xref: /netbsd-src/sys/arch/arm/footbridge/footbridge_clock.c (revision f648d12d47727113ad5330b0753bb2f2ef8e1045)
1 /*	$NetBSD: footbridge_clock.c,v 1.18 2003/10/05 19:44:58 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Mark Brinicombe.
5  * Copyright (c) 1997 Causality Limited.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Mark Brinicombe
19  *	for the NetBSD Project.
20  * 4. The name of the company nor the name of the author may be used to
21  *    endorse or promote products derived from this software without specific
22  *    prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.18 2003/10/05 19:44:58 matt Exp $");
39 
40 /* Include header files */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48 
49 #include <machine/intr.h>
50 
51 #include <arm/cpufunc.h>
52 
53 #include <arm/footbridge/dc21285reg.h>
54 #include <arm/footbridge/footbridgevar.h>
55 #include <arm/footbridge/footbridge.h>
56 
57 extern struct footbridge_softc *clock_sc;
58 extern u_int dc21285_fclk;
59 
60 int clockhandler __P((void *));
61 int statclockhandler __P((void *));
62 static int load_timer __P((int, int));
63 
64 /*
65  * Statistics clock variance, in usec.  Variance must be a
66  * power of two.  Since this gives us an even number, not an odd number,
67  * we discard one case and compensate.  That is, a variance of 1024 would
68  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
69  * This is symmetric about the point 512, or statvar/2, and thus averages
70  * to that value (assuming uniform random numbers).
71  */
72 const int statvar = 1024;
73 int statmin;			/* minimum stat clock count in ticks */
74 int statcountperusec;		/* number of ticks per usec at current stathz */
75 int statprev;			/* last value of we set statclock to */
76 
77 #if 0
78 static int clockmatch	__P((struct device *parent, struct cfdata *cf, void *aux));
79 static void clockattach	__P((struct device *parent, struct device *self, void *aux));
80 
81 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
82     clockmatch, clockattach, NULL, NULL);
83 
84 /*
85  * int clockmatch(struct device *parent, void *match, void *aux)
86  *
87  * Just return ok for this if it is device 0
88  */
89 
90 static int
91 clockmatch(parent, cf, aux)
92 	struct device *parent;
93 	struct cfdata *cf;
94 	void *aux;
95 {
96 	union footbridge_attach_args *fba = aux;
97 
98 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
99 		return(1);
100 	return(0);
101 }
102 
103 
104 /*
105  * void clockattach(struct device *parent, struct device *dev, void *aux)
106  *
107  */
108 
109 static void
110 clockattach(parent, self, aux)
111 	struct device *parent;
112 	struct device *self;
113 	void *aux;
114 {
115 	struct clock_softc *sc = (struct clock_softc *)self;
116 	union footbridge_attach_args *fba = aux;
117 
118 	sc->sc_iot = fba->fba_ca.ca_iot;
119 	sc->sc_ioh = fba->fba_ca.ca_ioh;
120 
121 	clock_sc = sc;
122 
123 	/* Cannot do anything until cpu_initclocks() has been called */
124 
125 	printf("\n");
126 }
127 #endif
128 
129 /*
130  * int clockhandler(struct clockframe *frame)
131  *
132  * Function called by timer 1 interrupts.
133  * This just clears the interrupt condition and calls hardclock().
134  */
135 
136 int
137 clockhandler(aframe)
138 	void *aframe;
139 {
140 	struct clockframe *frame = aframe;
141 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
142 	    TIMER_1_CLEAR, 0);
143 	hardclock(frame);
144 	return(0);	/* Pass the interrupt on down the chain */
145 }
146 
147 /*
148  * int statclockhandler(struct clockframe *frame)
149  *
150  * Function called by timer 2 interrupts.
151  * This just clears the interrupt condition and calls statclock().
