xref: /netbsd-src/sys/arch/arm/footbridge/footbridge_clock.c (revision 93bf6008f8b7982c1d1a9486e4a4a0e687fe36eb)
1 /*	$NetBSD: footbridge_clock.c,v 1.25 2008/09/20 14:53:37 chris Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Mark Brinicombe.
5  * Copyright (c) 1997 Causality Limited.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Mark Brinicombe
19  *	for the NetBSD Project.
20  * 4. The name of the company nor the name of the author may be used to
21  *    endorse or promote products derived from this software without specific
22  *    prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.25 2008/09/20 14:53:37 chris Exp $");
39 
40 /* Include header files */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/time.h>
47 #include <sys/timetc.h>
48 #include <sys/device.h>
49 
50 #include <machine/intr.h>
51 
52 #include <arm/cpufunc.h>
53 
54 #include <arm/footbridge/dc21285reg.h>
55 #include <arm/footbridge/footbridgevar.h>
56 #include <arm/footbridge/footbridge.h>
57 
58 extern struct footbridge_softc *clock_sc;
59 extern u_int dc21285_fclk;
60 
61 int clockhandler(void *);
62 int statclockhandler(void *);
63 static int load_timer(int, int);
64 
65 /*
66  * Statistics clock variance, in usec.  Variance must be a
67  * power of two.  Since this gives us an even number, not an odd number,
68  * we discard one case and compensate.  That is, a variance of 1024 would
69  * give us offsets in [0..1023].  Instead, we take offsets in [1..1023].
70  * This is symmetric about the point 512, or statvar/2, and thus averages
71  * to that value (assuming uniform random numbers).
72  */
73 const int statvar = 1024;
74 int statmin;			/* minimum stat clock count in ticks */
75 int statcountperusec;		/* number of ticks per usec at current stathz */
76 int statprev;			/* last value of we set statclock to */
77 
78 void footbridge_tc_init(void);
79 
80 #if 0
81 static int clockmatch(struct device *parent, struct cfdata *cf, void *aux);
82 static void clockattach(struct device *parent, struct device *self, void *aux);
83 
84 CFATTACH_DECL(footbridge_clock, sizeof(struct clock_softc),
85     clockmatch, clockattach, NULL, NULL);
86 
87 /*
88  * int clockmatch(struct device *parent, void *match, void *aux)
89  *
90  * Just return ok for this if it is device 0
91  */
92 
93 static int
94 clockmatch(struct device *parent, struct cfdata *cf, void *aux)
95 {
96 	union footbridge_attach_args *fba = aux;
97 
98 	if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
99 		return 1;
100 	return 0;
101 }
102 
103 
104 /*
105  * void clockattach(struct device *parent, struct device *dev, void *aux)
106  *
107  */
108 
109 static void
110 clockattach(struct device *parent, struct device *self, void *aux)
111 {
112 	struct clock_softc *sc = (struct clock_softc *)self;
113 	union footbridge_attach_args *fba = aux;
114 
115 	sc->sc_iot = fba->fba_ca.ca_iot;
116 	sc->sc_ioh = fba->fba_ca.ca_ioh;
117 
118 	clock_sc = sc;
119 
120 	/* Cannot do anything until cpu_initclocks() has been called */
121 
122 	printf("\n");
123 }
124 #endif
125 
126 /*
127  * int clockhandler(struct clockframe *frame)
128  *
129  * Function called by timer 1 interrupts.
130  * This just clears the interrupt condition and calls hardclock().
131  */
132 
133 int
134 clockhandler(void *aframe)
135 {
136 	struct clockframe *frame = aframe;
137 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
138 	    TIMER_1_CLEAR, 0);
139 	hardclock(frame);
140 	return 0;	/* Pass the interrupt on down the chain */
141 }
142 
143 /*
144  * int statclockhandler(struct clockframe *frame)
145  *
146  * Function called by timer 2 interrupts.
147  * This just clears the interrupt condition and calls statclock().
