xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: epe.c,v 1.18 2008/05/10 15:31:04 martin Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.18 2008/05/10 15:31:04 martin Exp $");
38 
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/ioctl.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48 #include <uvm/uvm_extern.h>
49 
50 #include <machine/bus.h>
51 #include <machine/intr.h>
52 
53 #include <arm/cpufunc.h>
54 
55 #include <arm/ep93xx/epsocvar.h>
56 #include <arm/ep93xx/ep93xxvar.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/if_inarp.h>
73 #endif
74 
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79 
80 #include "bpfilter.h"
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
85 
86 #include <arm/ep93xx/ep93xxreg.h>
87 #include <arm/ep93xx/epereg.h>
88 #include <arm/ep93xx/epevar.h>
89 
90 #define DEFAULT_MDCDIV	32
91 
92 #ifndef EPE_FAST
93 #define EPE_FAST
94 #endif
95 
96 #ifndef EPE_FAST
97 #define EPE_READ(x) \
98 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
99 #define EPE_WRITE(x, y) \
100 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
101 #define CTRLPAGE_DMASYNC(x, y, z) \
102 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
103 #else
104 #define EPE_READ(x) *(volatile u_int32_t *) \
105 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
106 #define EPE_WRITE(x, y) *(volatile u_int32_t *) \
107 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
108 #define CTRLPAGE_DMASYNC(x, y, z)
109 #endif /* ! EPE_FAST */
110 
111 static int	epe_match(struct device *, struct cfdata *, void *);
112 static void	epe_attach(struct device *, struct device *, void *);
113 static void	epe_init(struct epe_softc *);
114 static int      epe_intr(void* arg);
115 static int	epe_gctx(struct epe_softc *);
116 static int	epe_mediachange(struct ifnet *);
117 int		epe_mii_readreg (struct device *, int, int);
118 void		epe_mii_writereg (struct device *, int, int, int);
119 void		epe_statchg (struct device *);
120 void		epe_tick (void *);
121 static int	epe_ifioctl (struct ifnet *, u_long, void *);
122 static void	epe_ifstart (struct ifnet *);
123 static void	epe_ifwatchdog (struct ifnet *);
124 static int	epe_ifinit (struct ifnet *);
125 static void	epe_ifstop (struct ifnet *, int);
126 static void	epe_setaddr (struct ifnet *);
127 
128 CFATTACH_DECL(epe, sizeof(struct epe_softc),
129     epe_match, epe_attach, NULL, NULL);
130 
131 static int
132 epe_match(struct device *parent, struct cfdata *match, void *aux)
133 {
134 	return 2;
135 }
136 
137 static void
138 epe_attach(struct device *parent, struct device *self, void *aux)
139 {
140 	struct epe_softc		*sc;
141 	struct epsoc_attach_args	*sa;
142 	prop_data_t			 enaddr;
143 
144 	printf("\n");
145 	sc = (struct epe_softc*) self;
146 	sa = aux;
147 	sc->sc_iot = sa->sa_iot;
148 	sc->sc_intr = sa->sa_intr;
149 	sc->sc_dmat = sa->sa_dmat;
150 
151 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
152 		0, &sc->sc_ioh))
153 		panic("%s: Cannot map registers", self->dv_xname);
154 
155 	/* Fetch the Ethernet address from property if set. */
156 	enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
157 	if (enaddr != NULL) {
158 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
159 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
160 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
161 		       ETHER_ADDR_LEN);
162 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
163 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
164 					 sc->sc_enaddr, ETHER_ADDR_LEN);
165 	}
166 
167         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
168 	epe_init(sc);
169 }
170 
171 static int
172 epe_gctx(struct epe_softc *sc)
173 {
174 	struct ifnet * ifp = &sc->sc_ec.ec_if;
175 	u_int32_t *cur, ndq = 0;
176 
177 	/* Handle transmit completions */
178 	cur = (u_int32_t *)(EPE_READ(TXStsQCurAdd) -
179 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
180 
181 	if (sc->TXStsQ_cur != cur) {
182 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(u_int32_t),
183 			TX_QLEN * sizeof(u_int32_t), BUS_DMASYNC_PREREAD);
184 	} else {
185 		return 0;
186 	}
187 
188 	do {
189 		u_int32_t tbi = *sc->TXStsQ_cur & 0x7fff;
190 		struct mbuf *m = sc->txq[tbi].m;
191 
192 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
193 			ifp->if_oerrors++;
194 		}
195 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
196 		m_freem(m);
197 		do {
198 			sc->txq[tbi].m = NULL;
199 			ndq++;
200 			tbi = (tbi + 1) % TX_QLEN;
201 		} while (sc->txq[tbi].m == m);
202 
203 		ifp->if_opackets++;
204 		sc->TXStsQ_cur++;
205 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
206 			sc->TXStsQ_cur = sc->TXStsQ;
207 		}
