xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: epe.c,v 1.5 2005/12/24 20:06:52 perry Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.5 2005/12/24 20:06:52 perry Exp $");
38 
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/ioctl.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48 #include <uvm/uvm_extern.h>
49 
50 #include <machine/bus.h>
51 #include <machine/intr.h>
52 
53 #include <arm/cpufunc.h>
54 
55 #include <arm/ep93xx/epsocvar.h>
56 #include <arm/ep93xx/ep93xxvar.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/if_inarp.h>
73 #endif
74 
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79 
80 #include "bpfilter.h"
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
85 
86 #include <machine/bus.h>
87 
88 #ifdef IPKDB_EP93XX
89 #include <ipkdb/ipkdb.h>
90 #endif
91 
92 #include <arm/ep93xx/ep93xxreg.h>
93 #include <arm/ep93xx/epereg.h>
94 #include <arm/ep93xx/epevar.h>
95 
96 #define DEFAULT_MDCDIV	32
97 
98 #ifndef EPE_FAST
99 #define EPE_FAST
100 #endif
101 
102 #ifndef EPE_FAST
103 #define EPE_READ(x) \
104 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
105 #define EPE_WRITE(x, y) \
106 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
107 #define CTRLPAGE_DMASYNC(x, y, z) \
108 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
109 #else
110 #define EPE_READ(x) *(volatile u_int32_t *) \
111 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
112 #define EPE_WRITE(x, y) *(volatile u_int32_t *) \
113 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
114 #define CTRLPAGE_DMASYNC(x, y, z)
115 #endif /* ! EPE_FAST */
116 
117 static int	epe_match(struct device *, struct cfdata *, void *);
118 static void	epe_attach(struct device *, struct device *, void *);
119 static void	epe_init(struct epe_softc *);
120 static int      epe_intr(void* arg);
121 static int	epe_gctx(struct epe_softc *);
122 static int	epe_mediachange(struct ifnet *);
123 static void	epe_mediastatus(struct ifnet *, struct ifmediareq *);
124 int		epe_mii_readreg (struct device *, int, int);
125 void		epe_mii_writereg (struct device *, int, int, int);
126 void		epe_statchg (struct device *);
127 void		epe_tick (void *);
128 static int	epe_ifioctl (struct ifnet *, u_long, caddr_t);
129 static void	epe_ifstart (struct ifnet *);
130 static void	epe_ifwatchdog (struct ifnet *);
131 static int	epe_ifinit (struct ifnet *);
132 static void	epe_ifstop (struct ifnet *, int);
133 static void	epe_setaddr (struct ifnet *);
134 
135 CFATTACH_DECL(epe, sizeof(struct epe_softc),
136     epe_match, epe_attach, NULL, NULL);
137 
138 static int
139 epe_match(struct device *parent, struct cfdata *match, void *aux)
140 {
141 	return 2;
142 }
143 
144 static void
145 epe_attach(struct device *parent, struct device *self, void *aux)
146 {
147 	struct epe_softc		*sc;
148 	struct epsoc_attach_args	*sa;
149 
150 	printf("\n");
151 	sc = (struct epe_softc*) self;
152 	sa = aux;
153 	sc->sc_iot = sa->sa_iot;
154 	sc->sc_intr = sa->sa_intr;
155 	sc->sc_dmat = sa->sa_dmat;
156 
157 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
158 		0, &sc->sc_ioh))
159 		panic("%s: Cannot map registers", self->dv_xname);
160 
161 	/* Fetch the Ethernet address from property if set. */
162 	if (prop_get(dev_propdb, 0, "mac-addr", sc->sc_enaddr,
