xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: epe.c,v 1.34 2016/06/10 13:27:11 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.34 2016/06/10 13:27:11 ozaki-r Exp $");
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ioctl.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/time.h>
40 #include <sys/device.h>
41 #include <uvm/uvm_extern.h>
42 
43 #include <sys/bus.h>
44 #include <machine/intr.h>
45 
46 #include <arm/cpufunc.h>
47 
48 #include <arm/ep93xx/epsocvar.h>
49 #include <arm/ep93xx/ep93xxvar.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #include <netinet/if_inarp.h>
66 #endif
67 
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 
71 #include <arm/ep93xx/ep93xxreg.h>
72 #include <arm/ep93xx/epereg.h>
73 #include <arm/ep93xx/epevar.h>
74 
75 #define DEFAULT_MDCDIV	32
76 
77 #ifndef EPE_FAST
78 #define EPE_FAST
79 #endif
80 
81 #ifndef EPE_FAST
82 #define EPE_READ(x) \
83 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 #define EPE_WRITE(x, y) \
85 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 #define CTRLPAGE_DMASYNC(x, y, z) \
87 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
88 #else
89 #define EPE_READ(x) *(volatile uint32_t *) \
90 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
91 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
92 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
93 #define CTRLPAGE_DMASYNC(x, y, z)
94 #endif /* ! EPE_FAST */
95 
96 static int	epe_match(device_t , cfdata_t, void *);
97 static void	epe_attach(device_t, device_t, void *);
98 static void	epe_init(struct epe_softc *);
99 static int      epe_intr(void* arg);
100 static int	epe_gctx(struct epe_softc *);
101 static int	epe_mediachange(struct ifnet *);
102 int		epe_mii_readreg (device_t, int, int);
103 void		epe_mii_writereg (device_t, int, int, int);
104 void		epe_statchg (struct ifnet *);
105 void		epe_tick (void *);
106 static int	epe_ifioctl (struct ifnet *, u_long, void *);
107 static void	epe_ifstart (struct ifnet *);
108 static void	epe_ifwatchdog (struct ifnet *);
109 static int	epe_ifinit (struct ifnet *);
110 static void	epe_ifstop (struct ifnet *, int);
111 static void	epe_setaddr (struct ifnet *);
112 
113 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
114     epe_match, epe_attach, NULL, NULL);
115 
116 static int
117 epe_match(device_t parent, cfdata_t match, void *aux)
118 {
119 	return 2;
120 }
121 
122 static void
123 epe_attach(device_t parent, device_t self, void *aux)
124 {
125 	struct epe_softc		*sc = device_private(self);
126 	struct epsoc_attach_args	*sa;
127 	prop_data_t			 enaddr;
128 
129 	aprint_normal("\n");
130 	sa = aux;
131 	sc->sc_dev = self;
132 	sc->sc_iot = sa->sa_iot;
133 	sc->sc_intr = sa->sa_intr;
134 	sc->sc_dmat = sa->sa_dmat;
135 
136 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
137 		0, &sc->sc_ioh))
138 		panic("%s: Cannot map registers", device_xname(self));
139 
140 	/* Fetch the Ethernet address from property if set. */
141 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
142 	if (enaddr != NULL) {
143 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
144 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
145 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
146 		       ETHER_ADDR_LEN);
147 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
148 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
149 					 sc->sc_enaddr, ETHER_ADDR_LEN);
150 	}
151 
152         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
153 	epe_init(sc);
154 }
155 
156 static int
157 epe_gctx(struct epe_softc *sc)
158 {
159 	struct ifnet * ifp = &sc->sc_ec.ec_if;
160 	uint32_t *cur, ndq = 0;
161 
162 	/* Handle transmit completions */
163 	cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
164 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
165 
166 	if (sc->TXStsQ_cur != cur) {
167 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
168 			TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
169 	} else {
170 		return 0;
171 	}
172 
173 	do {
174 		uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
175 		struct mbuf *m = sc->txq[tbi].m;
176 
177 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
178 			ifp->if_oerrors++;
179 		}
180 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
181 		m_freem(m);
182 		do {
183 			sc->txq[tbi].m = NULL;
184 			ndq++;
185 			tbi = (tbi + 1) % TX_QLEN;
186 		} while (sc->txq[tbi].m == m);
187 
188 		ifp->if_opackets++;
189 		sc->TXStsQ_cur++;
190 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
191 			sc->TXStsQ_cur = sc->TXStsQ;
192 		}
