xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: epe.c,v 1.31 2014/03/08 18:08:48 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.31 2014/03/08 18:08:48 skrll Exp $");
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ioctl.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/time.h>
40 #include <sys/device.h>
41 #include <uvm/uvm_extern.h>
42 
43 #include <sys/bus.h>
44 #include <machine/intr.h>
45 
46 #include <arm/cpufunc.h>
47 
48 #include <arm/ep93xx/epsocvar.h>
49 #include <arm/ep93xx/ep93xxvar.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #include <netinet/if_inarp.h>
66 #endif
67 
68 #ifdef NS
69 #include <netns/ns.h>
70 #include <netns/ns_if.h>
71 #endif
72 
73 #include <net/bpf.h>
74 #include <net/bpfdesc.h>
75 
76 #include <arm/ep93xx/ep93xxreg.h>
77 #include <arm/ep93xx/epereg.h>
78 #include <arm/ep93xx/epevar.h>
79 
80 #define DEFAULT_MDCDIV	32
81 
82 #ifndef EPE_FAST
83 #define EPE_FAST
84 #endif
85 
86 #ifndef EPE_FAST
87 #define EPE_READ(x) \
88 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
89 #define EPE_WRITE(x, y) \
90 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
91 #define CTRLPAGE_DMASYNC(x, y, z) \
92 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
93 #else
94 #define EPE_READ(x) *(volatile uint32_t *) \
95 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
96 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
97 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
98 #define CTRLPAGE_DMASYNC(x, y, z)
99 #endif /* ! EPE_FAST */
100 
101 static int	epe_match(device_t , cfdata_t, void *);
102 static void	epe_attach(device_t, device_t, void *);
103 static void	epe_init(struct epe_softc *);
104 static int      epe_intr(void* arg);
105 static int	epe_gctx(struct epe_softc *);
106 static int	epe_mediachange(struct ifnet *);
107 int		epe_mii_readreg (device_t, int, int);
108 void		epe_mii_writereg (device_t, int, int, int);
109 void		epe_statchg (struct ifnet *);
110 void		epe_tick (void *);
111 static int	epe_ifioctl (struct ifnet *, u_long, void *);
112 static void	epe_ifstart (struct ifnet *);
113 static void	epe_ifwatchdog (struct ifnet *);
114 static int	epe_ifinit (struct ifnet *);
115 static void	epe_ifstop (struct ifnet *, int);
116 static void	epe_setaddr (struct ifnet *);
117 
118 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
119     epe_match, epe_attach, NULL, NULL);
120 
121 static int
122 epe_match(device_t parent, cfdata_t match, void *aux)
123 {
124 	return 2;
125 }
126 
127 static void
128 epe_attach(device_t parent, device_t self, void *aux)
129 {
130 	struct epe_softc		*sc = device_private(self);
131 	struct epsoc_attach_args	*sa;
132 	prop_data_t			 enaddr;
133 
134 	aprint_normal("\n");
135 	sa = aux;
136 	sc->sc_dev = self;
137 	sc->sc_iot = sa->sa_iot;
138 	sc->sc_intr = sa->sa_intr;
139 	sc->sc_dmat = sa->sa_dmat;
140 
141 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
142 		0, &sc->sc_ioh))
143 		panic("%s: Cannot map registers", device_xname(self));
144 
145 	/* Fetch the Ethernet address from property if set. */
146 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
147 	if (enaddr != NULL) {
148 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
149 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
150 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
151 		       ETHER_ADDR_LEN);
152 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
153 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
154 					 sc->sc_enaddr, ETHER_ADDR_LEN);
155 	}
156 
157         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
158 	epe_init(sc);
159 }
160 
161 static int
162 epe_gctx(struct epe_softc *sc)
163 {
164 	struct ifnet * ifp = &sc->sc_ec.ec_if;
165 	uint32_t *cur, ndq = 0;
166 
167 	/* Handle transmit completions */
168 	cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
169 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
170 
171 	if (sc->TXStsQ_cur != cur) {
172 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
173 			TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
174 	} else {
175 		return 0;
176 	}
177 
178 	do {
179 		uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
180 		struct mbuf *m = sc->txq[tbi].m;
181 
182 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
183 			ifp->if_oerrors++;
184 		}
185 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
186 		m_freem(m);
187 		do {
188 			sc->txq[tbi].m = NULL;
189 			ndq++;
190 			tbi = (tbi + 1) % TX_QLEN;
191 		} while (sc->txq[tbi].m == m);
192 
193 		ifp->if_opackets++;
194 		sc->TXStsQ_cur++;
195 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