163 		       ETHER_ADDR_LEN, NULL) == ETHER_ADDR_LEN) {
164 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
165 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
166 					 sc->sc_enaddr, ETHER_ADDR_LEN);
167 	}
168 
169         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
170 	epe_init(sc);
171 }
172 
173 static int
174 epe_gctx(struct epe_softc *sc)
175 {
176 	struct ifnet * ifp = &sc->sc_ec.ec_if;
177 	u_int32_t *cur, ndq = 0;
178 
179 	/* Handle transmit completions */
180 	cur = (u_int32_t *)(EPE_READ(TXStsQCurAdd) -
181 		sc->ctrlpage_dsaddr + sc->ctrlpage);
182 
183 	if (sc->TXStsQ_cur != cur) {
184 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(u_int32_t),
185 			TX_QLEN * sizeof(u_int32_t), BUS_DMASYNC_PREREAD);
186 	} else {
187 		return 0;
188 	}
189 
190 	do {
191 		u_int32_t tbi = *sc->TXStsQ_cur & 0x7fff;
192 		struct mbuf *m = sc->txq[tbi].m;
193 
194 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
195 			ifp->if_oerrors++;
196 		}
197 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
198 		m_freem(m);
199 		do {
200 			sc->txq[tbi].m = NULL;
201 			ndq++;
202 			tbi = (tbi + 1) % TX_QLEN;
203 		} while (sc->txq[tbi].m == m);
204 
205 		ifp->if_opackets++;
206 		sc->TXStsQ_cur++;
207 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
208 			sc->TXStsQ_cur = sc->TXStsQ;
209 		}
210 	} while (sc->TXStsQ_cur != cur);
211 
212 	sc->TXDQ_avail += ndq;
213 	if (ifp->if_flags & IFF_OACTIVE) {
214 		ifp->if_flags &= ~IFF_OACTIVE;
215 		/* Disable end-of-tx-chain interrupt */
216 		EPE_WRITE(IntEn, IntEn_REOFIE);
217 	}
218 	return ndq;
219 }
220 
221 static int
222 epe_intr(void *arg)
223 {
224 	struct epe_softc *sc = (struct epe_softc *)arg;
225 	struct ifnet * ifp = &sc->sc_ec.ec_if;
226 	u_int32_t ndq = 0, irq, *cur;
227 
228 	irq = EPE_READ(IntStsC);
229 begin:
230 	cur = (u_int32_t *)(EPE_READ(RXStsQCurAdd) -
231 		sc->ctrlpage_dsaddr + sc->ctrlpage);
232 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
233 		RX_QLEN * 4 * sizeof(u_int32_t),
234 		BUS_DMASYNC_PREREAD);
235 	while (sc->RXStsQ_cur != cur) {
236 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
237 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
238 			u_int32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
239 			u_int32_t fl = sc->RXStsQ_cur[1] & 0xffff;
240 			struct mbuf *m;
241 
242 			MGETHDR(m, M_DONTWAIT, MT_DATA);
243 			if (m != NULL) MCLGET(m, M_DONTWAIT);
244 			if (m != NULL && (m->m_flags & M_EXT)) {
245 				bus_dmamap_unload(sc->sc_dmat,
246 					sc->rxq[bi].m_dmamap);
247 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
248 				sc->rxq[bi].m->m_pkthdr.len =
249 					sc->rxq[bi].m->m_len = fl;
250 #if NBPFILTER > 0
251 				if (ifp->if_bpf)
252 					bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
253 #endif /* NBPFILTER > 0 */
254                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
255 				sc->rxq[bi].m = m;
256 				bus_dmamap_load(sc->sc_dmat,
257 					sc->rxq[bi].m_dmamap,
258 					m->m_ext.ext_buf, MCLBYTES,
259 					NULL, BUS_DMA_NOWAIT);
260 				sc->RXDQ[bi * 2] =
261 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
262 			} else {
263 				/* Drop packets until we can get replacement
264 				 * empty mbufs for the RXDQ.