193 	} while (sc->TXStsQ_cur != cur);
194 
195 	sc->TXDQ_avail += ndq;
196 	if (ifp->if_flags & IFF_OACTIVE) {
197 		ifp->if_flags &= ~IFF_OACTIVE;
198 		/* Disable end-of-tx-chain interrupt */
199 		EPE_WRITE(IntEn, IntEn_REOFIE);
200 	}
201 	return ndq;
202 }
203 
204 static int
205 epe_intr(void *arg)
206 {
207 	struct epe_softc *sc = (struct epe_softc *)arg;
208 	struct ifnet * ifp = &sc->sc_ec.ec_if;
209 	uint32_t ndq = 0, irq, *cur;
210 
211 	irq = EPE_READ(IntStsC);
212 begin:
213 	cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
214 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
215 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
216 		RX_QLEN * 4 * sizeof(uint32_t),
217 		BUS_DMASYNC_PREREAD);
218 	while (sc->RXStsQ_cur != cur) {
219 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
220 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
221 			uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
222 			uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
223 			struct mbuf *m;
224 
225 			MGETHDR(m, M_DONTWAIT, MT_DATA);
226 			if (m != NULL) MCLGET(m, M_DONTWAIT);
227 			if (m != NULL && (m->m_flags & M_EXT)) {
228 				bus_dmamap_unload(sc->sc_dmat,
229 					sc->rxq[bi].m_dmamap);
230 				m_set_rcvif(sc->rxq[bi].m, ifp);
231 				sc->rxq[bi].m->m_pkthdr.len =
232 					sc->rxq[bi].m->m_len = fl;
233 				bpf_mtap(ifp, sc->rxq[bi].m);
234 				if_percpuq_enqueue(ifp->if_percpuq,
235 				    sc->rxq[bi].m);
236 				sc->rxq[bi].m = m;
237 				bus_dmamap_load(sc->sc_dmat,
238 					sc->rxq[bi].m_dmamap,
239 					m->m_ext.ext_buf, MCLBYTES,
240 					NULL, BUS_DMA_NOWAIT);
241 				sc->RXDQ[bi * 2] =
242 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
243 			} else {
244 				/* Drop packets until we can get replacement
245 				 * empty mbufs for the RXDQ.
246 				 */
247 				if (m != NULL) {
248 					m_freem(m);
249 				}
250 				ifp->if_ierrors++;
251 			}
252 		} else {
253 			ifp->if_ierrors++;
254 		}
255 
256 		ndq++;
257 
258 		sc->RXStsQ_cur += 2;
259 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
260 			sc->RXStsQ_cur = sc->RXStsQ;
261 		}
262 	}
263 
264 	if (ndq > 0) {
265 		ifp->if_ipackets += ndq;
266 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
267  			RX_QLEN * 4 * sizeof(uint32_t),
268 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
269 		EPE_WRITE(RXStsEnq, ndq);
270 		EPE_WRITE(RXDEnq, ndq);
271 		ndq = 0;
272 	}
273 
274 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
275 		epe_ifstart(ifp);
276 	}
277 
278 	irq = EPE_READ(IntStsC);
279 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
280 		goto begin;
281 
282 	return (1);
283 }
284 
285 
286 static void
287 epe_init(struct epe_softc *sc)
288 {
289 	bus_dma_segment_t segs;
290 	char *addr;
291 	int rsegs, err, i;
292 	struct ifnet * ifp = &sc->sc_ec.ec_if;
293 	int mdcdiv = DEFAULT_MDCDIV;
294 
295 	callout_init(&sc->epe_tick_ch, 0);
296 
297 	/* Select primary Individual Address in Address Filter Pointer */
298 	EPE_WRITE(AFP, 0);
299 	/* Read ethernet MAC, should already be set by bootrom */
300 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
301 		sc->sc_enaddr, ETHER_ADDR_LEN);
302 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
303 		ether_sprintf(sc->sc_enaddr));
304 
305 	/* Soft Reset the MAC */
306 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
307 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
308 
309 	/* suggested magic initialization values from datasheet */
310 	EPE_WRITE(RXBufThrshld, 0x800040);
311 	EPE_WRITE(TXBufThrshld, 0x200010);
312 	EPE_WRITE(RXStsThrshld, 0x40002);
313 	EPE_WRITE(TXStsThrshld, 0x40002);
314 	EPE_WRITE(RXDThrshld, 0x40002);
315 	EPE_WRITE(TXDThrshld, 0x40002);
316 
317 	/* Allocate a page of memory for descriptor and status queues */
318 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
319 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
320 	if (err == 0) {
321 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
322 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
323 	}
324 	if (err == 0) {
325 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
326 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
327 	}
328 	if (err == 0) {
329 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
330 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
331 	}
332 	if (err != 0) {
333 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
334 	}
335 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
336 	memset(sc->ctrlpage, 0, PAGE_SIZE);
337 
338 	/* Set up pointers to start of each queue in kernel addr space.
