);
150 static int enet_miibus_writereg(device_t, int, int, uint16_t);
151 static void enet_miibus_statchg(struct ifnet *);
152 
153 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_setmulti(struct enet_softc *);
156 static int enet_encap_mbufalign(struct mbuf **);
157 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
158 static int enet_init_regs(struct enet_softc *, int);
159 static int enet_alloc_ring(struct enet_softc *);
160 static void enet_init_txring(struct enet_softc *);
161 static int enet_init_rxring(struct enet_softc *);
162 static void enet_reset_rxdesc(struct enet_softc *, int);
163 static int enet_alloc_rxbuf(struct enet_softc *, int);
164 static void enet_drain_txbuf(struct enet_softc *);
165 static void enet_drain_rxbuf(struct enet_softc *);
166 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
167 			  bus_dmamap_t *);
168 
169 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
170     enet_match, enet_attach, NULL, NULL);
171 
172 int
173 enet_attach_common(device_t self)
174 {
175 	struct enet_softc *sc = device_private(self);
176 	struct ifnet *ifp;
177 	struct mii_data * const mii = &sc->sc_mii;
178 
179 	/* allocate dma buffer */
180 	if (enet_alloc_ring(sc))
181 		return -1;
182 
183 #define IS_ENADDR_ZERO(enaddr)				\
184 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
185 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
186 
187 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
188 		/* by any chance, mac-address is already set by bootloader? */
189 		enet_gethwaddr(sc, sc->sc_enaddr);
190 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
191 			/* give up. set randomly */
192 			uint32_t eaddr = random();
193 			/* not multicast */
194 			sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
195 			sc->sc_enaddr[1] = eaddr >> 16;
196 			sc->sc_enaddr[2] = eaddr >> 8;
197 			sc->sc_enaddr[3] = eaddr;
198 			eaddr = random();
199 			sc->sc_enaddr[4] = eaddr >> 8;
200 			sc->sc_enaddr[5] = eaddr;
201 
202 			aprint_error_dev(self,
203 			    "cannot get mac address. set randomly\n");
204 		}
205 	}
206 	enet_sethwaddr(sc, sc->sc_enaddr);
207 
208 	aprint_normal_dev(self, "Ethernet address %s\n",
209 	    ether_sprintf(sc->sc_enaddr));
210 
211 	enet_init_regs(sc, 1);
212 
213 	/* callout will be scheduled from enet_init() */
214 	callout_init(&sc->sc_tick_ch, 0);
215 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
216 
217 	/* setup ifp */
218 	ifp = &sc->sc_ethercom.ec_if;
219 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
220 	ifp->if_softc = sc;
221 	ifp->if_mtu = ETHERMTU;
222 	ifp->if_baudrate = IF_Gbps(1);
223 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
224 	ifp->if_ioctl = enet_ioctl;
225 	ifp->if_start = enet_start;
226 	ifp->if_init = enet_init;
227 	ifp->if_stop = enet_stop;
228 	ifp->if_watchdog = enet_watchdog;
229 
230 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
231 #ifdef ENET_SUPPORT_JUMBO
232 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
233 #endif
234 
235 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
236 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
237 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
238 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
239 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
240 
241 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
242 	IFQ_SET_READY(&ifp->if_snd);
243 
244 	/* setup MII */
245 	sc->sc_ethercom.ec_mii = mii;
246 	mii->mii_ifp = ifp;
247 	mii->mii_readreg = enet_miibus_readreg;
248 	mii->mii_writereg = enet_miibus_writereg;
249 	mii->mii_statchg = enet_miibus_statchg;
250 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, enet_mediastatus);
251 
252 	/* try to attach PHY */
253 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
254 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
255 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
256 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
257 	} else {
258 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
259 	}
260 
261 	if_attach(ifp);
262 	ether_ifattach(ifp, sc->sc_enaddr);
263 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
264 
265 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
266 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
267 
268 #ifdef ENET_EVENT_COUNTER
269 	enet_attach_evcnt(sc);
270 #endif
271 
272 	sc->sc_stopping = false;
273 
274 	return 0;
275 }
276 
277 #ifdef ENET_EVENT_COUNTER
278 static void
279 enet_attach_evcnt(struct enet_softc *sc)
280 {
281 	const char *xname;
282 
283 	xname = device_xname(sc->sc_dev);
284 
285 #define ENET_EVCNT_ATTACH(name)	\
286 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
287 	    NULL, xname, #name);
288 
289 	ENET_EVCNT_ATTACH(t_drop);
290 	ENET_EVCNT_ATTACH(t_packets);
291 	ENET_EVCNT_ATTACH(t_bc_pkt);
292 	ENET_EVCNT_ATTACH(t_mc_pkt);
293 	ENET_EVCNT_ATTACH(t_crc_align);
294 	ENET_EVCNT_ATTACH(t_undersize);
295 	ENET_EVCNT_ATTACH(t_oversize);
296 	ENET_EVCNT_ATTACH(t_frag);
297 	ENET_EVCNT_ATTACH(t_jab);
298 	ENET_EVCNT_ATTACH(t_col);
299 	ENET_EVCNT_ATTACH(t_p64);
300 	ENET_EVCNT_ATTACH(t_p65to127n);
301 	ENET_EVCNT_ATTACH(t_p128to255n);
302 	ENET_EVCNT_ATTACH(t_p256to511);
303 	ENET_EVCNT_ATTACH(t_p512to1023);
304 	ENET_EVCNT_ATTACH(t_p1024to2047);
305 	ENET_EVCNT_ATTACH(t_p_gte2048);
306 	ENET_EVCNT_ATTACH(t_octets);
307 	ENET_EVCNT_ATTACH(r_packets);
308 	ENET_EVCNT_ATTACH(r_bc_pkt);
309 	ENET_EVCNT_ATTACH(r_mc_pkt);
310 	ENET_EVCNT_ATTACH(r_crc_align);
311 	ENET_EVCNT_ATTACH(r_undersize);
312 	ENET_EVCNT_ATTACH(r_oversize);
313 	ENET_EVCNT_ATTACH(r_frag);
314 	ENET_EVCNT_ATTACH(r_jab);
315 	ENET_EVCNT_ATTACH(r_p64);
316 	ENET_EVCNT_ATTACH(r_p65to127);
317 	ENET_EVCNT_ATTACH(r_p128to255);
318 	ENET_EVCNT_ATTACH(r_p256to511);
319 	ENET_EVCNT_ATTACH(r_p512to1023);