265 				 */
266 				if (m != NULL) {
267 					m_freem(m);
268 				}
269 				ifp->if_ierrors++;
270 			}
271 		} else {
272 			ifp->if_ierrors++;
273 		}
274 
275 		ndq++;
276 
277 		sc->RXStsQ_cur += 2;
278 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
279 			sc->RXStsQ_cur = sc->RXStsQ;
280 		}
281 	}
282 
283 	if (ndq > 0) {
284 		ifp->if_ipackets += ndq;
285 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
286  			RX_QLEN * 4 * sizeof(u_int32_t),
287 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
288 		EPE_WRITE(RXStsEnq, ndq);
289 		EPE_WRITE(RXDEnq, ndq);
290 		ndq = 0;
291 	}
292 
293 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
294 		epe_ifstart(ifp);
295 	}
296 
297 	irq = EPE_READ(IntStsC);
298 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
299 		goto begin;
300 
301 	return (1);
302 }
303 
304 
305 static void
306 epe_init(struct epe_softc *sc)
307 {
308 	bus_dma_segment_t segs;
309 	caddr_t addr;
310 	int rsegs, err, i;
311 	struct ifnet * ifp = &sc->sc_ec.ec_if;
312 	int mdcdiv = DEFAULT_MDCDIV;
313 
314 	callout_init(&sc->epe_tick_ch);
315 
316 	/* Select primary Individual Address in Address Filter Pointer */
317 	EPE_WRITE(AFP, 0);
318 	/* Read ethernet MAC, should already be set by bootrom */
319 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
320 		sc->sc_enaddr, ETHER_ADDR_LEN);
321 	printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
322 		ether_sprintf(sc->sc_enaddr));
323 
324 	/* Soft Reset the MAC */
325 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
326 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
327 
328 	/* suggested magic initialization values from datasheet */
329 	EPE_WRITE(RXBufThrshld, 0x800040);
330 	EPE_WRITE(TXBufThrshld, 0x200010);
331 	EPE_WRITE(RXStsThrshld, 0x40002);
332 	EPE_WRITE(TXStsThrshld, 0x40002);
333 	EPE_WRITE(RXDThrshld, 0x40002);
334 	EPE_WRITE(TXDThrshld, 0x40002);
335 
336 	/* Allocate a page of memory for descriptor and status queues */
337 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
338 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
339 	if (err == 0) {
340 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
341 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
342 	}
343 	if (err == 0) {
344 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
345 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
346 	}
347 	if (err == 0) {
348 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
349 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
350 	}
351 	if (err != 0) {
352 		panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
353 	}
354 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
355 	bzero(sc->ctrlpage, PAGE_SIZE);
356 
357 	/* Set up pointers to start of each queue in kernel addr space.
358 	 * Each descriptor queue or status queue entry uses 2 words
359 	 */
360 	sc->TXDQ = (u_int32_t *)sc->ctrlpage;
361 	sc->TXDQ_cur = sc->TXDQ;
362 	sc->TXDQ_avail = TX_QLEN - 1;
363 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
364 	sc->TXStsQ_cur = sc->TXStsQ;
365 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
366 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
367 	sc->RXStsQ_cur = sc->RXStsQ;
368 
369 	/* Program each queue's start addr, cur addr, and len registers
370 	 * with the physical addresses.
371 	 */
372 	addr = (caddr_t)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
373 	EPE_WRITE(TXDQBAdd, (u_int32_t)addr);
374 	EPE_WRITE(TXDQCurAdd, (u_int32_t)addr);
375 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(u_int32_t));
376 
377 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(u_int32_t);
378 	EPE_WRITE(TXStsQBAdd, (u_int32_t)addr);
379 	EPE_WRITE(TXStsQCurAdd, (u_int32_t)addr);
380 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(u_int32_t));
381 
382 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(u_int32_t);
383 	EPE_WRITE(RXDQBAdd, (u_int32_t)addr);
384 	EPE_WRITE(RXDCurAdd, (u_int32_t)addr);
385 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
386 
387 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(u_int32_t);
388 	EPE_WRITE(RXStsQBAdd, (u_int32_t)addr);
389 	EPE_WRITE(RXStsQCurAdd, (u_int32_t)addr);
390 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
391 
392 	/* Populate the RXDQ with mbufs */
393 	for(i = 0; i < RX_QLEN; i++) {
394 		struct mbuf *m;
395 
396 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
397 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
398 		MGETHDR(m, M_WAIT, MT_DATA);
399 		MCLGET(m, M_WAIT);
400 		sc->rxq[i].m = m;
401 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
402 			m->m_ext.ext_buf, MCLBYTES, NULL,
403 			BUS_DMA_WAITOK);
404 
405 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
406 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
407 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
408 			MCLBYTES, BUS_DMASYNC_PREREAD);
409 	}
410 
411 	for(i = 0; i < TX_QLEN; i++) {
412 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
413 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
414 			&sc->txq[i].m_dmamap);
415 		sc->txq[i].m = NULL;
416 		sc->TXDQ[i * 2 + 1] = (i << 16);
417 	}
418 
419 	/* Divide HCLK by 32 for MDC clock */
420 	if (sc->sc_dev.dv_cfdata->cf_flags)
421 		mdcdiv = sc->sc_dev.dv_cfdata->cf_flags;
422 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
423 
424 	sc->sc_mii.mii_ifp = ifp;
425 	sc->sc_mii.mii_readreg = epe_mii_readreg;
426 	sc->sc_mii.mii_writereg = epe_mii_writereg;
427 	sc->sc_mii.mii_statchg = epe_statchg;
428 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
429 		epe_mediastatus);
430 	mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
431 		MII_OFFSET_ANY, 0);
432 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
433 
434 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
435 	EPE_WRITE(IntEn, IntEn_REOFIE);
436 	/* maximum valid max frame length */
437 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
438 	/* wait for receiver ready */
439 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0);
440 	/* enqueue the entries in RXStsQ and RXDQ */
441 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
442 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
443 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
444 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
445 
446 	/*
447 	 * We can support 802.1Q VLAN-sized frames.