196 			sc->TXStsQ_cur = sc->TXStsQ;
197 		}
198 	} while (sc->TXStsQ_cur != cur);
199 
200 	sc->TXDQ_avail += ndq;
201 	if (ifp->if_flags & IFF_OACTIVE) {
202 		ifp->if_flags &= ~IFF_OACTIVE;
203 		/* Disable end-of-tx-chain interrupt */
204 		EPE_WRITE(IntEn, IntEn_REOFIE);
205 	}
206 	return ndq;
207 }
208 
209 static int
210 epe_intr(void *arg)
211 {
212 	struct epe_softc *sc = (struct epe_softc *)arg;
213 	struct ifnet * ifp = &sc->sc_ec.ec_if;
214 	uint32_t ndq = 0, irq, *cur;
215 
216 	irq = EPE_READ(IntStsC);
217 begin:
218 	cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
219 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
220 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
221 		RX_QLEN * 4 * sizeof(uint32_t),
222 		BUS_DMASYNC_PREREAD);
223 	while (sc->RXStsQ_cur != cur) {
224 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
225 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
226 			uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
227 			uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
228 			struct mbuf *m;
229 
230 			MGETHDR(m, M_DONTWAIT, MT_DATA);
231 			if (m != NULL) MCLGET(m, M_DONTWAIT);
232 			if (m != NULL && (m->m_flags & M_EXT)) {
233 				bus_dmamap_unload(sc->sc_dmat,
234 					sc->rxq[bi].m_dmamap);
235 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
236 				sc->rxq[bi].m->m_pkthdr.len =
237 					sc->rxq[bi].m->m_len = fl;
238 				bpf_mtap(ifp, sc->rxq[bi].m);
239                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
240 				sc->rxq[bi].m = m;
241 				bus_dmamap_load(sc->sc_dmat,
242 					sc->rxq[bi].m_dmamap,
243 					m->m_ext.ext_buf, MCLBYTES,
244 					NULL, BUS_DMA_NOWAIT);
245 				sc->RXDQ[bi * 2] =
246 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
247 			} else {
248 				/* Drop packets until we can get replacement
249 				 * empty mbufs for the RXDQ.
250 				 */
251 				if (m != NULL) {
252 					m_freem(m);
253 				}
254 				ifp->if_ierrors++;
255 			}
256 		} else {
257 			ifp->if_ierrors++;
258 		}
259 
260 		ndq++;
261 
262 		sc->RXStsQ_cur += 2;
263 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
264 			sc->RXStsQ_cur = sc->RXStsQ;
265 		}
266 	}
267 
268 	if (ndq > 0) {
269 		ifp->if_ipackets += ndq;
270 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
271  			RX_QLEN * 4 * sizeof(uint32_t),
272 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
273 		EPE_WRITE(RXStsEnq, ndq);
274 		EPE_WRITE(RXDEnq, ndq);
275 		ndq = 0;
276 	}
277 
278 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
279 		epe_ifstart(ifp);
280 	}
281 
282 	irq = EPE_READ(IntStsC);
283 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
284 		goto begin;
285 
286 	return (1);
287 }
288 
289 
290 static void
291 epe_init(struct epe_softc *sc)
292 {
293 	bus_dma_segment_t segs;
294 	char *addr;
295 	int rsegs, err, i;
296 	struct ifnet * ifp = &sc->sc_ec.ec_if;
297 	int mdcdiv = DEFAULT_MDCDIV;
298 
299 	callout_init(&sc->epe_tick_ch, 0);
300 
301 	/* Select primary Individual Address in Address Filter Pointer */
302 	EPE_WRITE(AFP, 0);
303 	/* Read ethernet MAC, should already be set by bootrom */
304 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
305 		sc->sc_enaddr, ETHER_ADDR_LEN);
306 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
307 		ether_sprintf(sc->sc_enaddr));
308 
309 	/* Soft Reset the MAC */
310 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
311 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
312 
313 	/* suggested magic initialization values from datasheet */
314 	EPE_WRITE(RXBufThrshld, 0x800040);
315 	EPE_WRITE(TXBufThrshld, 0x200010);
316 	EPE_WRITE(RXStsThrshld, 0x40002);
317 	EPE_WRITE(TXStsThrshld, 0x40002);
318 	EPE_WRITE(RXDThrshld, 0x40002);
319 	EPE_WRITE(TXDThrshld, 0x40002);
320 
321 	/* Allocate a page of memory for descriptor and status queues */
322 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
323 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
324 	if (err == 0) {
325 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
326 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
327 	}
328 	if (err == 0) {
329 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
330 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
331 	}
332 	if (err == 0) {
333 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
334 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
335 	}
336 	if (err != 0) {
337 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
338 	}
339 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
340 	memset(sc->ctrlpage, 0, PAGE_SIZE);
341 
342 	/* Set up pointers to start of each queue in kernel addr space.