339 	 * Each descriptor queue or status queue entry uses 2 words
340 	 */
341 	sc->TXDQ = (uint32_t *)sc->ctrlpage;
342 	sc->TXDQ_cur = sc->TXDQ;
343 	sc->TXDQ_avail = TX_QLEN - 1;
344 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
345 	sc->TXStsQ_cur = sc->TXStsQ;
346 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
347 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
348 	sc->RXStsQ_cur = sc->RXStsQ;
349 
350 	/* Program each queue's start addr, cur addr, and len registers
351 	 * with the physical addresses.
352 	 */
353 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
354 	EPE_WRITE(TXDQBAdd, (uint32_t)addr);
355 	EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
356 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
357 
358 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
359 	EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
360 	EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
361 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
362 
363 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
364 	EPE_WRITE(RXDQBAdd, (uint32_t)addr);
365 	EPE_WRITE(RXDCurAdd, (uint32_t)addr);
366 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
367 
368 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
369 	EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
370 	EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
371 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
372 
373 	/* Populate the RXDQ with mbufs */
374 	for(i = 0; i < RX_QLEN; i++) {
375 		struct mbuf *m;
376 
377 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
378 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
379 		MGETHDR(m, M_WAIT, MT_DATA);
380 		MCLGET(m, M_WAIT);
381 		sc->rxq[i].m = m;
382 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
383 			m->m_ext.ext_buf, MCLBYTES, NULL,
384 			BUS_DMA_WAITOK);
385 
386 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
387 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
388 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
389 			MCLBYTES, BUS_DMASYNC_PREREAD);
390 	}
391 
392 	for(i = 0; i < TX_QLEN; i++) {
393 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
394 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
395 			&sc->txq[i].m_dmamap);
396 		sc->txq[i].m = NULL;
397 		sc->TXDQ[i * 2 + 1] = (i << 16);
398 	}
399 
400 	/* Divide HCLK by 32 for MDC clock */
401 	if (device_cfdata(sc->sc_dev)->cf_flags)
402 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
403 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
404 
405 	sc->sc_mii.mii_ifp = ifp;
406 	sc->sc_mii.mii_readreg = epe_mii_readreg;
407 	sc->sc_mii.mii_writereg = epe_mii_writereg;
408 	sc->sc_mii.mii_statchg = epe_statchg;
409 	sc->sc_ec.ec_mii = &sc->sc_mii;
410 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
411 		ether_mediastatus);
412 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
413 		MII_OFFSET_ANY, 0);
414 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
415 
416 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
417 	EPE_WRITE(IntEn, IntEn_REOFIE);
418 	/* maximum valid max frame length */
419 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
420 	/* wait for receiver ready */
421 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0)
422 		continue;
423 	/* enqueue the entries in RXStsQ and RXDQ */
424 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
425 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
426 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
427 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
428 
429 	/*
430 	 * We can support 802.1Q VLAN-sized frames.
431 	 */
432 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
433 
434         strcpy(ifp->if_xname, device_xname(sc->sc_dev));
435         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
436         ifp->if_ioctl = epe_ifioctl;
437         ifp->if_start = epe_ifstart;
438         ifp->if_watchdog = epe_ifwatchdog;
439         ifp->if_init = epe_ifinit;
440         ifp->if_stop = epe_ifstop;
441         ifp->if_timer = 0;
442 	ifp->if_softc = sc;
443         IFQ_SET_READY(&ifp->if_snd);
444         if_attach(ifp);
445         ether_ifattach(ifp, (sc)->sc_enaddr);
446 }
447 
448 static int
449 epe_mediachange(struct ifnet *ifp)
450 {
451 	if (ifp->if_flags & IFF_UP)
452 		epe_ifinit(ifp);
453 	return (0);
454 }
455 
456 int
457 epe_mii_readreg(device_t self, int phy, int reg)
458 {
459 	uint32_t d, v;
460 
461 	d = EPE_READ(SelfCtl);
462 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
463 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
464 	while(EPE_READ(MIISts) & MIISts_BUSY);
465 	v = EPE_READ(MIIData);
466 	EPE_WRITE(SelfCtl, d); /* restore old value */
467 	return v;
468 }
469 
470 void
471 epe_mii_writereg(device_t self, int phy, int reg, int val)
472 {
473 	uint32_t d;
474 
475 	d = EPE_READ(SelfCtl);
476 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
477 	EPE_WRITE(MIIData, val);
478 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
479 	while(EPE_READ(MIISts) & MIISts_BUSY);
480 	EPE_WRITE(SelfCtl, d); /* restore old value */
481 }
482 
483 
484 void
485 epe_statchg(struct ifnet *ifp)
486 {
487         struct epe_softc *sc = ifp->if_softc;
488         uint32_t reg;
489 
490         /*
491          * We must keep the MAC and the PHY in sync as
492          * to the status of full-duplex!
