xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: epe.c,v 1.8 2006/05/05 18:04:41 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.8 2006/05/05 18:04:41 thorpej Exp $");
38 
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/ioctl.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48 #include <uvm/uvm_extern.h>
49 
50 #include <machine/bus.h>
51 #include <machine/intr.h>
52 
53 #include <arm/cpufunc.h>
54 
55 #include <arm/ep93xx/epsocvar.h>
56 #include <arm/ep93xx/ep93xxvar.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/if_inarp.h>
73 #endif
74 
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79 
80 #include "bpfilter.h"
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
85 
86 #include <machine/bus.h>
87 
88 #ifdef IPKDB_EP93XX
89 #include <ipkdb/ipkdb.h>
90 #endif
91 
92 #include <arm/ep93xx/ep93xxreg.h>
93 #include <arm/ep93xx/epereg.h>
94 #include <arm/ep93xx/epevar.h>
95 
96 #define DEFAULT_MDCDIV	32
97 
98 #ifndef EPE_FAST
99 #define EPE_FAST
100 #endif
101 
102 #ifndef EPE_FAST
103 #define EPE_READ(x) \
104 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
105 #define EPE_WRITE(x, y) \
106 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
107 #define CTRLPAGE_DMASYNC(x, y, z) \
108 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
109 #else
110 #define EPE_READ(x) *(volatile u_int32_t *) \
111 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
112 #define EPE_WRITE(x, y) *(volatile u_int32_t *) \
113 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
114 #define CTRLPAGE_DMASYNC(x, y, z)
115 #endif /* ! EPE_FAST */
116 
117 static int	epe_match(struct device *, struct cfdata *, void *);
118 static void	epe_attach(struct device *, struct device *, void *);
119 static void	epe_init(struct epe_softc *);
120 static int      epe_intr(void* arg);
121 static int	epe_gctx(struct epe_softc *);
122 static int	epe_mediachange(struct ifnet *);
123 static void	epe_mediastatus(struct ifnet *, struct ifmediareq *);
124 int		epe_mii_readreg (struct device *, int, int);
125 void		epe_mii_writereg (struct device *, int, int, int);
126 void		epe_statchg (struct device *);
127 void		epe_tick (void *);
128 static int	epe_ifioctl (struct ifnet *, u_long, caddr_t);
129 static void	epe_ifstart (struct ifnet *);
130 static void	epe_ifwatchdog (struct ifnet *);
131 static int	epe_ifinit (struct ifnet *);
132 static void	epe_ifstop (struct ifnet *, int);
133 static void	epe_setaddr (struct ifnet *);
134 
135 CFATTACH_DECL(epe, sizeof(struct epe_softc),
136     epe_match, epe_attach, NULL, NULL);
137 
138 static int
139 epe_match(struct device *parent, struct cfdata *match, void *aux)
140 {
141 	return 2;
142 }
143 
144 static void
145 epe_attach(struct device *parent, struct device *self, void *aux)
146 {
147 	struct epe_softc		*sc;
148 	struct epsoc_attach_args	*sa;
149 	prop_data_t			 enaddr;
150 
151 	printf("\n");
152 	sc = (struct epe_softc*) self;
153 	sa = aux;
154 	sc->sc_iot = sa->sa_iot;
155 	sc->sc_intr = sa->sa_intr;
156 	sc->sc_dmat = sa->sa_dmat;
157 
158 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
159 		0, &sc->sc_ioh))
160 		panic("%s: Cannot map registers", self->dv_xname);
161 
162 	/* Fetch the Ethernet address from property if set. */
163 	enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
164 	if (enaddr != NULL) {
165 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