208 	} while (sc->TXStsQ_cur != cur);
209 
210 	sc->TXDQ_avail += ndq;
211 	if (ifp->if_flags & IFF_OACTIVE) {
212 		ifp->if_flags &= ~IFF_OACTIVE;
213 		/* Disable end-of-tx-chain interrupt */
214 		EPE_WRITE(IntEn, IntEn_REOFIE);
215 	}
216 	return ndq;
217 }
218 
219 static int
220 epe_intr(void *arg)
221 {
222 	struct epe_softc *sc = (struct epe_softc *)arg;
223 	struct ifnet * ifp = &sc->sc_ec.ec_if;
224 	u_int32_t ndq = 0, irq, *cur;
225 
226 	irq = EPE_READ(IntStsC);
227 begin:
228 	cur = (u_int32_t *)(EPE_READ(RXStsQCurAdd) -
229 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
230 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
231 		RX_QLEN * 4 * sizeof(u_int32_t),
232 		BUS_DMASYNC_PREREAD);
233 	while (sc->RXStsQ_cur != cur) {
234 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
235 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
236 			u_int32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
237 			u_int32_t fl = sc->RXStsQ_cur[1] & 0xffff;
238 			struct mbuf *m;
239 
240 			MGETHDR(m, M_DONTWAIT, MT_DATA);
241 			if (m != NULL) MCLGET(m, M_DONTWAIT);
242 			if (m != NULL && (m->m_flags & M_EXT)) {
243 				bus_dmamap_unload(sc->sc_dmat,
244 					sc->rxq[bi].m_dmamap);
245 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
246 				sc->rxq[bi].m->m_pkthdr.len =
247 					sc->rxq[bi].m->m_len = fl;
248 #if NBPFILTER > 0
249 				if (ifp->if_bpf)
250 					bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
251 #endif /* NBPFILTER > 0 */
252                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
253 				sc->rxq[bi].m = m;
254 				bus_dmamap_load(sc->sc_dmat,
255 					sc->rxq[bi].m_dmamap,
256 					m->m_ext.ext_buf, MCLBYTES,
257 					NULL, BUS_DMA_NOWAIT);
258 				sc->RXDQ[bi * 2] =
259 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
260 			} else {
261 				/* Drop packets until we can get replacement
262 				 * empty mbufs for the RXDQ.
263 				 */
264 				if (m != NULL) {
265 					m_freem(m);
266 				}
267 				ifp->if_ierrors++;
268 			}
269 		} else {
270 			ifp->if_ierrors++;
271 		}
272 
273 		ndq++;
274 
275 		sc->RXStsQ_cur += 2;
276 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
277 			sc->RXStsQ_cur = sc->RXStsQ;
278 		}
279 	}
280 
281 	if (ndq > 0) {
282 		ifp->if_ipackets += ndq;
283 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
284  			RX_QLEN * 4 * sizeof(u_int32_t),
285 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
286 		EPE_WRITE(RXStsEnq, ndq);
287 		EPE_WRITE(RXDEnq, ndq);
288 		ndq = 0;
289 	}
290 
291 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
292 		epe_ifstart(ifp);
293 	}
294 
295 	irq = EPE_READ(IntStsC);
296 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
297 		goto begin;
298 
299 	return (1);
300 }
301 
302 
303 static void
304 epe_init(struct epe_softc *sc)
305 {
306 	bus_dma_segment_t segs;
307 	char *addr;
308 	int rsegs, err, i;
309 	struct ifnet * ifp = &sc->sc_ec.ec_if;
310 	int mdcdiv = DEFAULT_MDCDIV;
311 
312 	callout_init(&sc->epe_tick_ch, 0);
313 
314 	/* Select primary Individual Address in Address Filter Pointer */
315 	EPE_WRITE(AFP, 0);
316 	/* Read ethernet MAC, should already be set by bootrom */
317 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
318 		sc->sc_enaddr, ETHER_ADDR_LEN);
319 	printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
320 		ether_sprintf(sc->sc_enaddr));
321 
322 	/* Soft Reset the MAC */
323 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
324 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
325 
326 	/* suggested magic initialization values from datasheet */
327 	EPE_WRITE(RXBufThrshld, 0x800040);
328 	EPE_WRITE(TXBufThrshld, 0x200010);
329 	EPE_WRITE(RXStsThrshld, 0x40002);
330 	EPE_WRITE(TXStsThrshld, 0x40002);
331 	EPE_WRITE(RXDThrshld, 0x40002);
332 	EPE_WRITE(TXDThrshld, 0x40002);
333 
334 	/* Allocate a page of memory for descriptor and status queues */
335 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
336 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
337 	if (err == 0) {
338 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
339 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
340 	}
341 	if (err == 0) {
342 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
343 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
344 	}
345 	if (err == 0) {
346 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
347 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
348 	}
349 	if (err != 0) {
350 		panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
351 	}
352 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
353 	bzero(sc->ctrlpage, PAGE_SIZE);
354 
355 	/* Set up pointers to start of each queue in kernel addr space.