320 	ENET_EVCNT_ATTACH(r_p1024to2047);
321 	ENET_EVCNT_ATTACH(r_p_gte2048);
322 	ENET_EVCNT_ATTACH(r_octets);
323 }
324 
325 static void
326 enet_update_evcnt(struct enet_softc *sc)
327 {
328 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
329 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
330 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
331 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
332 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
333 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
334 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
335 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
336 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
337 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
338 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
339 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
340 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
341 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
342 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
343 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
344 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
345 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
346 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
347 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
348 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
349 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
350 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
351 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
352 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
353 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
354 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
355 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
356 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
357 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
358 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
359 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
360 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
361 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
362 }
363 #endif /* ENET_EVENT_COUNTER */
364 
365 static void
366 enet_tick(void *arg)
367 {
368 	struct enet_softc *sc;
369 	struct mii_data *mii;
370 	struct ifnet *ifp;
371 	int s;
372 
373 	sc = arg;
374 	mii = &sc->sc_mii;
375 	ifp = &sc->sc_ethercom.ec_if;
376 
377 	s = splnet();
378 
379 	if (sc->sc_stopping)
380 		goto out;
381 
382 #ifdef ENET_EVENT_COUNTER
383 	enet_update_evcnt(sc);
384 #endif
385 
386 	/* update counters */
387 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
388 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
389 	ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
390 
391 	/* clear counters */
392 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
393 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
394 
395 	mii_tick(mii);
396  out:
397 
398 	if (!sc->sc_stopping)
399 		callout_schedule(&sc->sc_tick_ch, ENET_TICK);
400 
401 	splx(s);
402 }
403 
404 int
405 enet_intr(void *arg)
406 {
407 	struct enet_softc *sc;
408 	struct ifnet *ifp;
409 	uint32_t status;
410 
411 	sc = arg;
412 	status = ENET_REG_READ(sc, ENET_EIR);
413 
414 	if (sc->sc_imxtype == 7) {
415 		if (status & (ENET_EIR_TXF | ENET_EIR_TXF1 | ENET_EIR_TXF2))
416 			enet_tx_intr(arg);
417 		if (status & (ENET_EIR_RXF | ENET_EIR_RXF1 | ENET_EIR_RXF2))
418 			enet_rx_intr(arg);
419 	} else {
420 		if (status & ENET_EIR_TXF)
421 			enet_tx_intr(arg);
422 		if (status & ENET_EIR_RXF)
423 			enet_rx_intr(arg);
424 	}
425 
426 	if (status & ENET_EIR_EBERR) {
427 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
428 		ifp = &sc->sc_ethercom.ec_if;
429 		enet_stop(ifp, 1);
430 		enet_init(ifp);
431 	} else {
432 		ENET_REG_WRITE(sc, ENET_EIR, status);
433 	}
434 
435 	rnd_add_uint32(&sc->sc_rnd_source, status);
436 
437 	return 1;
438 }
439 
440 static int
441 enet_tx_intr(void *arg)
442 {
443 	struct enet_softc *sc;
444 	struct ifnet *ifp;
445 	struct enet_txsoft *txs;
446 	int idx;
447 
448 	sc = (struct enet_softc *)arg;
449 	ifp = &sc->sc_ethercom.ec_if;
450 
451 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
452 	    idx = ENET_TX_NEXTIDX(idx)) {
453 
454 		txs = &sc->sc_txsoft[idx];
455 
456 		TXDESC_READIN(idx);
457 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
458 			/* This TX Descriptor has not been transmitted yet */
459 			break;
460 		}
461 
462 		/* txsoft is available on first segment (TXFLAGS1_T1) */
463 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
464 			bus_dmamap_unload(sc->sc_dmat,
465 			    txs->txs_dmamap);
466 			m_freem(txs->txs_mbuf);
467 			ifp->if_opackets++;
468 		}
469 
470 		/* checking error */
471 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
472 			uint32_t flags2;
473 
474 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
475 
476 			if (flags2 & (TXFLAGS2_TXE |
477 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
478 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
479 #ifdef DEBUG_ENET
480 				if (enet_debug) {
481 					char flagsbuf[128];
482 
483 					snprintb(flagsbuf, sizeof(flagsbuf),
484 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
485 					    "\15COLLISION" "\14FRAME"
486 					    "\13LATECOLLISION" "\12OVERFLOW",
487 					    flags2);
488 
489 					device_printf(sc->sc_dev,
490 					    "txdesc[%d]: transmit error: "
491 					    "flags2=%s\n", idx, flagsbuf);
492 				}
493 #endif /* DEBUG_ENET */
494 				ifp->if_oerrors++;
495 			}
496 		}
497 
498 		sc->sc_tx_free++;
499 	}
500 	sc->sc_tx_considx = idx;
501 
502 	if (sc->sc_tx_free > 0)
503 		ifp->if_flags &= ~IFF_OACTIVE;
504 
505 	/*
506 	 * No more pending TX descriptor,
507 	 * cancel the watchdog timer.