166 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
167 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
168 		       ETHER_ADDR_LEN);
169 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
170 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
171 					 sc->sc_enaddr, ETHER_ADDR_LEN);
172 	}
173 
174         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
175 	epe_init(sc);
176 }
177 
178 static int
179 epe_gctx(struct epe_softc *sc)
180 {
181 	struct ifnet * ifp = &sc->sc_ec.ec_if;
182 	u_int32_t *cur, ndq = 0;
183 
184 	/* Handle transmit completions */
185 	cur = (u_int32_t *)(EPE_READ(TXStsQCurAdd) -
186 		sc->ctrlpage_dsaddr + sc->ctrlpage);
187 
188 	if (sc->TXStsQ_cur != cur) {
189 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(u_int32_t),
190 			TX_QLEN * sizeof(u_int32_t), BUS_DMASYNC_PREREAD);
191 	} else {
192 		return 0;
193 	}
194 
195 	do {
196 		u_int32_t tbi = *sc->TXStsQ_cur & 0x7fff;
197 		struct mbuf *m = sc->txq[tbi].m;
198 
199 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
200 			ifp->if_oerrors++;
201 		}
202 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
203 		m_freem(m);
204 		do {
205 			sc->txq[tbi].m = NULL;
206 			ndq++;
207 			tbi = (tbi + 1) % TX_QLEN;
208 		} while (sc->txq[tbi].m == m);
209 
210 		ifp->if_opackets++;
211 		sc->TXStsQ_cur++;
212 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
213 			sc->TXStsQ_cur = sc->TXStsQ;
214 		}
215 	} while (sc->TXStsQ_cur != cur);
216 
217 	sc->TXDQ_avail += ndq;
218 	if (ifp->if_flags & IFF_OACTIVE) {
219 		ifp->if_flags &= ~IFF_OACTIVE;
220 		/* Disable end-of-tx-chain interrupt */
221 		EPE_WRITE(IntEn, IntEn_REOFIE);
222 	}
223 	return ndq;
224 }
225 
226 static int
227 epe_intr(void *arg)
228 {
229 	struct epe_softc *sc = (struct epe_softc *)arg;
230 	struct ifnet * ifp = &sc->sc_ec.ec_if;
231 	u_int32_t ndq = 0, irq, *cur;
232 
233 	irq = EPE_READ(IntStsC);
234 begin:
235 	cur = (u_int32_t *)(EPE_READ(RXStsQCurAdd) -
236 		sc->ctrlpage_dsaddr + sc->ctrlpage);
237 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
238 		RX_QLEN * 4 * sizeof(u_int32_t),
239 		BUS_DMASYNC_PREREAD);
240 	while (sc->RXStsQ_cur != cur) {
241 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
242 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
243 			u_int32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
244 			u_int32_t fl = sc->RXStsQ_cur[1] & 0xffff;
245 			struct mbuf *m;
246 
247 			MGETHDR(m, M_DONTWAIT, MT_DATA);
248 			if (m != NULL) MCLGET(m, M_DONTWAIT);
249 			if (m != NULL && (m->m_flags & M_EXT)) {
250 				bus_dmamap_unload(sc->sc_dmat,
251 					sc->rxq[bi].m_dmamap);
252 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
253 				sc->rxq[bi].m->m_pkthdr.len =
254 					sc->rxq[bi].m->m_len = fl;
255 #if NBPFILTER > 0
256 				if (ifp->if_bpf)
257 					bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
258 #endif /* NBPFILTER > 0 */
259                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
260 				sc->rxq[bi].m = m;
261 				bus_dmamap_load(sc->sc_dmat,
262 					sc->rxq[bi].m_dmamap,
263 					m->m_ext.ext_buf, MCLBYTES,
264 					NULL, BUS_DMA_NOWAIT);
265 				sc->RXDQ[bi * 2] =
266 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
267 			} else {
268 				/* Drop packets until we can get replacement
269 				 * empty mbufs for the RXDQ.