448 	 */
449 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
450 
451         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
452         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
453         ifp->if_ioctl = epe_ifioctl;
454         ifp->if_start = epe_ifstart;
455         ifp->if_watchdog = epe_ifwatchdog;
456         ifp->if_init = epe_ifinit;
457         ifp->if_stop = epe_ifstop;
458         ifp->if_timer = 0;
459 	ifp->if_softc = sc;
460         IFQ_SET_READY(&ifp->if_snd);
461         if_attach(ifp);
462         ether_ifattach(ifp, (sc)->sc_enaddr);
463 }
464 
465 static int
466 epe_mediachange(ifp)
467 	struct ifnet *ifp;
468 {
469 	if (ifp->if_flags & IFF_UP)
470 		epe_ifinit(ifp);
471 	return (0);
472 }
473 
474 static void
475 epe_mediastatus(ifp, ifmr)
476 	struct ifnet *ifp;
477 	struct ifmediareq *ifmr;
478 {
479 	struct epe_softc *sc = ifp->if_softc;
480 
481 	mii_pollstat(&sc->sc_mii);
482 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
483 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
484 }
485 
486 
487 int
488 epe_mii_readreg(self, phy, reg)
489 	struct device *self;
490 	int phy, reg;
491 {
492 	u_int32_t d, v;
493 	struct epe_softc *sc;
494 
495 	sc = (struct epe_softc *)self;
496 	d = EPE_READ(SelfCtl);
497 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
498 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
499 	while(EPE_READ(MIISts) & MIISts_BUSY);
500 	v = EPE_READ(MIIData);
501 	EPE_WRITE(SelfCtl, d); /* restore old value */
502 	return v;
503 }
504 
505 void
506 epe_mii_writereg(self, phy, reg, val)
507 	struct device *self;
508 	int phy, reg, val;
509 {
510 	struct epe_softc *sc;
511 	u_int32_t d;
512 
513 	sc = (struct epe_softc *)self;
514 	d = EPE_READ(SelfCtl);
515 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
516 	EPE_WRITE(MIIData, val);
517 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
518 	while(EPE_READ(MIISts) & MIISts_BUSY);
519 	EPE_WRITE(SelfCtl, d); /* restore old value */
520 }
521 
522 
523 void
524 epe_statchg(self)
525         struct device *self;
526 {
527         struct epe_softc *sc = (struct epe_softc *)self;
528         u_int32_t reg;
529 
530         /*
531          * We must keep the MAC and the PHY in sync as
532          * to the status of full-duplex!