508 	 */
509 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
510 		ifp->if_timer = 0;
511 
512 	return 1;
513 }
514 
515 static int
516 enet_rx_intr(void *arg)
517 {
518 	struct enet_softc *sc;
519 	struct ifnet *ifp;
520 	struct enet_rxsoft *rxs;
521 	int idx, len, amount;
522 	uint32_t flags1, flags2;
523 	struct mbuf *m, *m0, *mprev;
524 
525 	sc = arg;
526 	ifp = &sc->sc_ethercom.ec_if;
527 
528 	m0 = mprev = NULL;
529 	amount = 0;
530 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
531 
532 		rxs = &sc->sc_rxsoft[idx];
533 
534 		RXDESC_READIN(idx);
535 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
536 			/* This RX Descriptor has not been received yet */
537 			break;
538 		}
539 
540 		/*
541 		 * build mbuf from RX Descriptor if needed
542 		 */
543 		m = rxs->rxs_mbuf;
544 		rxs->rxs_mbuf = NULL;
545 
546 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
547 		len = RXFLAGS1_LEN(flags1);
548 
549 #define RACC_SHIFT16	2
550 		if (m0 == NULL) {
551 			m0 = m;
552 			m_adj(m0, RACC_SHIFT16);
553 			len -= RACC_SHIFT16;
554 			m->m_len = len;
555 			amount = len;
556 		} else {
557 			if (flags1 & RXFLAGS1_L)
558 				len = len - amount - RACC_SHIFT16;
559 
560 			m->m_len = len;
561 			amount += len;
562 			if (m->m_flags & M_PKTHDR)
563 				m_remove_pkthdr(m);
564 			mprev->m_next = m;
565 		}
566 		mprev = m;
567 
568 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
569 
570 		if (flags1 & RXFLAGS1_L) {
571 			/* last buffer */
572 			if ((amount < ETHER_HDR_LEN) ||
573 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
574 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
575 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
576 			    RXFLAGS2_CE)))) {
577 
578 #ifdef DEBUG_ENET
579 				if (enet_debug) {
580 					char flags1buf[128], flags2buf[128];
581 					snprintb(flags1buf, sizeof(flags1buf),
582 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
583 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
584 					    "\21TRUNCATED", flags1);
585 					snprintb(flags2buf, sizeof(flags2buf),
586 					    "\20" "\40MAC" "\33PHY"
587 					    "\32COLLISION", flags2);
588 
589 					DEVICE_DPRINTF(
590 					    "rxdesc[%d]: receive error: "
591 					    "flags1=%s,flags2=%s,len=%d\n",
592 					    idx, flags1buf, flags2buf, amount);
593 				}
594 #endif /* DEBUG_ENET */
595 				ifp->if_ierrors++;
596 				m_freem(m0);
597 
598 			} else {
599 				/* packet receive ok */
600 				m_set_rcvif(m0, ifp);
601 				m0->m_pkthdr.len = amount;
602 
603 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
604 				    rxs->rxs_dmamap->dm_mapsize,
605 				    BUS_DMASYNC_PREREAD);
606 
607 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
608 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
609 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
610 					enet_rx_csum(sc, ifp, m0, idx);
611 
612 				if_percpuq_enqueue(ifp->if_percpuq, m0);
613 			}
614 
615 			m0 = NULL;
616 			mprev = NULL;
617 			amount = 0;
618 
619 		} else {
620 			/* continued from previous buffer */
621 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
622 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
623 		}
624 
625 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
626 		if (enet_alloc_rxbuf(sc, idx) != 0) {
627 			panic("enet_alloc_rxbuf NULL\n");
628 		}
629 	}
630 	sc->sc_rx_readidx = idx;
631 
632 	/* re-enable RX DMA to make sure */
633 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
634 
635 	return 1;
636 }
637 
638 static void
639 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
640 {
641 	uint32_t flags2;
642 	uint8_t proto;
643 
644 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
645 
646 	if (flags2 & RXFLAGS2_IPV6) {
647 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
648 
649 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
650 		if ((proto == IPPROTO_TCP) &&
651 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
652 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
653 		else if ((proto == IPPROTO_UDP) &&
654 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
655 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
656 		else
657 			return;
658 
659 		/* IPv6 protocol checksum error */
660 		if (flags2 & RXFLAGS2_PCR)
661 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
662 
663 	} else {
664 		struct ether_header *eh;
665 		uint8_t *ip;
666 
667 		eh = mtod(m, struct ether_header *);
668 
669 		/* XXX: is an IPv4? */
670 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
671 			return;
672 		ip = (uint8_t *)(eh + 1);
673 		if ((ip[0] & 0xf0) == 0x40)
674 			return;
675 
676 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
677 		if (flags2 & RXFLAGS2_ICE) {
678 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
679 				m->m_pkthdr.csum_flags |=
680 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
681 			}
682 		} else {
683 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
684 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
685 			}
686 
687 			/*
688 			 * PCR is valid when
689 			 * ICE == 0 and FRAG == 0
690 			 */
691 			if (flags2 & RXFLAGS2_FRAG)
692 				return;
693 
694 			/*
695 			 * PCR is valid when proto is TCP or UDP
696 			 */
697 			if ((proto == IPPROTO_TCP) &&
698 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
699 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
700 			else if ((proto == IPPROTO_UDP) &&
701 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
702 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
703 			else
704 				return;
705 
706 			/* IPv4 protocol cksum error */
707 			if (flags2 & RXFLAGS2_PCR)
708 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
709 		}
710 	}
711 }
712 
713 static void
714 enet_setmulti(struct enet_softc *sc)
715 {
716 	struct ethercom *ec = &sc->sc_ethercom;
717 	struct ifnet *ifp = &ec->ec_if;
718 	struct ether_multi *enm;
719 	struct ether_multistep step;
720 	int promisc;
721 	uint32_t crc;
722 	uint32_t gaddr[2];
723 
724 	promisc = 0;
725 	if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
726 		ifp->if_flags |= IFF_ALLMULTI;
727 		if (ifp->if_flags & IFF_PROMISC)
728 			promisc = 1;
729 		gaddr[0] = gaddr[1] = 0xffffffff;
730 	} else {
731 		gaddr[0] = gaddr[1] = 0;
732 
733 		ETHER_LOCK(ec);
734 		ETHER_FIRST_MULTI(step, ec, enm);
735 		while (enm != NULL) {
736 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
737 			gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
738 			ETHER_NEXT_MULTI(step, enm);
739 		}
740 		ETHER_UNLOCK(ec);
741 	}
742 
743 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
744 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
745 
746 	if (promisc) {
747 		/* match all packet */
748 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
749 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
750 	} else {
751 		/* don't match any packet */
752 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
753 		ENET_REG_WRITE(sc, ENET_IALR, 0);
754 	}
755 }
756 
757 static void
758 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
759 {
760 	uint32_t paddr;
761 
762 	paddr = ENET_REG_READ(sc, ENET_PALR);
763 	hwaddr[0] = paddr >> 24;
764 	hwaddr[1] = paddr >> 16;
765 	hwaddr[2] = paddr >> 8;
766 	hwaddr[3] = paddr;
767 
768 	paddr = ENET_REG_READ(sc, ENET_PAUR);
769 	hwaddr[4] = paddr >> 24;
770 	hwaddr[5] = paddr >> 16;
771 }
772 
773 static void
774 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
775 {
776 	uint32_t paddr;
777 
778 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