270 				 */
271 				if (m != NULL) {
272 					m_freem(m);
273 				}
274 				ifp->if_ierrors++;
275 			}
276 		} else {
277 			ifp->if_ierrors++;
278 		}
279 
280 		ndq++;
281 
282 		sc->RXStsQ_cur += 2;
283 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
284 			sc->RXStsQ_cur = sc->RXStsQ;
285 		}
286 	}
287 
288 	if (ndq > 0) {
289 		ifp->if_ipackets += ndq;
290 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
291  			RX_QLEN * 4 * sizeof(u_int32_t),
292 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
293 		EPE_WRITE(RXStsEnq, ndq);
294 		EPE_WRITE(RXDEnq, ndq);
295 		ndq = 0;
296 	}
297 
298 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
299 		epe_ifstart(ifp);
300 	}
301 
302 	irq = EPE_READ(IntStsC);
303 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
304 		goto begin;
305 
306 	return (1);
307 }
308 
309 
310 static void
311 epe_init(struct epe_softc *sc)
312 {
313 	bus_dma_segment_t segs;
314 	caddr_t addr;
315 	int rsegs, err, i;
316 	struct ifnet * ifp = &sc->sc_ec.ec_if;
317 	int mdcdiv = DEFAULT_MDCDIV;
318 
319 	callout_init(&sc->epe_tick_ch);
320 
321 	/* Select primary Individual Address in Address Filter Pointer */
322 	EPE_WRITE(AFP, 0);
323 	/* Read ethernet MAC, should already be set by bootrom */
324 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
325 		sc->sc_enaddr, ETHER_ADDR_LEN);
326 	printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
327 		ether_sprintf(sc->sc_enaddr));
328 
329 	/* Soft Reset the MAC */
330 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
331 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
332 
333 	/* suggested magic initialization values from datasheet */
334 	EPE_WRITE(RXBufThrshld, 0x800040);
335 	EPE_WRITE(TXBufThrshld, 0x200010);
336 	EPE_WRITE(RXStsThrshld, 0x40002);
337 	EPE_WRITE(TXStsThrshld, 0x40002);
338 	EPE_WRITE(RXDThrshld, 0x40002);
339 	EPE_WRITE(TXDThrshld, 0x40002);
340 
341 	/* Allocate a page of memory for descriptor and status queues */
342 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
343 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
344 	if (err == 0) {
345 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
346 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
347 	}
348 	if (err == 0) {
349 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
350 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
351 	}
352 	if (err == 0) {
353 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
354 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
355 	}
356 	if (err != 0) {
357 		panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
358 	}
359 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
360 	bzero(sc->ctrlpage, PAGE_SIZE);
361 
362 	/* Set up pointers to start of each queue in kernel addr space.
363 	 * Each descriptor queue or status queue entry uses 2 words
364 	 */
365 	sc->TXDQ = (u_int32_t *)sc->ctrlpage;
366 	sc->TXDQ_cur = sc->TXDQ;
367 	sc->TXDQ_avail = TX_QLEN - 1;
368 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
369 	sc->TXStsQ_cur = sc->TXStsQ;
370 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
371 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
372 	sc->RXStsQ_cur = sc->RXStsQ;
373 
374 	/* Program each queue's start addr, cur addr, and len registers
375 	 * with the physical addresses.
376 	 */
377 	addr = (caddr_t)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
378 	EPE_WRITE(TXDQBAdd, (u_int32_t)addr);
379 	EPE_WRITE(TXDQCurAdd, (u_int32_t)addr);
380 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(u_int32_t));
381 
382 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(u_int32_t);
383 	EPE_WRITE(TXStsQBAdd, (u_int32_t)addr);
384 	EPE_WRITE(TXStsQCurAdd, (u_int32_t)addr);
385 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(u_int32_t));
386 
387 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(u_int32_t);
388 	EPE_WRITE(RXDQBAdd, (u_int32_t)addr);
389 	EPE_WRITE(RXDCurAdd, (u_int32_t)addr);
390 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
391 
392 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(u_int32_t);
393 	EPE_WRITE(RXStsQBAdd, (u_int32_t)addr);
394 	EPE_WRITE(RXStsQCurAdd, (u_int32_t)addr);
395 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
396 
397 	/* Populate the RXDQ with mbufs */
398 	for(i = 0; i < RX_QLEN; i++) {
399 		struct mbuf *m;
400 
401 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
402 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
403 		MGETHDR(m, M_WAIT, MT_DATA);
404 		MCLGET(m, M_WAIT);
405 		sc->rxq[i].m = m;
406 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
407 			m->m_ext.ext_buf, MCLBYTES, NULL,
408 			BUS_DMA_WAITOK);
409 
410 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
411 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
412 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
413 			MCLBYTES, BUS_DMASYNC_PREREAD);
414 	}
415 
416 	for(i = 0; i < TX_QLEN; i++) {
417 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
418 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
419 			&sc->txq[i].m_dmamap);
420 		sc->txq[i].m = NULL;
421 		sc->TXDQ[i * 2 + 1] = (i << 16);
422 	}
423 
424 	/* Divide HCLK by 32 for MDC clock */
425 	if (device_cfdata(&sc->sc_dev)->cf_flags)
426 		mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
427 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
428 
429 	sc->sc_mii.mii_ifp = ifp;
430 	sc->sc_mii.mii_readreg = epe_mii_readreg;
431 	sc->sc_mii.mii_writereg = epe_mii_writereg;
432 	sc->sc_mii.mii_statchg = epe_statchg;
433 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
434 		epe_mediastatus);
435 	mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
436 		MII_OFFSET_ANY, 0);
437 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
438 
439 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
440 	EPE_WRITE(IntEn, IntEn_REOFIE);
441 	/* maximum valid max frame length */
442 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
443 	/* wait for receiver ready */
444 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0);
445 	/* enqueue the entries in RXStsQ and RXDQ */
446 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
447 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
448 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
449 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
450 
451 	/*
452 	 * We can support 802.1Q VLAN-sized frames.