148  */
149 
150 int
151 statclockhandler(void *aframe)
152 {
153 	struct clockframe *frame = aframe;
154 	int newint, r;
155 	int currentclock ;
156 
157 	/* start the clock off again */
158 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
159 			TIMER_2_CLEAR, 0);
160 
161 	do {
162 		r = random() & (statvar-1);
163 	} while (r == 0);
164 	newint = statmin + (r * statcountperusec);
165 
166 	/* fetch the current count */
167 	currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
168 		    TIMER_2_VALUE);
169 
170 	/*
171 	 * work out how much time has run, add another usec for time spent
172 	 * here
173 	 */
174 	r = ((statprev - currentclock) + statcountperusec);
175 
176 	if (r < newint) {
177 		newint -= r;
178 		r = 0;
179 	}
180 	else
181 		printf("statclockhandler: Statclock overrun\n");
182 
183 
184 	/*
185 	 * update the clock to the new counter, this reloads the existing
186 	 * timer
187 	 */
188 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
189 	    		TIMER_2_LOAD, newint);
190 	statprev = newint;
191 	statclock(frame);
192 	if (r)
193 		/*
194 		 * We've completely overrun the previous interval,
195 		 * make sure we report the correct number of ticks.
196 		 */
197 		statclock(frame);
198 
199 	return 0;	/* Pass the interrupt on down the chain */
200 }
201 
202 static int
203 load_timer(int base, int herz)
204 {
205 	unsigned int timer_count;
206 	int control;
207 
208 	timer_count = dc21285_fclk / herz;
209 	if (timer_count > TIMER_MAX_VAL * 16) {
210 		control = TIMER_FCLK_256;
211 		timer_count >>= 8;
212 	} else if (timer_count > TIMER_MAX_VAL) {
213 		control = TIMER_FCLK_16;
214 		timer_count >>= 4;
215 	} else
216 		control = TIMER_FCLK;
217 
218 	control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
219 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
220 	    base + TIMER_LOAD, timer_count);
221 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
222 	    base + TIMER_CONTROL, control);
223 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
224 	    base + TIMER_CLEAR, 0);
225 	return timer_count;
226 }
227 
228 /*
229  * void setstatclockrate(int herz)
230  *
231  * Set the stat clock rate. The stat clock uses timer2
232  */
233 
234 void
235 setstatclockrate(int herz)
236 {
237 	int statint;
238 	int countpersecond;
239 	int statvarticks;
240 
241 	/* statint == num in counter to drop by desired herz */
242 	statint = statprev = clock_sc->sc_statclock_count =
243 	    load_timer(TIMER_2_BASE, herz);
244 
245 	/* Get the total ticks a second */
246 	countpersecond = statint * herz;
247 
248 	/* now work out how many ticks per usec */
249 	statcountperusec = countpersecond / 1000000;
250 
251 	/* calculate a variance range of statvar */
252 	statvarticks = statcountperusec * statvar;
253 
254 	/* minimum is statint - 50% of variant */
255 	statmin = statint - (statvarticks / 2);
256 }
257 
258 /*
259  * void cpu_initclocks(void)
260  *
261  * Initialise the clocks.