152  */
153 
154 int
155 statclockhandler(aframe)
156 	void *aframe;
157 {
158 	struct clockframe *frame = aframe;
159 	int newint, r;
160 	int currentclock ;
161 
162 	/* start the clock off again */
163 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
164 			TIMER_2_CLEAR, 0);
165 
166 	do {
167 		r = random() & (statvar-1);
168 	} while (r == 0);
169 	newint = statmin + (r * statcountperusec);
170 
171 	/* fetch the current count */
172 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
173 		    TIMER_2_VALUE);
174 
175 	/*
176 	 * work out how much time has run, add another usec for time spent
177 	 * here
178 	 */
179 	r = ((statprev - currentclock) + statcountperusec);
180 
181 	if (r < newint) {
182 		newint -= r;
183 		r = 0;
184 	}
185 	else
186 		printf("statclockhandler: Statclock overrun\n");
187 
188 
189 	/*
190 	 * update the clock to the new counter, this reloads the existing
191 	 * timer
192 	 */
193 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
194 	    		TIMER_2_LOAD, newint);
195 	statprev = newint;
196 	statclock(frame);
197 	if (r)
198 		/*
199 		 * We've completely overrun the previous interval,
200 		 * make sure we report the correct number of ticks.
201 		 */
202 		statclock(frame);
203 
204 	return(0);	/* Pass the interrupt on down the chain */
205 }
206 
207 static int
208 load_timer(base, hz)
209 	int base;
210 	int hz;
211 {
212 	unsigned int timer_count;
213 	int control;
214 
215 	timer_count = dc21285_fclk / hz;
216 	if (timer_count > TIMER_MAX_VAL * 16) {
217 		control = TIMER_FCLK_256;
218 		timer_count >>= 8;
219 	} else if (timer_count > TIMER_MAX_VAL) {
220 		control = TIMER_FCLK_16;
221 		timer_count >>= 4;
222 	} else
223 		control = TIMER_FCLK;
224 
225 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
226 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
227 	    base + TIMER_LOAD, timer_count);
228 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
229 	    base + TIMER_CONTROL, control);
230 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
231 	    base + TIMER_CLEAR, 0);
232 	return(timer_count);
233 }
234 
235 /*
236  * void setstatclockrate(int hz)
237  *
238  * Set the stat clock rate. The stat clock uses timer2
239  */
240 
241 void
242 setstatclockrate(hz)
243 	int hz;
244 {
245 	int statint;
246 	int countpersecond;
247 	int statvarticks;
248 
249 	/* statint == num in counter to drop by desired hz */
250 	statint = statprev = clock_sc->sc_statclock_count =
251 	    load_timer(TIMER_2_BASE, hz);
252 
253 	/* Get the total ticks a second */
254 	countpersecond = statint * hz;
255 
256 	/* now work out how many ticks per usec */
257 	statcountperusec = countpersecond / 1000000;
258 
259 	/* calculate a variance range of statvar */
260 	statvarticks = statcountperusec * statvar;
261 
262 	/* minimum is statint - 50% of variant */
263 	statmin = statint - (statvarticks / 2);
264 }
265 
266 /*
267  * void cpu_initclocks(void)
268  *
269  * Initialise the clocks.
270  *
271  * Timer 1 is used for the main system clock (hardclock)
272  * Timer 2 is used for the statistics clock (statclock)
273  */
274 
275 void
276 cpu_initclocks()
277 {
278 	/* stathz and profhz should be set to something, we have the timer */
279 	if (stathz == 0)
280 		stathz = hz;
281 
282 	if (profhz == 0)
283 		profhz = stathz * 5;
284 
285 	/* Report the clock frequencies */
286 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
287 
288 	/* Setup timer 1 and claim interrupt */
289 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
290 
291 	/*
292 	 * Use ticks per 256us for accuracy since ticks per us is often
293 	 * fractional e.g. @ 66MHz
294 	 */
295 	clock_sc->sc_clock_ticks_per_256us =
296 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
297 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
298 	    "tmr1 hard clk", clockhandler, 0);
299 
300 	if (clock_sc->sc_clockintr == NULL)
301 		panic("%s: Cannot install timer 1 interrupt handler",
302 		    clock_sc->sc_dev.dv_xname);
303 
304 	/* If stathz is non-zero then setup the stat clock */
305 	if (stathz) {
306 		/* Setup timer 2 and claim interrupt */
307 		setstatclockrate(stathz);
308        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_STATCLOCK,
309        		    "tmr2 stat clk", statclockhandler, 0);
310 		if (clock_sc->sc_statclockintr == NULL)
311 			panic("%s: Cannot install timer 2 interrupt handler",
312 			    clock_sc->sc_dev.dv_xname);
313 	}
314 }
315 
316 
317 /*
318  * void microtime(struct timeval *tvp)
319  *
320  * Fill in the specified timeval struct with the current time
321  * accurate to the microsecond.