453 	 */
454 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
455 
456         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
457         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
458         ifp->if_ioctl = epe_ifioctl;
459         ifp->if_start = epe_ifstart;
460         ifp->if_watchdog = epe_ifwatchdog;
461         ifp->if_init = epe_ifinit;
462         ifp->if_stop = epe_ifstop;
463         ifp->if_timer = 0;
464 	ifp->if_softc = sc;
465         IFQ_SET_READY(&ifp->if_snd);
466         if_attach(ifp);
467         ether_ifattach(ifp, (sc)->sc_enaddr);
468 }
469 
470 static int
471 epe_mediachange(ifp)
472 	struct ifnet *ifp;
473 {
474 	if (ifp->if_flags & IFF_UP)
475 		epe_ifinit(ifp);
476 	return (0);
477 }
478 
479 static void
480 epe_mediastatus(ifp, ifmr)
481 	struct ifnet *ifp;
482 	struct ifmediareq *ifmr;
483 {
484 	struct epe_softc *sc = ifp->if_softc;
485 
486 	mii_pollstat(&sc->sc_mii);
487 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
488 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
489 }
490 
491 
492 int
493 epe_mii_readreg(self, phy, reg)
494 	struct device *self;
495 	int phy, reg;
496 {
497 	u_int32_t d, v;
498 	struct epe_softc *sc;
499 
500 	sc = (struct epe_softc *)self;
501 	d = EPE_READ(SelfCtl);
502 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
503 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
504 	while(EPE_READ(MIISts) & MIISts_BUSY);
505 	v = EPE_READ(MIIData);
506 	EPE_WRITE(SelfCtl, d); /* restore old value */
507 	return v;
508 }
509 
510 void
511 epe_mii_writereg(self, phy, reg, val)
512 	struct device *self;
513 	int phy, reg, val;
514 {
515 	struct epe_softc *sc;
516 	u_int32_t d;
517 
518 	sc = (struct epe_softc *)self;
519 	d = EPE_READ(SelfCtl);
520 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
521 	EPE_WRITE(MIIData, val);
522 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
523 	while(EPE_READ(MIISts) & MIISts_BUSY);
524 	EPE_WRITE(SelfCtl, d); /* restore old value */
525 }
526 
527 
528 void
529 epe_statchg(self)
530         struct device *self;
531 {
532         struct epe_softc *sc = (struct epe_softc *)self;
533         u_int32_t reg;
534 
535         /*
536          * We must keep the MAC and the PHY in sync as
537          * to the status of full-duplex!