356 	 * Each descriptor queue or status queue entry uses 2 words
357 	 */
358 	sc->TXDQ = (u_int32_t *)sc->ctrlpage;
359 	sc->TXDQ_cur = sc->TXDQ;
360 	sc->TXDQ_avail = TX_QLEN - 1;
361 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
362 	sc->TXStsQ_cur = sc->TXStsQ;
363 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
364 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
365 	sc->RXStsQ_cur = sc->RXStsQ;
366 
367 	/* Program each queue's start addr, cur addr, and len registers
368 	 * with the physical addresses.
369 	 */
370 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
371 	EPE_WRITE(TXDQBAdd, (u_int32_t)addr);
372 	EPE_WRITE(TXDQCurAdd, (u_int32_t)addr);
373 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(u_int32_t));
374 
375 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(u_int32_t);
376 	EPE_WRITE(TXStsQBAdd, (u_int32_t)addr);
377 	EPE_WRITE(TXStsQCurAdd, (u_int32_t)addr);
378 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(u_int32_t));
379 
380 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(u_int32_t);
381 	EPE_WRITE(RXDQBAdd, (u_int32_t)addr);
382 	EPE_WRITE(RXDCurAdd, (u_int32_t)addr);
383 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
384 
385 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(u_int32_t);
386 	EPE_WRITE(RXStsQBAdd, (u_int32_t)addr);
387 	EPE_WRITE(RXStsQCurAdd, (u_int32_t)addr);
388 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
389 
390 	/* Populate the RXDQ with mbufs */
391 	for(i = 0; i < RX_QLEN; i++) {
392 		struct mbuf *m;
393 
394 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
395 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
396 		MGETHDR(m, M_WAIT, MT_DATA);
397 		MCLGET(m, M_WAIT);
398 		sc->rxq[i].m = m;
399 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
400 			m->m_ext.ext_buf, MCLBYTES, NULL,
401 			BUS_DMA_WAITOK);
402 
403 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
404 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
405 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
406 			MCLBYTES, BUS_DMASYNC_PREREAD);
407 	}
408 
409 	for(i = 0; i < TX_QLEN; i++) {
410 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
411 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
412 			&sc->txq[i].m_dmamap);
413 		sc->txq[i].m = NULL;
414 		sc->TXDQ[i * 2 + 1] = (i << 16);
415 	}
416 
417 	/* Divide HCLK by 32 for MDC clock */
418 	if (device_cfdata(&sc->sc_dev)->cf_flags)
419 		mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
420 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
421 
422 	sc->sc_mii.mii_ifp = ifp;
423 	sc->sc_mii.mii_readreg = epe_mii_readreg;
424 	sc->sc_mii.mii_writereg = epe_mii_writereg;
425 	sc->sc_mii.mii_statchg = epe_statchg;
426 	sc->sc_ec.ec_mii = &sc->sc_mii;
427 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
428 		ether_mediastatus);
429 	mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
430 		MII_OFFSET_ANY, 0);
431 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
432 
433 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
434 	EPE_WRITE(IntEn, IntEn_REOFIE);
435 	/* maximum valid max frame length */
436 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
437 	/* wait for receiver ready */
438 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0);
439 	/* enqueue the entries in RXStsQ and RXDQ */
440 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
441 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
442 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
443 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
444 
445 	/*
446 	 * We can support 802.1Q VLAN-sized frames.