779 	    hwaddr[3];
780 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
781 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
782 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
783 }
784 
785 /*
786  * ifnet interfaces
787  */
788 static int
789 enet_init(struct ifnet *ifp)
790 {
791 	struct enet_softc *sc;
792 	int s, error;
793 
794 	sc = ifp->if_softc;
795 
796 	s = splnet();
797 
798 	enet_init_regs(sc, 0);
799 	enet_init_txring(sc);
800 	error = enet_init_rxring(sc);
801 	if (error != 0) {
802 		enet_drain_rxbuf(sc);
803 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
804 		goto init_failure;
805 	}
806 
807 	/* reload mac address */
808 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
809 	enet_sethwaddr(sc, sc->sc_enaddr);
810 
811 	/* program multicast address */
812 	enet_setmulti(sc);
813 
814 	/* update if_flags */
815 	ifp->if_flags |= IFF_RUNNING;
816 	ifp->if_flags &= ~IFF_OACTIVE;
817 
818 	/* update local copy of if_flags */
819 	sc->sc_if_flags = ifp->if_flags;
820 
821 	/* mii */
822 	mii_mediachg(&sc->sc_mii);
823 
824 	/* enable RX DMA */
825 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
826 
827 	sc->sc_stopping = false;
828 	callout_schedule(&sc->sc_tick_ch, ENET_TICK);
829 
830  init_failure:
831 	splx(s);
832 
833 	return error;
834 }
835 
836 static void
837 enet_start(struct ifnet *ifp)
838 {
839 	struct enet_softc *sc;
840 	struct mbuf *m;
841 	int npkt;
842 
843 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
844 		return;
845 
846 	sc = ifp->if_softc;
847 	for (npkt = 0; ; npkt++) {
848 		IFQ_POLL(&ifp->if_snd, m);
849 		if (m == NULL)
850 			break;
851 
852 		if (sc->sc_tx_free <= 0) {
853 			/* no tx descriptor now... */
854 			ifp->if_flags |= IFF_OACTIVE;
855 			DEVICE_DPRINTF("TX descriptor is full\n");
856 			break;
857 		}
858 
859 		IFQ_DEQUEUE(&ifp->if_snd, m);
860 
861 		if (enet_encap_txring(sc, &m) != 0) {
862 			/* too many mbuf chains? */
863 			ifp->if_flags |= IFF_OACTIVE;
864 			DEVICE_DPRINTF(
865 			    "TX descriptor is full. dropping packet\n");
866 			m_freem(m);
867 			ifp->if_oerrors++;
868 			break;
869 		}
870 
871 		/* Pass the packet to any BPF listeners */
872 		bpf_mtap(ifp, m, BPF_D_OUT);
873 	}
874 
875 	if (npkt) {
876 		/* enable TX DMA */
877 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
878 
879 		ifp->if_timer = 5;
880 	}
881 }
882 
883 static void
884 enet_stop(struct ifnet *ifp, int disable)
885 {
886 	struct enet_softc *sc;
887 	int s;
888 	uint32_t v;
889 
890 	sc = ifp->if_softc;
891 
892 	s = splnet();
893 
894 	sc->sc_stopping = true;
895 	callout_stop(&sc->sc_tick_ch);
896 
897 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
898 	v = ENET_REG_READ(sc, ENET_ECR);
899 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
900 
901 	/* Mark the interface as down and cancel the watchdog timer. */
902 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
903 	ifp->if_timer = 0;
904 
905 	if (disable) {
906 		enet_drain_txbuf(sc);
907 		enet_drain_rxbuf(sc);
908 	}
909 
910 	splx(s);
911 }
912 
913 static void
914 enet_watchdog(struct ifnet *ifp)
915 {
916 	struct enet_softc *sc;
917 	int s;
918 
919 	sc = ifp->if_softc;
920 	s = splnet();
921 
922 	device_printf(sc->sc_dev, "watchdog timeout\n");
923 	ifp->if_oerrors++;
924 
925 	/* salvage packets left in descriptors */
926 	enet_tx_intr(sc);
927 	enet_rx_intr(sc);
928 
929 	/* reset */
930 	enet_stop(ifp, 1);
931 	enet_init(ifp);
932 
933 	splx(s);
934 }
935 
936 static void
937 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
938 {
939 	struct enet_softc *sc = ifp->if_softc;
940 
941 	ether_mediastatus(ifp, ifmr);
942 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
943 	    | sc->sc_flowflags;
944 }
945 
946 static int
947 enet_ifflags_cb(struct ethercom *ec)
948 {
949 	struct ifnet *ifp = &ec->ec_if;
950 	struct enet_softc *sc = ifp->if_softc;
951 	int change = ifp->if_flags ^ sc->sc_if_flags;
952 
953 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
954 		return ENETRESET;
955 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
956 		return 0;
957 
958 	enet_setmulti(sc);
959 
960 	sc->sc_if_flags = ifp->if_flags;
961 	return 0;
962 }
963 
964 static int
965 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
966 {
967 	struct enet_softc *sc;
968 	struct ifreq *ifr;
969 	int s, error;
970 	uint32_t v;
971 
972 	sc = ifp->if_softc;
973 	ifr = data;
974 
975 	error = 0;
976 
977 	s = splnet();
978 
979 	switch (command) {
980 	case SIOCSIFMTU:
981 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
982 			error = EINVAL;
983 		} else {
984 			ifp->if_mtu = ifr->ifr_mtu;
985 
986 			/* set maximum frame length */
987 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
988 			ENET_REG_WRITE(sc, ENET_FTRL, v);
989 			v = ENET_REG_READ(sc, ENET_RCR);
990 			v &= ~ENET_RCR_MAX_FL(0x3fff);
991 			v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
992 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
993 			ENET_REG_WRITE(sc, ENET_RCR, v);
994 		}
995 		break;
996 	case SIOCSIFMEDIA:
997 		/* Flow control requires full-duplex mode. */
998 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
999 		    (ifr->ifr_media & IFM_FDX) == 0)
1000 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1001 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1002 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1003 				/* We can do both TXPAUSE and RXPAUSE. */
1004 				ifr->ifr_media |=
1005 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1006 			}
1007 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1008 		}
1009 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1010 		break;
1011 	default:
1012 		error = ether_ioctl(ifp, command, data);
1013 		if (error != ENETRESET)
1014 			break;
1015 
1016 		/* post-process */
1017 		error = 0;
1018 		switch (command) {
1019 		case SIOCSIFCAP:
1020 			error = (*ifp->if_init)(ifp);
1021 			break;
1022 		case SIOCADDMULTI:
1023 		case SIOCDELMULTI:
1024 			if (ifp->if_flags & IFF_RUNNING)
1025 				enet_setmulti(sc);
1026 			break;
1027 		}
1028 		break;
1029 	}
1030 
1031 	splx(s);
1032 
1033 	return error;
1034 }
1035 
1036 /*
1037  * for MII
1038  */
1039 static int
1040 enet_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1041 {
1042 	struct enet_softc *sc;
1043 	int timeout;
1044 	uint32_t status;
1045 
1046 	sc = device_private(dev);
1047 
1048 	/* clear MII update */
1049 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1050 
1051 	/* read command */
1052 	ENET_REG_WRITE(sc, ENET_MMFR,
1053 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1054 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1055 
1056 	/* check MII update */
1057 	for (timeout = 5000; timeout > 0; --timeout) {
1058 		status = ENET_REG_READ(sc, ENET_EIR);
1059 		if (status & ENET_EIR_MII)
1060 			break;
1061 	}
1062 	if (timeout <= 0) {
1063 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1064 		    reg);
1065 		return ETIMEDOUT;
1066 	} else
1067 		*val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1068 
1069 	return 0;
1070 }
1071 
1072 static int
1073 enet_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1074 {
1075 	struct enet_softc *sc;
1076 	int timeout;
1077 
1078 	sc = device_private(dev);
1079 
1080 	/* clear MII update */
1081 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1082 
1083 	/* write command */
1084 	ENET_REG_WRITE(sc, ENET_MMFR,
1085 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1086 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1087 	    (ENET_MMFR_DATAMASK & val));