538          */
539         reg = EPE_READ(TestCtl);
540         if (sc->sc_mii.mii_media_active & IFM_FDX)
541                 reg |= TestCtl_MFDX;
542         else
543                 reg &= ~TestCtl_MFDX;
544 	EPE_WRITE(TestCtl, reg);
545 }
546 
547 void
548 epe_tick(arg)
549 	void *arg;
550 {
551 	struct epe_softc* sc = (struct epe_softc *)arg;
552 	struct ifnet * ifp = &sc->sc_ec.ec_if;
553 	int s;
554 	u_int32_t misses;
555 
556 	ifp->if_collisions += EPE_READ(TXCollCnt);
557 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
558 	misses = EPE_READ(RXMissCnt);
559 	if (misses > 0)
560 		printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
561 
562 	s = splnet();
563 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
564 		epe_ifstart(ifp);
565 	}
566 	splx(s);
567 
568 	mii_tick(&sc->sc_mii);
569 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
570 }
571 
572 
573 static int
574 epe_ifioctl(ifp, cmd, data)
575 	struct ifnet *ifp;
576 	u_long cmd;
577 	caddr_t data;
578 {
579 	struct epe_softc *sc = ifp->if_softc;
580 	struct ifreq *ifr = (struct ifreq *)data;
581 	int s, error;
582 
583 	s = splnet();
584 	switch(cmd) {
585 	case SIOCSIFMEDIA:
586 	case SIOCGIFMEDIA:
587 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
588 		break;
589 	default:
590 		error = ether_ioctl(ifp, cmd, data);
591 		if (error == ENETRESET) {
592 			if (ifp->if_flags & IFF_RUNNING)
593 				epe_setaddr(ifp);
594 			error = 0;
595 		}
596 	}
597 	splx(s);
598 	return error;
599 }
600 
601 static void
602 epe_ifstart(ifp)
603 	struct ifnet *ifp;
604 {
605 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
606 	struct mbuf *m;
607 	bus_dma_segment_t *segs;
608 	int s, bi, err, nsegs, ndq;
609 
610 	s = splnet();
611 start:
612 	ndq = 0;
613 	if (sc->TXDQ_avail == 0) {
614 		if (epe_gctx(sc) == 0) {
615 			/* Enable End-Of-TX-Chain interrupt */
616 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
617 			ifp->if_flags |= IFF_OACTIVE;
618 			ifp->if_timer = 10;
619 			splx(s);
620 			return;
621 		}
622 	}
623 
624 	bi = sc->TXDQ_cur - sc->TXDQ;
625 
626 	IFQ_POLL(&ifp->if_snd, m);
627 	if (m == NULL) {
628 		splx(s);
629 		return;
630 	}
631 more:
632 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
633 		BUS_DMA_NOWAIT)) ||
634 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
635 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
636 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
637 		struct mbuf *mn;
638 
639 		if (err == 0)
640 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
641 
642 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
643 		if (mn == NULL) goto stop;
644 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
645 			MCLGET(mn, M_DONTWAIT);
646 			if ((mn->m_flags & M_EXT) == 0) {
647 				m_freem(mn);
648 				goto stop;
649 			}
650 		}
651 		mn->m_data = (caddr_t)(((u_int32_t)mn->m_data + 0x3) & (~0x3));
652 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, caddr_t));
653 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
654 		IFQ_DEQUEUE(&ifp->if_snd, m);
655 		m_freem(m);
656 		m = mn;
657 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
658 			BUS_DMA_NOWAIT);
659 	} else {
660 		IFQ_DEQUEUE(&ifp->if_snd, m);
661 	}
662 
663 #if NBPFILTER > 0
664 	if (ifp->if_bpf)
665 		bpf_mtap(ifp->if_bpf, m);
666 #endif /* NBPFILTER > 0 */
667 
668 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
669 	segs = sc->txq[bi].m_dmamap->dm_segs;
670 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
671 		sc->txq[bi].m_dmamap->dm_mapsize,
672 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
673 
674 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
675 	while (nsegs > 0) {
676 		nsegs--;
677 		sc->txq[bi].m = m;
678 		sc->TXDQ[bi * 2] = segs->ds_addr;
679 		if (nsegs == 0)
680 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
681 				(1 << 31);
682 		else
683 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
684 		segs++;
685 		bi = (bi + 1) % TX_QLEN;
686 		ndq++;
687 	}
688 
689 
690 	/*
691 	 * Enqueue another.  Don't do more than half the available
692 	 * descriptors before telling the MAC about them
693 	 */
694 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
695 		IFQ_POLL(&ifp->if_snd, m);
696 		if (m != NULL) {