343 	 * Each descriptor queue or status queue entry uses 2 words
344 	 */
345 	sc->TXDQ = (uint32_t *)sc->ctrlpage;
346 	sc->TXDQ_cur = sc->TXDQ;
347 	sc->TXDQ_avail = TX_QLEN - 1;
348 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
349 	sc->TXStsQ_cur = sc->TXStsQ;
350 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
351 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
352 	sc->RXStsQ_cur = sc->RXStsQ;
353 
354 	/* Program each queue's start addr, cur addr, and len registers
355 	 * with the physical addresses.
356 	 */
357 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
358 	EPE_WRITE(TXDQBAdd, (uint32_t)addr);
359 	EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
360 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
361 
362 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
363 	EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
364 	EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
365 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
366 
367 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
368 	EPE_WRITE(RXDQBAdd, (uint32_t)addr);
369 	EPE_WRITE(RXDCurAdd, (uint32_t)addr);
370 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
371 
372 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
373 	EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
374 	EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
375 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
376 
377 	/* Populate the RXDQ with mbufs */
378 	for(i = 0; i < RX_QLEN; i++) {
379 		struct mbuf *m;
380 
381 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
382 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
383 		MGETHDR(m, M_WAIT, MT_DATA);
384 		MCLGET(m, M_WAIT);
385 		sc->rxq[i].m = m;
386 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
387 			m->m_ext.ext_buf, MCLBYTES, NULL,
388 			BUS_DMA_WAITOK);
389 
390 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
391 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
392 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
393 			MCLBYTES, BUS_DMASYNC_PREREAD);
394 	}
395 
396 	for(i = 0; i < TX_QLEN; i++) {
397 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
398 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
399 			&sc->txq[i].m_dmamap);
400 		sc->txq[i].m = NULL;
401 		sc->TXDQ[i * 2 + 1] = (i << 16);
402 	}
403 
404 	/* Divide HCLK by 32 for MDC clock */
405 	if (device_cfdata(sc->sc_dev)->cf_flags)
406 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
407 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
408 
409 	sc->sc_mii.mii_ifp = ifp;
410 	sc->sc_mii.mii_readreg = epe_mii_readreg;
411 	sc->sc_mii.mii_writereg = epe_mii_writereg;
412 	sc->sc_mii.mii_statchg = epe_statchg;
413 	sc->sc_ec.ec_mii = &sc->sc_mii;
414 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
415 		ether_mediastatus);
416 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
417 		MII_OFFSET_ANY, 0);
418 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
419 
420 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
421 	EPE_WRITE(IntEn, IntEn_REOFIE);
422 	/* maximum valid max frame length */
423 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
424 	/* wait for receiver ready */
425 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0)
426 		continue;
427 	/* enqueue the entries in RXStsQ and RXDQ */
428 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
429 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
430 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
431 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
432 
433 	/*
434 	 * We can support 802.1Q VLAN-sized frames.
435 	 */
436 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
437 
438         strcpy(ifp->if_xname, device_xname(sc->sc_dev));
439         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
440         ifp->if_ioctl = epe_ifioctl;
441         ifp->if_start = epe_ifstart;
442         ifp->if_watchdog = epe_ifwatchdog;
443         ifp->if_init = epe_ifinit;
444         ifp->if_stop = epe_ifstop;
445         ifp->if_timer = 0;
446 	ifp->if_softc = sc;
447         IFQ_SET_READY(&ifp->if_snd);
448         if_attach(ifp);
449         ether_ifattach(ifp, (sc)->sc_enaddr);
450 }
451 
452 static int
453 epe_mediachange(struct ifnet *ifp)
454 {
455 	if (ifp->if_flags & IFF_UP)
456 		epe_ifinit(ifp);
457 	return (0);
458 }
459 
460 int
461 epe_mii_readreg(device_t self, int phy, int reg)
462 {
463 	uint32_t d, v;
464 
465 	d = EPE_READ(SelfCtl);
466 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
467 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
468 	while(EPE_READ(MIISts) & MIISts_BUSY);
469 	v = EPE_READ(MIIData);
470 	EPE_WRITE(SelfCtl, d); /* restore old value */
471 	return v;
472 }
473 
474 void
475 epe_mii_writereg(device_t self, int phy, int reg, int val)
476 {
477 	uint32_t d;
478 
479 	d = EPE_READ(SelfCtl);
480 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
481 	EPE_WRITE(MIIData, val);
482 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
483 	while(EPE_READ(MIISts) & MIISts_BUSY);
484 	EPE_WRITE(SelfCtl, d); /* restore old value */
485 }
486 
487 
488 void
489 epe_statchg(struct ifnet *ifp)
490 {
491         struct epe_softc *sc = ifp->if_softc;
492         uint32_t reg;
493 
494         /*
495          * We must keep the MAC and the PHY in sync as
496          * to the status of full-duplex!