1088 
1089 	/* check MII update */
1090 	for (timeout = 5000; timeout > 0; --timeout) {
1091 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1092 			break;
1093 	}
1094 	if (timeout <= 0) {
1095 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n", reg);
1096 		return ETIMEDOUT;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static void
1103 enet_miibus_statchg(struct ifnet *ifp)
1104 {
1105 	struct enet_softc *sc;
1106 	struct mii_data *mii;
1107 	struct ifmedia_entry *ife;
1108 	uint32_t ecr, ecr0;
1109 	uint32_t rcr, rcr0;
1110 	uint32_t tcr, tcr0;
1111 
1112 	sc = ifp->if_softc;
1113 	mii = &sc->sc_mii;
1114 	ife = mii->mii_media.ifm_cur;
1115 
1116 	/* get current status */
1117 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1118 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1119 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1120 
1121 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1122 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1123 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1124 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1125 	}
1126 
1127 	if ((ife->ifm_media & IFM_FDX) != 0) {
1128 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1129 		rcr &= ~ENET_RCR_DRT;;	/* enable receive on transmit */
1130 	} else {
1131 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1132 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1133 	}
1134 
1135 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1136 		/*
1137 		 * need to reset because
1138 		 * FDEN can change when ECR[ETHEREN] is 0
1139 		 */
1140 		enet_init_regs(sc, 0);
1141 		return;
1142 	}
1143 
1144 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1145 	case IFM_AUTO:
1146 	case IFM_1000_T:
1147 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1148 		rcr &= ~ENET_RCR_RMII_10T;
1149 		break;
1150 	case IFM_100_TX:
1151 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1152 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1153 		break;
1154 	case IFM_10_T:
1155 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1156 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1157 		break;
1158 	default:
1159 		ecr = ecr0;
1160 		rcr = rcr0;
1161 		tcr = tcr0;
1162 		break;
1163 	}
1164 
1165 	if (sc->sc_rgmii == 0)
1166 		ecr &= ~ENET_ECR_SPEED;
1167 
1168 	if (sc->sc_flowflags & IFM_FLOW)
1169 		rcr |= ENET_RCR_FCE;
1170 	else
1171 		rcr &= ~ENET_RCR_FCE;
1172 
1173 	/* update registers if need change */
1174 	if (ecr != ecr0)
1175 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1176 	if (rcr != rcr0)
1177 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1178 	if (tcr != tcr0)
1179 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1180 }
1181 
1182 /*
1183  * handling descriptors
1184  */
1185 static void
1186 enet_init_txring(struct enet_softc *sc)
1187 {
1188 	int i;
1189 
1190 	/* build TX ring */
1191 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1192 		sc->sc_txdesc_ring[i].tx_flags1_len =
1193 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1194 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1195 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1196 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1197 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1198 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1199 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1200 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1201 
1202 		TXDESC_WRITEOUT(i);
1203 	}
1204 
1205 	sc->sc_tx_free = ENET_TX_RING_CNT;
1206 	sc->sc_tx_considx = 0;
1207 	sc->sc_tx_prodidx = 0;
1208 }
1209 
1210 static int
1211 enet_init_rxring(struct enet_softc *sc)
1212 {
1213 	int i, error;
1214 
1215 	/* build RX ring */
1216 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1217 		error = enet_alloc_rxbuf(sc, i);
1218 		if (error != 0)
1219 			return error;
1220 	}
1221 
1222 	sc->sc_rx_readidx = 0;
1223 
1224 	return 0;
1225 }
1226 
1227 static int
1228 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1229 {
1230 	struct mbuf *m;
1231 	int error;
1232 
1233 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1234 
1235 	/* free mbuf if already allocated */
1236 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1237 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1238 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1239 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1240 	}
1241 
1242 	/* allocate new mbuf cluster */
1243 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1244 	if (m == NULL)
1245 		return ENOBUFS;
1246 	MCLGET(m, M_DONTWAIT);
1247 	if (!(m->m_flags & M_EXT)) {
1248 		m_freem(m);
1249 		return ENOBUFS;
1250 	}
1251 	m->m_len = MCLBYTES;
1252 	m->m_next = NULL;
1253 
1254 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1255 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1256 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1257 	if (error) {
1258 		m_freem(m);
1259 		return error;
1260 	}
1261 
1262 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1263 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1264 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1265 
1266 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1267 	enet_reset_rxdesc(sc, idx);
1268 	return 0;
1269 }
1270 
1271 static void
1272 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1273 {
1274 	uint32_t paddr;
1275 
1276 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1277 
1278 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1279 	    RXFLAGS1_E |
1280 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1281 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1282 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1283 	    RXFLAGS2_INT;
1284 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1285 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1286 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1287 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1288 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1289 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1290 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1291 
1292 	RXDESC_WRITEOUT(idx);
1293 }
1294 
1295 static void
1296 enet_drain_txbuf(struct enet_softc *sc)
1297 {
1298 	int idx;
1299 	struct enet_txsoft *txs;
1300 	struct ifnet *ifp;
1301 
1302 	ifp = &sc->sc_ethercom.ec_if;
1303 
1304 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1305 	    idx = ENET_TX_NEXTIDX(idx)) {
1306 
1307 		/* txsoft[] is used only first segment */
1308 		txs = &sc->sc_txsoft[idx];
1309 		TXDESC_READIN(idx);
1310 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1311 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1312 			bus_dmamap_unload(sc->sc_dmat,
1313 			    txs->txs_dmamap);
1314 			m_freem(txs->txs_mbuf);
1315 
1316 			ifp->if_oerrors++;
1317 		}
1318 		sc->sc_tx_free++;
1319 	}
1320 }
1321 
1322 static void
1323 enet_drain_rxbuf(struct enet_softc *sc)
1324 {
1325 	int i;
1326 
1327 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1328 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1329 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1330 			bus_dmamap_unload(sc->sc_dmat,
1331 			    sc->sc_rxsoft[i].rxs_dmamap);
1332 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1333 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1334 		}
1335 	}
1336 }
1337 
1338 static int
1339 enet_alloc_ring(struct enet_softc *sc)
1340 {
1341 	int i, error;
1342 
1343 	/*
1344 	 * build DMA maps for TX.