697 			goto more;
698 		}
699 	}
700 stop:
701 	if (ndq > 0) {
702 		sc->TXDQ_avail -= ndq;
703 		sc->TXDQ_cur = &sc->TXDQ[bi];
704 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(u_int32_t),
705 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
706 		EPE_WRITE(TXDEnq, ndq);
707 	}
708 
709 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
710 		goto start;
711 
712 	splx(s);
713 	return;
714 }
715 
716 static void
717 epe_ifwatchdog(ifp)
718 	struct ifnet *ifp;
719 {
720 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
721 
722 	if ((ifp->if_flags & IFF_RUNNING) == 0)
723 		return;
724        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
725 		sc->sc_dev.dv_xname, EPE_READ(BMCtl), EPE_READ(BMSts));
726 }
727 
728 static int
729 epe_ifinit(ifp)
730 	struct ifnet *ifp;
731 {
732 	struct epe_softc *sc = ifp->if_softc;
733 	int s = splnet();
734 
735 	callout_stop(&sc->epe_tick_ch);
736 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
737 	EPE_WRITE(TXCtl, TXCtl_STxON);
738 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
739 	mii_mediachg(&sc->sc_mii);
740 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
741         ifp->if_flags |= IFF_RUNNING;
742 	splx(s);
743 	return 0;
744 }
745 
746 static void
747 epe_ifstop(ifp, disable)
748 	struct ifnet *ifp;
749 	int disable;
750 {
751 	struct epe_softc *sc = ifp->if_softc;
752 
753 
754 	EPE_WRITE(RXCtl, 0);
755 	EPE_WRITE(TXCtl, 0);
756 	EPE_WRITE(GIIntMsk, 0);
757 	callout_stop(&sc->epe_tick_ch);
758 
759 	/* Down the MII. */
760 	mii_down(&sc->sc_mii);
761 
762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
763 	ifp->if_timer = 0;
764 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
765 }
766 
767 static void
768 epe_setaddr(ifp)
769 	struct ifnet *ifp;
770 {
771 	struct epe_softc *sc = ifp->if_softc;
772 	struct ethercom *ac = &sc->sc_ec;
773 	struct ether_multi *enm;
774 	struct ether_multistep step;
775 	u_int8_t ias[2][ETHER_ADDR_LEN];
776 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
777 	u_int32_t rxctl = EPE_READ(RXCtl);
778 
779 	/* disable receiver temporarily */
780 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
781 
782 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
783 
784 	if (ifp->if_flags & IFF_PROMISC) {
785 		rxctl |= RXCtl_PA;
786 	}
787 
788 	ifp->if_flags &= ~IFF_ALLMULTI;
789 
790 	ETHER_FIRST_MULTI(step, ac, enm);
791 	while (enm != NULL) {
792 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
793 			/*
794 			 * We must listen to a range of multicast addresses.
795 			 * For now, just accept all multicasts, rather than
796 			 * trying to set only those filter bits needed to match
797 			 * the range.  (At this time, the only use of address
798 			 * ranges is for IP multicast routing, for which the
799 			 * range is big enough to require all bits set.)
800 			 */
801 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
802 			rxctl |= RXCtl_MA;
803 			hashes[0] = 0xffffffffUL;
804 			hashes[1] = 0xffffffffUL;
805 			ifp->if_flags |= IFF_ALLMULTI;
806 			break;
807 		}
808 
809 		if (nma < 2) {
810 			/* We can program 2 perfect address filters for mcast */
811 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
812 			rxctl |= (1 << (nma + 2));
813 		} else {
814 			/*
815 			 * XXX: Datasheet is not very clear here, I'm not sure
816 			 * if I'm doing this right.  --joff
817 			 */
818 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
819 
820 			/* Just want the 6 most-significant bits. */
821 			h = h >> 26;
822 
823 			hashes[ h / 32 ] |=  (1 << (h % 32));
824 			rxctl |= RXCtl_MA;
825 		}
826 		ETHER_NEXT_MULTI(step, enm);
827 		nma++;
828 	}
829 
830 	EPE_WRITE(AFP, 0);
831 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
832 		sc->sc_enaddr, ETHER_ADDR_LEN);
833 	if (rxctl & RXCtl_IA2) {
834 		EPE_WRITE(AFP, 2);
835 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
836 			ias[0], ETHER_ADDR_LEN);
837 	}
838 	if (rxctl & RXCtl_IA3) {
839 		EPE_WRITE(AFP, 3);
840 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
841 			ias[1], ETHER_ADDR_LEN);
842 	}
843 	if (hashes[0] != 0 && hashes[1] != 0) {
844 		EPE_WRITE(AFP, 7);
845 		EPE_WRITE(HashTbl, hashes[0]);
846 		EPE_WRITE(HashTbl + 4, hashes[1]);
847 	}
848 	EPE_WRITE(RXCtl, rxctl);
849 }
850