497          */
498         reg = EPE_READ(TestCtl);
499         if (sc->sc_mii.mii_media_active & IFM_FDX)
500                 reg |= TestCtl_MFDX;
501         else
502                 reg &= ~TestCtl_MFDX;
503 	EPE_WRITE(TestCtl, reg);
504 }
505 
506 void
507 epe_tick(void *arg)
508 {
509 	struct epe_softc* sc = (struct epe_softc *)arg;
510 	struct ifnet * ifp = &sc->sc_ec.ec_if;
511 	int s;
512 	uint32_t misses;
513 
514 	ifp->if_collisions += EPE_READ(TXCollCnt);
515 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
516 	misses = EPE_READ(RXMissCnt);
517 	if (misses > 0)
518 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
519 
520 	s = splnet();
521 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
522 		epe_ifstart(ifp);
523 	}
524 	splx(s);
525 
526 	mii_tick(&sc->sc_mii);
527 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
528 }
529 
530 
531 static int
532 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
533 {
534 	int s, error;
535 
536 	s = splnet();
537 	error = ether_ioctl(ifp, cmd, data);
538 	if (error == ENETRESET) {
539 		if (ifp->if_flags & IFF_RUNNING)
540 			epe_setaddr(ifp);
541 		error = 0;
542 	}
543 	splx(s);
544 	return error;
545 }
546 
547 static void
548 epe_ifstart(struct ifnet *ifp)
549 {
550 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
551 	struct mbuf *m;
552 	bus_dma_segment_t *segs;
553 	int s, bi, err, nsegs, ndq;
554 
555 	s = splnet();
556 start:
557 	ndq = 0;
558 	if (sc->TXDQ_avail == 0) {
559 		if (epe_gctx(sc) == 0) {
560 			/* Enable End-Of-TX-Chain interrupt */
561 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
562 			ifp->if_flags |= IFF_OACTIVE;
563 			ifp->if_timer = 10;
564 			splx(s);
565 			return;
566 		}
567 	}
568 
569 	bi = sc->TXDQ_cur - sc->TXDQ;
570 
571 	IFQ_POLL(&ifp->if_snd, m);
572 	if (m == NULL) {
573 		splx(s);
574 		return;
575 	}
576 more:
577 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
578 		BUS_DMA_NOWAIT)) ||
579 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
580 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
581 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
582 		struct mbuf *mn;
583 
584 		if (err == 0)
585 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
586 
587 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
588 		if (mn == NULL) goto stop;
589 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
590 			MCLGET(mn, M_DONTWAIT);
591 			if ((mn->m_flags & M_EXT) == 0) {
592 				m_freem(mn);
593 				goto stop;
594 			}
595 		}
596 		mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
597 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
598 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
599 		IFQ_DEQUEUE(&ifp->if_snd, m);
600 		m_freem(m);
601 		m = mn;
602 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
603 			BUS_DMA_NOWAIT);
604 	} else {
605 		IFQ_DEQUEUE(&ifp->if_snd, m);
606 	}
607 
608 	bpf_mtap(ifp, m);
609 
610 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
611 	segs = sc->txq[bi].m_dmamap->dm_segs;
612 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
613 		sc->txq[bi].m_dmamap->dm_mapsize,
614 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
615 
616 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
617 	while (nsegs > 0) {
618 		nsegs--;
619 		sc->txq[bi].m = m;
620 		sc->TXDQ[bi * 2] = segs->ds_addr;
621 		if (nsegs == 0)
622 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
623 				(1 << 31);
624 		else
625 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
626 		segs++;
627 		bi = (bi + 1) % TX_QLEN;
628 		ndq++;
629 	}
630 
631 
632 	/*
633 	 * Enqueue another.  Don't do more than half the available
634 	 * descriptors before telling the MAC about them
635 	 */
636 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
637 		IFQ_POLL(&ifp->if_snd, m);
638 		if (m != NULL) {
639 			goto more;
640 		}
641 	}
642 stop:
643 	if (ndq > 0) {
644 		sc->TXDQ_avail -= ndq;
645 		sc->TXDQ_cur = &sc->TXDQ[bi];
646 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
647 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