1345 	 * TX descriptor must be able to contain mbuf chains,
1346 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1347 	 */
1348 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1349 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1350 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1351 		    &sc->sc_txsoft[i].txs_dmamap);
1352 
1353 		if (error) {
1354 			aprint_error_dev(sc->sc_dev,
1355 			    "can't create DMA map for TX descs\n");
1356 			goto fail_1;
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * build DMA maps for RX.
1362 	 * RX descripter contains An mbuf cluster,
1363 	 * and make up a dmamap.
1364 	 */
1365 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1366 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1367 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1368 		    &sc->sc_rxsoft[i].rxs_dmamap);
1369 		if (error) {
1370 			aprint_error_dev(sc->sc_dev,
1371 			    "can't create DMA map for RX descs\n");
1372 			goto fail_2;
1373 		}
1374 	}
1375 
1376 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1377 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1378 		return -1;
1379 	memset(sc->sc_txdesc_ring, 0,
1380 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1381 
1382 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1383 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1384 		return -1;
1385 	memset(sc->sc_rxdesc_ring, 0,
1386 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1387 
1388 	return 0;
1389 
1390  fail_2:
1391 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1392 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1393 			bus_dmamap_destroy(sc->sc_dmat,
1394 			    sc->sc_rxsoft[i].rxs_dmamap);
1395 	}
1396  fail_1:
1397 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1398 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1399 			bus_dmamap_destroy(sc->sc_dmat,
1400 			    sc->sc_txsoft[i].txs_dmamap);
1401 	}
1402 	return error;
1403 }
1404 
1405 static int
1406 enet_encap_mbufalign(struct mbuf **mp)
1407 {
1408 	struct mbuf *m, *m0, *mt, *p, *x;
1409 	void *ap;
1410 	uint32_t alignoff, chiplen;
1411 
1412 	/*
1413 	 * iMX6 SoC ethernet controller requires
1414 	 * address of buffer must aligned 8, and
1415 	 * length of buffer must be greater than 10 (first fragment only?)
1416 	 */
1417 #define ALIGNBYTE	8
1418 #define MINBUFSIZE	10
1419 #define ALIGN_PTR(p, align)	\
1420 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1421 
1422 	m0 = *mp;
1423 	mt = p = NULL;
1424 	for (m = m0; m != NULL; m = m->m_next) {
1425 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1426 		if (m->m_len < (ALIGNBYTE * 2)) {
1427 			/*
1428 			 * rearrange mbuf data aligned
1429 			 *
1430 			 *        align 8 *       *       *       *       *
1431 			 *               +0123456789abcdef0123456789abcdef0
1432 			 * FROM m->m_data[___________abcdefghijklmn_______]
1433 			 *
1434 			 *               +0123456789abcdef0123456789abcdef0
1435 			 * TO   m->m_data[________abcdefghijklm___________] or
1436 			 *      m->m_data[________________abcdefghijklmn__]
1437 			 */
1438 			if ((alignoff != 0) && (m->m_len != 0)) {
1439 				chiplen = ALIGNBYTE - alignoff;
1440 				if (M_LEADINGSPACE(m) >= alignoff) {
1441 					ap = m->m_data - alignoff;
1442 					memmove(ap, m->m_data, m->m_len);
1443 					m->m_data = ap;
1444 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1445 					ap = m->m_data + chiplen;
1446 					memmove(ap, m->m_data, m->m_len);
1447 					m->m_data = ap;
1448 				} else {
1449 					/*
1450 					 * no space to align data. (M_READONLY?)
1451 					 * allocate new mbuf aligned,
1452 					 * and copy to it.