322  */
323 
324 void
325 microtime(tvp)
326 	struct timeval *tvp;
327 {
328 	int s;
329 	int tm;
330 	int deltatm;
331 	static struct timeval oldtv;
332 
333 	if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
334 		return;
335 
336 	s = splhigh();
337 
338 	tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
339 	    TIMER_1_VALUE);
340 
341 	deltatm = clock_sc->sc_clock_count - tm;
342 
343 #ifdef DIAGNOSTIC
344 	if (deltatm < 0)
345 		panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
346 #endif
347 
348 	/* Fill in the timeval struct */
349 	*tvp = time;
350 	tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
351 
352 	/* Make sure the micro seconds don't overflow. */
353 	while (tvp->tv_usec >= 1000000) {
354 		tvp->tv_usec -= 1000000;
355 		++tvp->tv_sec;
356 	}
357 
358 	/* Make sure the time has advanced. */
359 	if (tvp->tv_sec == oldtv.tv_sec &&
360 	    tvp->tv_usec <= oldtv.tv_usec) {
361 		tvp->tv_usec = oldtv.tv_usec + 1;
362 		if (tvp->tv_usec >= 1000000) {
363 			tvp->tv_usec -= 1000000;
364 			++tvp->tv_sec;
365 		}
366 	}
367 
368 	oldtv = *tvp;
369 	(void)splx(s);
370 }
371 
372 /*
373  * Use a timer to track microseconds, if the footbridge hasn't been setup we
374  * rely on an estimated loop, however footbridge is attached very early on.
375  */
376 
377 static int delay_clock_count = 0;
378 static int delay_count_per_usec = 0;
379 
380 void
381 calibrate_delay(void)
382 {
383      delay_clock_count = load_timer(TIMER_3_BASE, 100);
384      delay_count_per_usec = delay_clock_count/10000;
385 #ifdef VERBOSE_DELAY_CALIBRATION
386      printf("delay calibration: delay_cc = %d, delay_c/us=%d\n",
387 		     delay_clock_count, delay_count_per_usec);
388 
389      printf("0..");
390      delay(1000000);
391      printf("1..");
392      delay(1000000);
393      printf("2..");
394      delay(1000000);
395      printf("3..");
396      delay(1000000);
397      printf("4..");
398       delay(1000000);
399      printf("5..");
400       delay(1000000);
401      printf("6..");
402       delay(1000000);
403      printf("7..");
404       delay(1000000);
405      printf("8..");
406       delay(1000000);
407      printf("9..");
408       delay(1000000);
409      printf("10\n");
410 #endif
411 }
412 
413 int delaycount = 25000;
414 
415 void
416 delay(n)
417 	u_int n;
418 {
419 	volatile u_int i;
420 	uint32_t cur, last, delta, usecs;
421 
422 	if (n == 0) return;
423 
424 
425 	/*
426 	 * not calibrated the timer yet, so try to live with this horrible
427 	 * loop!
428 	 */
429 	if (delay_clock_count == 0)
430 	{
431 	    while (n-- > 0) {
432 		for (i = delaycount; --i;);
433 	    }
434 	    return;
435 	}
436 
437 	/*
438 	 * read the current value (do not reset it as delay is reentrant)
439 	 */
440 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
441 		    TIMER_3_VALUE);
442 
443 	delta = usecs = 0;
444 
445 	while (n > usecs)
446 	{
447 	    cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
448 		    TIMER_3_VALUE);
449 	    if (last < cur)
450 		/* timer has wrapped */
451 		delta += ((delay_clock_count - cur) + last);
452 	    else
453 		delta += (last - cur);
454 
455 	    if (cur == 0)
456 	    {
457 		/*
458 		 * reset the timer, note that if something blocks us for more
459 		 * than 1/100s we may delay for too long, but I believe that
460 		 * is fairly unlikely.
461 		 */
462 		bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
463 			TIMER_3_CLEAR, 0);
464 	    }
465 	    last = cur;
466 
467 	    if (delta >= delay_count_per_usec)
468 	    {
469 		usecs += delta / delay_count_per_usec;
470 		delta %= delay_count_per_usec;
471 	    }
472 	}
473 }
474 
475 /* End of footbridge_clock.c */
476