493          */
494         reg = EPE_READ(TestCtl);
495         if (sc->sc_mii.mii_media_active & IFM_FDX)
496                 reg |= TestCtl_MFDX;
497         else
498                 reg &= ~TestCtl_MFDX;
499 	EPE_WRITE(TestCtl, reg);
500 }
501 
502 void
503 epe_tick(void *arg)
504 {
505 	struct epe_softc* sc = (struct epe_softc *)arg;
506 	struct ifnet * ifp = &sc->sc_ec.ec_if;
507 	int s;
508 	uint32_t misses;
509 
510 	ifp->if_collisions += EPE_READ(TXCollCnt);
511 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
512 	misses = EPE_READ(RXMissCnt);
513 	if (misses > 0)
514 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
515 
516 	s = splnet();
517 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
518 		epe_ifstart(ifp);
519 	}
520 	splx(s);
521 
522 	mii_tick(&sc->sc_mii);
523 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
524 }
525 
526 
527 static int
528 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
529 {
530 	int s, error;
531 
532 	s = splnet();
533 	error = ether_ioctl(ifp, cmd, data);
534 	if (error == ENETRESET) {
535 		if (ifp->if_flags & IFF_RUNNING)
536 			epe_setaddr(ifp);
537 		error = 0;
538 	}
539 	splx(s);
540 	return error;
541 }
542 
543 static void
544 epe_ifstart(struct ifnet *ifp)
545 {
546 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
547 	struct mbuf *m;
548 	bus_dma_segment_t *segs;
549 	int s, bi, err, nsegs, ndq;
550 
551 	s = splnet();
552 start:
553 	ndq = 0;
554 	if (sc->TXDQ_avail == 0) {
555 		if (epe_gctx(sc) == 0) {
556 			/* Enable End-Of-TX-Chain interrupt */
557 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
558 			ifp->if_flags |= IFF_OACTIVE;
559 			ifp->if_timer = 10;
560 			splx(s);
561 			return;
562 		}
563 	}
564 
565 	bi = sc->TXDQ_cur - sc->TXDQ;
566 
567 	IFQ_POLL(&ifp->if_snd, m);
568 	if (m == NULL) {
569 		splx(s);
570 		return;
571 	}
572 more:
573 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
574 		BUS_DMA_NOWAIT)) ||
575 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
576 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
577 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
578 		struct mbuf *mn;
579 
580 		if (err == 0)
581 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
582 
583 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
584 		if (mn == NULL) goto stop;
585 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
586 			MCLGET(mn, M_DONTWAIT);
587 			if ((mn->m_flags & M_EXT) == 0) {
588 				m_freem(mn);
589 				goto stop;
590 			}
591 		}
592 		mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
593 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
594 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
595 		IFQ_DEQUEUE(&ifp->if_snd, m);
596 		m_freem(m);
597 		m = mn;
598 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
599 			BUS_DMA_NOWAIT);
600 	} else {
601 		IFQ_DEQUEUE(&ifp->if_snd, m);
602 	}
603 
604 	bpf_mtap(ifp, m);
605 
606 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
607 	segs = sc->txq[bi].m_dmamap->dm_segs;
608 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
609 		sc->txq[bi].m_dmamap->dm_mapsize,
610 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
611 
612 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
613 	while (nsegs > 0) {
614 		nsegs--;
615 		sc->txq[bi].m = m;
616 		sc->TXDQ[bi * 2] = segs->ds_addr;
617 		if (nsegs == 0)
618 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
619 				(1 << 31);
620 		else
621 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
622 		segs++;
623 		bi = (bi + 1) % TX_QLEN;
624 		ndq++;
625 	}
626 
627 
628 	/*
629 	 * Enqueue another.  Don't do more than half the available
630 	 * descriptors before telling the MAC about them
631 	 */
632 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
633 		IFQ_POLL(&ifp->if_snd, m);
634 		if (m != NULL) {
635 			goto more;
636 		}
637 	}
638 stop:
639 	if (ndq > 0) {
640 		sc->TXDQ_avail -= ndq;
641 		sc->TXDQ_cur = &sc->TXDQ[bi];
642 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
643 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