1453 					 */
1454 					MGET(x, M_DONTWAIT, m->m_type);
1455 					if (x == NULL) {
1456 						m_freem(m);
1457 						return ENOBUFS;
1458 					}
1459 					MCLAIM(x, m->m_owner);
1460 					if (m->m_flags & M_PKTHDR)
1461 						m_move_pkthdr(x, m);
1462 					x->m_len = m->m_len;
1463 					x->m_data = ALIGN_PTR(x->m_data,
1464 					    ALIGNBYTE);
1465 					memcpy(mtod(x, void *), mtod(m, void *),
1466 					    m->m_len);
1467 					p->m_next = x;
1468 					x->m_next = m_free(m);
1469 					m = x;
1470 				}
1471 			}
1472 
1473 			/*
1474 			 * fill 1st mbuf at least 10byte
1475 			 *
1476 			 *        align 8 *       *       *       *       *
1477 			 *               +0123456789abcdef0123456789abcdef0
1478 			 * FROM m->m_data[________abcde___________________]
1479 			 *      m->m_data[__fg____________________________]
1480 			 *      m->m_data[_________________hi_____________]
1481 			 *      m->m_data[__________jk____________________]
1482 			 *      m->m_data[____l___________________________]
1483 			 *
1484 			 *               +0123456789abcdef0123456789abcdef0
1485 			 * TO   m->m_data[________abcdefghij______________]
1486 			 *      m->m_data[________________________________]
1487 			 *      m->m_data[________________________________]
1488 			 *      m->m_data[___________k____________________]
1489 			 *      m->m_data[____l___________________________]
1490 			 */
1491 			if (mt == NULL) {
1492 				mt = m;
1493 				while (mt->m_len == 0) {
1494 					mt = mt->m_next;
1495 					if (mt == NULL) {
1496 						m_freem(m);
1497 						return ENOBUFS;
1498 					}
1499 				}
1500 
1501 				/* mt = 1st mbuf, x = 2nd mbuf */
1502 				x = mt->m_next;
1503 				while (mt->m_len < MINBUFSIZE) {
1504 					if (x == NULL) {
1505 						m_freem(m);
1506 						return ENOBUFS;
1507 					}
1508 
1509 					alignoff = (uintptr_t)x->m_data &
1510 					    (ALIGNBYTE - 1);
1511 					chiplen = ALIGNBYTE - alignoff;
1512 					if (chiplen > x->m_len) {
1513 						chiplen = x->m_len;
1514 					} else if ((mt->m_len + chiplen) <
1515 					    MINBUFSIZE) {
1516 						/*
1517 						 * next mbuf should be greater
1518 						 * than ALIGNBYTE?
1519 						 */
1520 						if (x->m_len >= (chiplen +
1521 						    ALIGNBYTE * 2))
1522 							chiplen += ALIGNBYTE;
1523 						else
1524 							chiplen = x->m_len;
1525 					}
1526 
1527 					if (chiplen &&
1528 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1529 						/*
1530 						 * move data to the begining of
1531 						 * m_dat[] (aligned) to en-
1532 						 * large trailingspace
1533 						 */
1534 						if (mt->m_flags & M_EXT) {
1535 							ap = mt->m_ext.ext_buf;
1536 						} else if (mt->m_flags &
1537 						    M_PKTHDR) {
1538 							ap = mt->m_pktdat;
1539 						} else {
1540 							ap = mt->m_dat;
1541 						}
1542 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1543 						memcpy(ap, mt->m_data,
1544 						    mt->m_len);
1545 						mt->m_data = ap;
1546 					}
1547 
1548 					if (chiplen &&
1549 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1550 						memcpy(mt->m_data + mt->m_len,
1551 						    x->m_data, chiplen);
1552 						mt->m_len += chiplen;
1553 						m_adj(x, chiplen);
1554 					}
1555 
1556 					x = x->m_next;
1557 				}
1558 			}
1559 
1560 		} else {
1561 			mt = m;
1562 
1563 			/*
1564 			 * allocate new mbuf x, and rearrange as below;
1565 			 *
1566 			 *        align 8 *       *       *       *       *
1567 			 *               +0123456789abcdef0123456789abcdef0
1568 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1569 			 *
1570 			 *               +0123456789abcdef0123456789abcdef0
1571 			 * TO   x->m_data[________abcdefghijkl____________]
1572 			 *      m->m_data[________________________mnopq___]
1573 			 *
1574 			 */
1575 			if (alignoff != 0) {
1576 				/* at least ALIGNBYTE */
1577 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1578 
1579 				MGET(x, M_DONTWAIT, m->m_type);
1580 				if (x == NULL) {
1581 					m_freem(m);
1582 					return ENOBUFS;
1583 				}
1584 				MCLAIM(x, m->m_owner);
1585 				if (m->m_flags & M_PKTHDR)
1586 					m_move_pkthdr(x, m);
1587 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1588 				memcpy(mtod(x, void *), mtod(m, void *),
1589 				    chiplen);
1590 				x->m_len = chiplen;
1591 				x->m_next = m;
1592 				m_adj(m, chiplen);
1593 
1594 				if (p == NULL)
1595 					m0 = x;
1596 				else
1597 					p->m_next = x;
1598 			}
1599 		}
1600 		p = m;
1601 	}
1602 	*mp = m0;
1603 
1604 	return 0;
1605 }
1606 
1607 static int
1608 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1609 {
1610 	bus_dmamap_t map;
1611 	struct mbuf *m;
1612 	int csumflags, idx, i, error;
1613 	uint32_t flags1, flags2;
1614 
1615 	idx = sc->sc_tx_prodidx;
1616 	map = sc->sc_txsoft[idx].txs_dmamap;
1617 
1618 	/* align mbuf data for claim of ENET */
1619 	error = enet_encap_mbufalign(mp);
1620 	if (error != 0)
1621 		return error;
1622 
1623 	m = *mp;
1624 	csumflags = m->m_pkthdr.csum_flags;
1625 
1626 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1627 	    BUS_DMA_NOWAIT);
1628 	if (error != 0) {
1629 		device_printf(sc->sc_dev,
1630 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1631 		m_freem(m);
1632 		return error;
1633 	}
1634 
1635 	if (map->dm_nsegs > sc->sc_tx_free) {
1636 		bus_dmamap_unload(sc->sc_dmat, map);
1637 		device_printf(sc->sc_dev,
1638 		    "too many mbuf chain %d\n", map->dm_nsegs);
1639 		m_freem(m);
1640 		return ENOBUFS;
1641 	}
1642 
1643 	/* fill protocol cksum zero beforehand */
1644 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1645 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1646 		int ehlen;
1647 		uint16_t etype;
1648 
1649 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1650 		switch (ntohs(etype)) {
1651 		case ETHERTYPE_IP:
1652 		case ETHERTYPE_IPV6:
1653 			ehlen = ETHER_HDR_LEN;
1654 			break;
1655 		case ETHERTYPE_VLAN:
1656 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1657 			break;
1658 		default:
1659 			ehlen = 0;
1660 			break;
1661 		}
1662 
1663 		if (ehlen) {
1664 			const int off =
1665 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1666 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1667 			if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1668 				uint16_t zero = 0;
1669 				m_copyback(m, ehlen + off, sizeof(zero), &zero);
1670 			}
1671 		}
1672 	}
1673 
1674 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1675 	    BUS_DMASYNC_PREWRITE);
1676 
1677 	for (i = 0; i < map->dm_nsegs; i++) {
1678 		flags1 = TXFLAGS1_R;
1679 		flags2 = 0;
1680 
1681 		if (i == 0) {
1682 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1683 			sc->sc_txsoft[idx].txs_mbuf = m;
1684 		}
1685 
1686 		/* checksum offloading */
1687 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1688 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1689 			flags2 |= TXFLAGS2_PINS;