533          */
534         reg = EPE_READ(TestCtl);
535         if (sc->sc_mii.mii_media_active & IFM_FDX)
536                 reg |= TestCtl_MFDX;
537         else
538                 reg &= ~TestCtl_MFDX;
539 	EPE_WRITE(TestCtl, reg);
540 }
541 
542 void
543 epe_tick(arg)
544 	void *arg;
545 {
546 	struct epe_softc* sc = (struct epe_softc *)arg;
547 	struct ifnet * ifp = &sc->sc_ec.ec_if;
548 	int s;
549 	u_int32_t misses;
550 
551 	ifp->if_collisions += EPE_READ(TXCollCnt);
552 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
553 	misses = EPE_READ(RXMissCnt);
554 	if (misses > 0)
555 		printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
556 
557 	s = splnet();
558 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
559 		epe_ifstart(ifp);
560 	}
561 	splx(s);
562 
563 	mii_tick(&sc->sc_mii);
564 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
565 }
566 
567 
568 static int
569 epe_ifioctl(ifp, cmd, data)
570 	struct ifnet *ifp;
571 	u_long cmd;
572 	caddr_t data;
573 {
574 	struct epe_softc *sc = ifp->if_softc;
575 	struct ifreq *ifr = (struct ifreq *)data;
576 	int s, error;
577 
578 	s = splnet();
579 	switch(cmd) {
580 	case SIOCSIFMEDIA:
581 	case SIOCGIFMEDIA:
582 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
583 		break;
584 	default:
585 		error = ether_ioctl(ifp, cmd, data);
586 		if (error == ENETRESET) {
587 			if (ifp->if_flags & IFF_RUNNING)
588 				epe_setaddr(ifp);
589 			error = 0;
590 		}
591 	}
592 	splx(s);
593 	return error;
594 }
595 
596 static void
597 epe_ifstart(ifp)
598 	struct ifnet *ifp;
599 {
600 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
601 	struct mbuf *m;
602 	bus_dma_segment_t *segs;
603 	int s, bi, err, nsegs, ndq;
604 
605 	s = splnet();
606 start:
607 	ndq = 0;
608 	if (sc->TXDQ_avail == 0) {
609 		if (epe_gctx(sc) == 0) {
610 			/* Enable End-Of-TX-Chain interrupt */
611 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
612 			ifp->if_flags |= IFF_OACTIVE;
613 			ifp->if_timer = 10;
614 			splx(s);
615 			return;
616 		}
617 	}
618 
619 	bi = sc->TXDQ_cur - sc->TXDQ;
620 
621 	IFQ_POLL(&ifp->if_snd, m);
622 	if (m == NULL) {
623 		splx(s);
624 		return;
625 	}
626 more:
627 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
628 		BUS_DMA_NOWAIT)) ||
629 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
630 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
631 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
632 		struct mbuf *mn;
633 
634 		if (err == 0)
635 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
636 
637 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
638 		if (mn == NULL) goto stop;
639 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
640 			MCLGET(mn, M_DONTWAIT);
641 			if ((mn->m_flags & M_EXT) == 0) {
642 				m_freem(mn);
643 				goto stop;
644 			}
645 		}
646 		mn->m_data = (caddr_t)(((u_int32_t)mn->m_data + 0x3) & (~0x3));
647 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, caddr_t));
648 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
649 		IFQ_DEQUEUE(&ifp->if_snd, m);
650 		m_freem(m);
651 		m = mn;
652 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
653 			BUS_DMA_NOWAIT);
654 	} else {
655 		IFQ_DEQUEUE(&ifp->if_snd, m);
656 	}
657 
658 #if NBPFILTER > 0
659 	if (ifp->if_bpf)
660 		bpf_mtap(ifp->if_bpf, m);
661 #endif /* NBPFILTER > 0 */
662 
663 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
664 	segs = sc->txq[bi].m_dmamap->dm_segs;
665 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
666 		sc->txq[bi].m_dmamap->dm_mapsize,
667 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
668 
669 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
670 	while (nsegs > 0) {
671 		nsegs--;
672 		sc->txq[bi].m = m;
673 		sc->TXDQ[bi * 2] = segs->ds_addr;
674 		if (nsegs == 0)
675 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
676 				(1 << 31);
677 		else
678 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
679 		segs++;
680 		bi = (bi + 1) % TX_QLEN;
681 		ndq++;
682 	}
683 
684 
685 	/*
686 	 * Enqueue another.  Don't do more than half the available
687 	 * descriptors before telling the MAC about them
688 	 */
689 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
690 		IFQ_POLL(&ifp->if_snd, m);
691 		if (m != NULL) {