262  *
263  * Timer 1 is used for the main system clock (hardclock)
264  * Timer 2 is used for the statistics clock (statclock)
265  */
266 
267 void
268 cpu_initclocks(void)
269 {
270 	/* stathz and profhz should be set to something, we have the timer */
271 	if (stathz == 0)
272 		stathz = hz;
273 
274 	if (profhz == 0)
275 		profhz = stathz * 5;
276 
277 	/* Report the clock frequencies */
278 	printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
279 
280 	/* Setup timer 1 and claim interrupt */
281 	clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
282 
283 	/*
284 	 * Use ticks per 256us for accuracy since ticks per us is often
285 	 * fractional e.g. @ 66MHz
286 	 */
287 	clock_sc->sc_clock_ticks_per_256us =
288 	    ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
289 	clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
290 	    "tmr1 hard clk", clockhandler, 0);
291 
292 	if (clock_sc->sc_clockintr == NULL)
293 		panic("%s: Cannot install timer 1 interrupt handler",
294 		    clock_sc->sc_dev.dv_xname);
295 
296 	/* If stathz is non-zero then setup the stat clock */
297 	if (stathz) {
298 		/* Setup timer 2 and claim interrupt */
299 		setstatclockrate(stathz);
300        		clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_HIGH,
301        		    "tmr2 stat clk", statclockhandler, 0);
302 		if (clock_sc->sc_statclockintr == NULL)
303 			panic("%s: Cannot install timer 2 interrupt handler",
304 			    clock_sc->sc_dev.dv_xname);
305 	}
306 
307 	footbridge_tc_init();
308 }
309 
310 static uint32_t
311 fclk_get_count(struct timecounter *tc)
312 {
313 	return (TIMER_MAX_VAL -
314 	    bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
315 	    TIMER_3_VALUE));
316 }
317 
318 void
319 footbridge_tc_init(void)
320 {
321 	static struct timecounter fb_tc = {
322 		.tc_get_timecount = fclk_get_count,
323 		.tc_counter_mask = TIMER_MAX_VAL,
324 		.tc_name = "dc21285_fclk",
325 		.tc_quality = 100
326 	};
327 	fb_tc.tc_frequency = dc21285_fclk;
328 	tc_init(&fb_tc);
329 }
330 
331 /*
332  * Use a timer to track microseconds, if the footbridge hasn't been setup we
333  * rely on an estimated loop, however footbridge is attached very early on.
334  */
335 
336 static int delay_count_per_usec = 0;
337 
338 void
339 calibrate_delay(void)
340 {
341 	/*
342 	 * For all current footbridge hardware, the fclk runs at a
343 	 * rate that is sufficiently slow enough that we don't need to
344 	 * use a prescaler.  A prescaler would be needed if the fclk
345 	 * could wrap within 2 hardclock periods (2 * HZ).  With
346 	 * normal values of HZ (100 and higher), this is unlikely to
347 	 * ever happen.
348 	 *
349 	 * We let TIMER 3 just run free, at the freqeuncy supplied by
350 	 * dc21285_fclk.
351 	 */
352 	bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
353 	    TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
354 	delay_count_per_usec = dc21285_fclk / 1000000;
355 	if (dc21285_fclk % 1000000)
356 		delay_count_per_usec += 1;
357 }
358 
359 void
360 delay(unsigned n)
361 {
362 	uint32_t cur, last, delta, usecs;
363 
364 	if (n == 0)
365 		return;
366 
367 	/*
368 	 * not calibrated the timer yet, so try to live with this horrible
369 	 * loop!
370 	 *
371 	 * Note: a much better solution might be to have the timers
372 	 * get get calibrated out of mach_init.  Of course, the
373 	 * clock_sc needs to be set up, so we can read/write the clock
374 	 * registers.
375 	 */
376 	if (!delay_count_per_usec)
377 	{
378 		/*
379 		 * the loop below has a core of 6 instructions
380 		 * StrongArms top out at 233Mhz, so one instruction takes
381 		 * 0.004 us, and 6 take 0.025 us, so we need to loop 40
382 		 * times to make one usec
383 		 */
384 		int delaycount = 40;
385 		volatile int i;
386 
387 		while (n-- > 0) {
388 			for (i = delaycount; --i;);
389 		}
390 		return;
391 	}
392 
393 	last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
394 	    TIMER_3_VALUE);
395 	delta = usecs = 0;
396 
397 	while (n > usecs) {
398 		cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
399 		    TIMER_3_VALUE);
400 		if (last < cur)
401 			/* timer has wrapped */
402 			delta += ((TIMER_MAX_VAL - cur) + last);
403 		else
404 			delta += (last - cur);
405 
406 		last = cur;
407 
408 		while (delta >= delay_count_per_usec) {
409 			delta -= delay_count_per_usec;
410 			usecs++;
411 		}
412 	}
413 }
414 
415 /* End of footbridge_clock.c */
416