1690 		if (csumflags & (M_CSUM_IPv4))
1691 			flags2 |= TXFLAGS2_IINS;
1692 
1693 		if (i == map->dm_nsegs - 1) {
1694 			/* mark last segment */
1695 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1696 			flags2 |= TXFLAGS2_INT;
1697 		}
1698 		if (idx == ENET_TX_RING_CNT - 1) {
1699 			/* mark end of ring */
1700 			flags1 |= TXFLAGS1_W;
1701 		}
1702 
1703 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1704 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1705 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1706 		TXDESC_WRITEOUT(idx);
1707 
1708 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1709 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1710 		TXDESC_WRITEOUT(idx);
1711 
1712 		idx = ENET_TX_NEXTIDX(idx);
1713 		sc->sc_tx_free--;
1714 	}
1715 
1716 	sc->sc_tx_prodidx = idx;
1717 
1718 	return 0;
1719 }
1720 
1721 /*
1722  * device initialize
1723  */
1724 static int
1725 enet_init_regs(struct enet_softc *sc, int init)
1726 {
1727 	struct mii_data *mii;
1728 	struct ifmedia_entry *ife;
1729 	paddr_t paddr;
1730 	uint32_t val;
1731 	int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1732 
1733 	if (init) {
1734 		fulldup = 1;
1735 		ecr_speed = ENET_ECR_SPEED;
1736 		rcr_speed = 0;
1737 		flowctrl = 0;
1738 	} else {
1739 		mii = &sc->sc_mii;
1740 		ife = mii->mii_media.ifm_cur;
1741 
1742 		if ((ife->ifm_media & IFM_FDX) != 0)
1743 			fulldup = 1;
1744 		else
1745 			fulldup = 0;
1746 
1747 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1748 		case IFM_10_T:
1749 			ecr_speed = 0;
1750 			rcr_speed = ENET_RCR_RMII_10T;
1751 			break;
1752 		case IFM_100_TX:
1753 			ecr_speed = 0;
1754 			rcr_speed = 0;
1755 			break;
1756 		default:
1757 			ecr_speed = ENET_ECR_SPEED;
1758 			rcr_speed = 0;
1759 			break;
1760 		}
1761 
1762 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1763 	}
1764 
1765 	if (sc->sc_rgmii == 0)
1766 		ecr_speed = 0;
1767 
1768 	/* reset */
1769 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1770 
1771 	/* mask and clear all interrupt */
1772 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1773 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1774 
1775 	/* full duplex */
1776 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1777 
1778 	/* clear and enable MIB register */
1779 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1780 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1781 
1782 	/* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1783 	val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1784 	ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1785 
1786 	/* Opcode/Pause Duration */
1787 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1788 
1789 	/* Receive FIFO */
1790 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1791 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1792 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1793 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1794 
1795 	/* Transmit FIFO */
1796 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1797 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1798 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1799 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1800 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1801 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1802 
1803 	/* hardware checksum is default off (override in TX descripter) */
1804 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1805 
1806 	/*
1807 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1808 	 * and don't discard checksum error
1809 	 */
1810 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1811 
1812 	/* maximum frame size */
1813 	val = ENET_DEFAULT_PKT_LEN;
1814 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1815 
1816 	if (sc->sc_rgmii == 0)
1817 		miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1818 	else
1819 		miimode = ENET_RCR_RGMII_EN;
1820 	ENET_REG_WRITE(sc, ENET_RCR,
1821 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1822 	    miimode |
1823 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1824 	    rcr_speed |
1825 	    (fulldup ? 0 : ENET_RCR_DRT) |
1826 	    ENET_RCR_MAX_FL(val));
1827 
1828 	/* Maximum Receive BufSize per one descriptor */
1829 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1830 
1831 
1832 	/* TX/RX Descriptor Physical Address */
1833 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1834 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1835 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1836 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1837 	/* sync cache */
1838 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1839 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1840 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1841 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1842 
1843 	/* enable interrupts */
1844 	val = ENET_EIMR | ENET_EIR_TXF | ENET_EIR_RXF | ENET_EIR_EBERR;
1845 	if (sc->sc_imxtype == 7)
1846 		val |= ENET_EIR_TXF2 | ENET_EIR_RXF2 | ENET_EIR_TXF1 |
1847 		    ENET_EIR_RXF1;
1848 	ENET_REG_WRITE(sc, ENET_EIMR, val);
1849 
1850 	/* enable ether */
1851 	ENET_REG_WRITE(sc, ENET_ECR,
1852 #if _BYTE_ORDER == _LITTLE_ENDIAN
1853 	    ENET_ECR_DBSWP |
1854 #endif
1855 	    ecr_speed |
1856 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
1857 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
1858 
1859 	return 0;
1860 }
1861 
1862 static int
1863 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1864     bus_dmamap_t *mapp)
1865 {
1866 	bus_dma_segment_t seglist[1];
1867 	int nsegs, error;
1868 
1869 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1870 	    1, &nsegs, M_NOWAIT)) != 0) {
1871 		device_printf(sc->sc_dev,
1872 		    "unable to allocate DMA buffer, error=%d\n", error);
1873 		goto fail_alloc;
1874 	}
1875 
1876 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1877 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1878 		device_printf(sc->sc_dev,
1879 		    "unable to map DMA buffer, error=%d\n",
1880 		    error);
1881 		goto fail_map;
1882 	}
1883 
1884 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1885 	    BUS_DMA_NOWAIT, mapp)) != 0) {
1886 		device_printf(sc->sc_dev,
1887 		    "unable to create DMA map, error=%d\n", error);
1888 		goto fail_create;
1889 	}
1890 
1891 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1892 	    BUS_DMA_NOWAIT)) != 0) {
1893 		aprint_error_dev(sc->sc_dev,
1894 		    "unable to load DMA map, error=%d\n", error);
1895 		goto fail_load;
1896 	}
1897 
1898 	return 0;
1899 
1900  fail_load:
1901 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
1902  fail_create:
1903 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1904  fail_map:
1905 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
1906  fail_alloc:
1907 	return error;
1908 }
1909