692 			goto more;
693 		}
694 	}
695 stop:
696 	if (ndq > 0) {
697 		sc->TXDQ_avail -= ndq;
698 		sc->TXDQ_cur = &sc->TXDQ[bi];
699 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(u_int32_t),
700 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
701 		EPE_WRITE(TXDEnq, ndq);
702 	}
703 
704 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
705 		goto start;
706 
707 	splx(s);
708 	return;
709 }
710 
711 static void
712 epe_ifwatchdog(ifp)
713 	struct ifnet *ifp;
714 {
715 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
716 
717 	if ((ifp->if_flags & IFF_RUNNING) == 0)
718 		return;
719        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
720 		sc->sc_dev.dv_xname, EPE_READ(BMCtl), EPE_READ(BMSts));
721 }
722 
723 static int
724 epe_ifinit(ifp)
725 	struct ifnet *ifp;
726 {
727 	struct epe_softc *sc = ifp->if_softc;
728 	int s = splnet();
729 
730 	callout_stop(&sc->epe_tick_ch);
731 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
732 	EPE_WRITE(TXCtl, TXCtl_STxON);
733 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
734 	mii_mediachg(&sc->sc_mii);
735 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
736         ifp->if_flags |= IFF_RUNNING;
737 	splx(s);
738 	return 0;
739 }
740 
741 static void
742 epe_ifstop(ifp, disable)
743 	struct ifnet *ifp;
744 	int disable;
745 {
746 	struct epe_softc *sc = ifp->if_softc;
747 
748 
749 	EPE_WRITE(RXCtl, 0);
750 	EPE_WRITE(TXCtl, 0);
751 	EPE_WRITE(GIIntMsk, 0);
752 	callout_stop(&sc->epe_tick_ch);
753 
754 	/* Down the MII. */
755 	mii_down(&sc->sc_mii);
756 
757 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 	ifp->if_timer = 0;
759 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
760 }
761 
762 static void
763 epe_setaddr(ifp)
764 	struct ifnet *ifp;
765 {
766 	struct epe_softc *sc = ifp->if_softc;
767 	struct ethercom *ac = &sc->sc_ec;
768 	struct ether_multi *enm;
769 	struct ether_multistep step;
770 	u_int8_t ias[2][ETHER_ADDR_LEN];
771 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
772 	u_int32_t rxctl = EPE_READ(RXCtl);
773 
774 	/* disable receiver temporarily */
775 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
776 
777 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
778 
779 	if (ifp->if_flags & IFF_PROMISC) {
780 		rxctl |= RXCtl_PA;
781 	}
782 
783 	ifp->if_flags &= ~IFF_ALLMULTI;
784 
785 	ETHER_FIRST_MULTI(step, ac, enm);
786 	while (enm != NULL) {
787 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
788 			/*
789 			 * We must listen to a range of multicast addresses.
790 			 * For now, just accept all multicasts, rather than
791 			 * trying to set only those filter bits needed to match
792 			 * the range.  (At this time, the only use of address
793 			 * ranges is for IP multicast routing, for which the
794 			 * range is big enough to require all bits set.)
795 			 */
796 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
797 			rxctl |= RXCtl_MA;
798 			hashes[0] = 0xffffffffUL;
799 			hashes[1] = 0xffffffffUL;
800 			ifp->if_flags |= IFF_ALLMULTI;
801 			break;
802 		}
803 
804 		if (nma < 2) {
805 			/* We can program 2 perfect address filters for mcast */
806 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
807 			rxctl |= (1 << (nma + 2));
808 		} else {
809 			/*
810 			 * XXX: Datasheet is not very clear here, I'm not sure
811 			 * if I'm doing this right.  --joff
812 			 */
813 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
814 
815 			/* Just want the 6 most-significant bits. */
816 			h = h >> 26;
817 
818 			hashes[ h / 32 ] |=  (1 << (h % 32));
819 			rxctl |= RXCtl_MA;
820 		}
821 		ETHER_NEXT_MULTI(step, enm);
822 		nma++;
823 	}
824 
825 	EPE_WRITE(AFP, 0);
826 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
827 		sc->sc_enaddr, ETHER_ADDR_LEN);
828 	if (rxctl & RXCtl_IA2) {
829 		EPE_WRITE(AFP, 2);
830 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
831 			ias[0], ETHER_ADDR_LEN);
832 	}
833 	if (rxctl & RXCtl_IA3) {
834 		EPE_WRITE(AFP, 3);
835 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
836 			ias[1], ETHER_ADDR_LEN);
837 	}
838 	if (hashes[0] != 0 && hashes[1] != 0) {
839 		EPE_WRITE(AFP, 7);
840 		EPE_WRITE(HashTbl, hashes[0]);
841 		EPE_WRITE(HashTbl + 4, hashes[1]);
842 	}
843 	EPE_WRITE(RXCtl, rxctl);
844 }
845