648 		EPE_WRITE(TXDEnq, ndq);
649 	}
650 
651 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
652 		goto start;
653 
654 	splx(s);
655 	return;
656 }
657 
658 static void
659 epe_ifwatchdog(struct ifnet *ifp)
660 {
661 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
662 
663 	if ((ifp->if_flags & IFF_RUNNING) == 0)
664 		return;
665        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
666 		device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
667 }
668 
669 static int
670 epe_ifinit(struct ifnet *ifp)
671 {
672 	struct epe_softc *sc = ifp->if_softc;
673 	int rc, s = splnet();
674 
675 	callout_stop(&sc->epe_tick_ch);
676 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
677 	EPE_WRITE(TXCtl, TXCtl_STxON);
678 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
679 
680 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
681 		rc = 0;
682 	else if (rc != 0)
683 		goto out;
684 
685 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
686         ifp->if_flags |= IFF_RUNNING;
687 out:
688 	splx(s);
689 	return 0;
690 }
691 
692 static void
693 epe_ifstop(struct ifnet *ifp, int disable)
694 {
695 	struct epe_softc *sc = ifp->if_softc;
696 
697 
698 	EPE_WRITE(RXCtl, 0);
699 	EPE_WRITE(TXCtl, 0);
700 	EPE_WRITE(GIIntMsk, 0);
701 	callout_stop(&sc->epe_tick_ch);
702 
703 	/* Down the MII. */
704 	mii_down(&sc->sc_mii);
705 
706 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
707 	ifp->if_timer = 0;
708 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
709 }
710 
711 static void
712 epe_setaddr(struct ifnet *ifp)
713 {
714 	struct epe_softc *sc = ifp->if_softc;
715 	struct ethercom *ac = &sc->sc_ec;
716 	struct ether_multi *enm;
717 	struct ether_multistep step;
718 	uint8_t ias[2][ETHER_ADDR_LEN];
719 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
720 	uint32_t rxctl = EPE_READ(RXCtl);
721 
722 	/* disable receiver temporarily */
723 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
724 
725 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
726 
727 	if (ifp->if_flags & IFF_PROMISC) {
728 		rxctl |= RXCtl_PA;
729 	}
730 
731 	ifp->if_flags &= ~IFF_ALLMULTI;
732 
733 	ETHER_FIRST_MULTI(step, ac, enm);
734 	while (enm != NULL) {
735 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
736 			/*
737 			 * We must listen to a range of multicast addresses.
738 			 * For now, just accept all multicasts, rather than
739 			 * trying to set only those filter bits needed to match
740 			 * the range.  (At this time, the only use of address
741 			 * ranges is for IP multicast routing, for which the
742 			 * range is big enough to require all bits set.)
743 			 */
744 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
745 			rxctl |= RXCtl_MA;
746 			hashes[0] = 0xffffffffUL;
747 			hashes[1] = 0xffffffffUL;
748 			ifp->if_flags |= IFF_ALLMULTI;
749 			break;
750 		}
751 
752 		if (nma < 2) {
753 			/* We can program 2 perfect address filters for mcast */
754 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
755 			rxctl |= (1 << (nma + 2));
756 		} else {
757 			/*
758 			 * XXX: Datasheet is not very clear here, I'm not sure
759 			 * if I'm doing this right.  --joff
760 			 */
761 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
762 
763 			/* Just want the 6 most-significant bits. */
764 			h = h >> 26;
765 
766 			hashes[ h / 32 ] |=  (1 << (h % 32));
767 			rxctl |= RXCtl_MA;
768 		}
769 		ETHER_NEXT_MULTI(step, enm);
770 		nma++;
771 	}
772 
773 	EPE_WRITE(AFP, 0);
774 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
775 		sc->sc_enaddr, ETHER_ADDR_LEN);
776 	if (rxctl & RXCtl_IA2) {
777 		EPE_WRITE(AFP, 2);
778 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
779 			ias[0], ETHER_ADDR_LEN);
780 	}
781 	if (rxctl & RXCtl_IA3) {
782 		EPE_WRITE(AFP, 3);
783 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
784 			ias[1], ETHER_ADDR_LEN);
785 	}
786 	if (hashes[0] != 0 && hashes[1] != 0) {
787 		EPE_WRITE(AFP, 7);
788 		EPE_WRITE(HashTbl, hashes[0]);
789 		EPE_WRITE(HashTbl + 4, hashes[1]);
790 	}
791 	EPE_WRITE(RXCtl, rxctl);
792 }
793