644 		EPE_WRITE(TXDEnq, ndq);
645 	}
646 
647 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
648 		goto start;
649 
650 	splx(s);
651 	return;
652 }
653 
654 static void
655 epe_ifwatchdog(struct ifnet *ifp)
656 {
657 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
658 
659 	if ((ifp->if_flags & IFF_RUNNING) == 0)
660 		return;
661        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
662 		device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
663 }
664 
665 static int
666 epe_ifinit(struct ifnet *ifp)
667 {
668 	struct epe_softc *sc = ifp->if_softc;
669 	int rc, s = splnet();
670 
671 	callout_stop(&sc->epe_tick_ch);
672 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
673 	EPE_WRITE(TXCtl, TXCtl_STxON);
674 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
675 
676 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
677 		rc = 0;
678 	else if (rc != 0)
679 		goto out;
680 
681 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
682         ifp->if_flags |= IFF_RUNNING;
683 out:
684 	splx(s);
685 	return 0;
686 }
687 
688 static void
689 epe_ifstop(struct ifnet *ifp, int disable)
690 {
691 	struct epe_softc *sc = ifp->if_softc;
692 
693 
694 	EPE_WRITE(RXCtl, 0);
695 	EPE_WRITE(TXCtl, 0);
696 	EPE_WRITE(GIIntMsk, 0);
697 	callout_stop(&sc->epe_tick_ch);
698 
699 	/* Down the MII. */
700 	mii_down(&sc->sc_mii);
701 
702 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
703 	ifp->if_timer = 0;
704 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
705 }
706 
707 static void
708 epe_setaddr(struct ifnet *ifp)
709 {
710 	struct epe_softc *sc = ifp->if_softc;
711 	struct ethercom *ac = &sc->sc_ec;
712 	struct ether_multi *enm;
713 	struct ether_multistep step;
714 	uint8_t ias[2][ETHER_ADDR_LEN];
715 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
716 	uint32_t rxctl = EPE_READ(RXCtl);
717 
718 	/* disable receiver temporarily */
719 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
720 
721 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
722 
723 	if (ifp->if_flags & IFF_PROMISC) {
724 		rxctl |= RXCtl_PA;
725 	}
726 
727 	ifp->if_flags &= ~IFF_ALLMULTI;
728 
729 	ETHER_FIRST_MULTI(step, ac, enm);
730 	while (enm != NULL) {
731 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
732 			/*
733 			 * We must listen to a range of multicast addresses.
734 			 * For now, just accept all multicasts, rather than
735 			 * trying to set only those filter bits needed to match
736 			 * the range.  (At this time, the only use of address
737 			 * ranges is for IP multicast routing, for which the
738 			 * range is big enough to require all bits set.)
739 			 */
740 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
741 			rxctl |= RXCtl_MA;
742 			hashes[0] = 0xffffffffUL;
743 			hashes[1] = 0xffffffffUL;
744 			ifp->if_flags |= IFF_ALLMULTI;
745 			break;
746 		}
747 
748 		if (nma < 2) {
749 			/* We can program 2 perfect address filters for mcast */
750 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
751 			rxctl |= (1 << (nma + 2));
752 		} else {
753 			/*
754 			 * XXX: Datasheet is not very clear here, I'm not sure
755 			 * if I'm doing this right.  --joff
756 			 */
757 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
758 
759 			/* Just want the 6 most-significant bits. */
760 			h = h >> 26;
761 
762 			hashes[ h / 32 ] |=  (1 << (h % 32));
763 			rxctl |= RXCtl_MA;
764 		}
765 		ETHER_NEXT_MULTI(step, enm);
766 		nma++;
767 	}
768 
769 	EPE_WRITE(AFP, 0);
770 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
771 		sc->sc_enaddr, ETHER_ADDR_LEN);
772 	if (rxctl & RXCtl_IA2) {
773 		EPE_WRITE(AFP, 2);
774 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
775 			ias[0], ETHER_ADDR_LEN);
776 	}
777 	if (rxctl & RXCtl_IA3) {
778 		EPE_WRITE(AFP, 3);
779 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
780 			ias[1], ETHER_ADDR_LEN);
781 	}
782 	if (hashes[0] != 0 && hashes[1] != 0) {
783 		EPE_WRITE(AFP, 7);
784 		EPE_WRITE(HashTbl, hashes[0]);
785 		EPE_WRITE(HashTbl + 4, hashes[1]);
786 	}
787 	EPE_WRITE(RXCtl, rxctl);
788 }
789