447 	 */
448 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
449 
450         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
451         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
452         ifp->if_ioctl = epe_ifioctl;
453         ifp->if_start = epe_ifstart;
454         ifp->if_watchdog = epe_ifwatchdog;
455         ifp->if_init = epe_ifinit;
456         ifp->if_stop = epe_ifstop;
457         ifp->if_timer = 0;
458 	ifp->if_softc = sc;
459         IFQ_SET_READY(&ifp->if_snd);
460         if_attach(ifp);
461         ether_ifattach(ifp, (sc)->sc_enaddr);
462 }
463 
464 static int
465 epe_mediachange(ifp)
466 	struct ifnet *ifp;
467 {
468 	if (ifp->if_flags & IFF_UP)
469 		epe_ifinit(ifp);
470 	return (0);
471 }
472 
473 int
474 epe_mii_readreg(self, phy, reg)
475 	struct device *self;
476 	int phy, reg;
477 {
478 	u_int32_t d, v;
479 	struct epe_softc *sc;
480 
481 	sc = (struct epe_softc *)self;
482 	d = EPE_READ(SelfCtl);
483 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
484 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
485 	while(EPE_READ(MIISts) & MIISts_BUSY);
486 	v = EPE_READ(MIIData);
487 	EPE_WRITE(SelfCtl, d); /* restore old value */
488 	return v;
489 }
490 
491 void
492 epe_mii_writereg(self, phy, reg, val)
493 	struct device *self;
494 	int phy, reg, val;
495 {
496 	struct epe_softc *sc;
497 	u_int32_t d;
498 
499 	sc = (struct epe_softc *)self;
500 	d = EPE_READ(SelfCtl);
501 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
502 	EPE_WRITE(MIIData, val);
503 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
504 	while(EPE_READ(MIISts) & MIISts_BUSY);
505 	EPE_WRITE(SelfCtl, d); /* restore old value */
506 }
507 
508 
509 void
510 epe_statchg(self)
511         struct device *self;
512 {
513         struct epe_softc *sc = (struct epe_softc *)self;
514         u_int32_t reg;
515 
516         /*
517          * We must keep the MAC and the PHY in sync as
518          * to the status of full-duplex!
519          */
520         reg = EPE_READ(TestCtl);
521         if (sc->sc_mii.mii_media_active & IFM_FDX)
522                 reg |= TestCtl_MFDX;
523         else
524                 reg &= ~TestCtl_MFDX;
525 	EPE_WRITE(TestCtl, reg);
526 }
527 
528 void
529 epe_tick(arg)
530 	void *arg;
531 {
532 	struct epe_softc* sc = (struct epe_softc *)arg;
533 	struct ifnet * ifp = &sc->sc_ec.ec_if;
534 	int s;
535 	u_int32_t misses;
536 
537 	ifp->if_collisions += EPE_READ(TXCollCnt);
538 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
539 	misses = EPE_READ(RXMissCnt);
540 	if (misses > 0)
541 		printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
542 
543 	s = splnet();
544 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
545 		epe_ifstart(ifp);
546 	}
547 	splx(s);
548 
549 	mii_tick(&sc->sc_mii);
550 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
551 }
552 
553 
554 static int
555 epe_ifioctl(ifp, cmd, data)
556 	struct ifnet *ifp;
557 	u_long cmd;
558 	void *data;
559 {
560 	int s, error;
561 
562 	s = splnet();
563 	error = ether_ioctl(ifp, cmd, data);
564 	if (error == ENETRESET) {
565 		if (ifp->if_flags & IFF_RUNNING)
566 			epe_setaddr(ifp);
567 		error = 0;
568 	}
569 	splx(s);
570 	return error;
571 }
572 
573 static void
574 epe_ifstart(ifp)
575 	struct ifnet *ifp;
576 {
577 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
578 	struct mbuf *m;
579 	bus_dma_segment_t *segs;
580 	int s, bi, err, nsegs, ndq;
581 
582 	s = splnet();
583 start:
584 	ndq = 0;
585 	if (sc->TXDQ_avail == 0) {
586 		if (epe_gctx(sc) == 0) {
587 			/* Enable End-Of-TX-Chain interrupt */
588 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
589 			ifp->if_flags |= IFF_OACTIVE;
590 			ifp->if_timer = 10;
591 			splx(s);
592 			return;
593 		}
594 	}
595 
596 	bi = sc->TXDQ_cur - sc->TXDQ;
597 
598 	IFQ_POLL(&ifp->if_snd, m);
599 	if (m == NULL) {
600 		splx(s);
601 		return;
602 	}
603 more:
604 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
605 		BUS_DMA_NOWAIT)) ||
606 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
607 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
608 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
609 		struct mbuf *mn;
610 
611 		if (err == 0)
612 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
613 
614 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
615 		if (mn == NULL) goto stop;
616 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
617 			MCLGET(mn, M_DONTWAIT);
618 			if ((mn->m_flags & M_EXT) == 0) {
619 				m_freem(mn);
620 				goto stop;
621 			}
622 		}
623 		mn->m_data = (void *)(((u_int32_t)mn->m_data + 0x3) & (~0x3));
624 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
625 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
626 		IFQ_DEQUEUE(&ifp->if_snd, m);
627 		m_freem(m);
628 		m = mn;
629 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
630 			BUS_DMA_NOWAIT);
631 	} else {
632 		IFQ_DEQUEUE(&ifp->if_snd, m);
633 	}
634 
635 #if NBPFILTER > 0
636 	if (ifp->if_bpf)
637 		bpf_mtap(ifp->if_bpf, m);
638 #endif /* NBPFILTER > 0 */
639 
640 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
641 	segs = sc->txq[bi].m_dmamap->dm_segs;
642 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
643 		sc->txq[bi].m_dmamap->dm_mapsize,
644 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
645 
646 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
647 	while (nsegs > 0) {
648 		nsegs--;
649 		sc->txq[bi].m = m;
650 		sc->TXDQ[bi * 2] = segs->ds_addr;
651 		if (nsegs == 0)
652 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
653 				(1 << 31);
654 		else
655 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
656 		segs++;
657 		bi = (bi + 1) % TX_QLEN;
658 		ndq++;
659 	}
660 
661 
662 	/*
663 	 * Enqueue another.  Don't do more than half the available
664 	 * descriptors before telling the MAC about them
665 	 */
666 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
667 		IFQ_POLL(&ifp->if_snd, m);
668 		if (m != NULL) {
669 			goto more;
670 		}
671 	}
672 stop:
673 	if (ndq > 0) {
674 		sc->TXDQ_avail -= ndq;
675 		sc->TXDQ_cur = &sc->TXDQ[bi];
676 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(u_int32_t),
677 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
678 		EPE_WRITE(TXDEnq, ndq);
679 	}
680 
681 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
682 		goto start;
683 
684 	splx(s);
685 	return;
686 }
687 
688 static void
689 epe_ifwatchdog(ifp)
690 	struct ifnet *ifp;
691 {
692 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
693 
694 	if ((ifp->if_flags & IFF_RUNNING) == 0)
695 		return;
696        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
697 		sc->sc_dev.dv_xname, EPE_READ(BMCtl), EPE_READ(BMSts));
698 }
699 
700 static int
701 epe_ifinit(ifp)
702 	struct ifnet *ifp;
703 {
704 	struct epe_softc *sc = ifp->if_softc;
705 	int rc, s = splnet();
706 
707 	callout_stop(&sc->epe_tick_ch);
708 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
709 	EPE_WRITE(TXCtl, TXCtl_STxON);
710 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
711 
712 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
713 		rc = 0;
714 	else if (rc != 0)
715 		goto out;
716 
717 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
718         ifp->if_flags |= IFF_RUNNING;
719 out:
720 	splx(s);
721 	return 0;
722 }
723 
724 static void
725 epe_ifstop(ifp, disable)
726 	struct ifnet *ifp;
727 	int disable;
728 {
729 	struct epe_softc *sc = ifp->if_softc;
730 
731 
732 	EPE_WRITE(RXCtl, 0);
733 	EPE_WRITE(TXCtl, 0);
734 	EPE_WRITE(GIIntMsk, 0);
735 	callout_stop(&sc->epe_tick_ch);
736 
737 	/* Down the MII. */
738 	mii_down(&sc->sc_mii);
739 
740 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
741 	ifp->if_timer = 0;
742 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
743 }
744 
745 static void
746 epe_setaddr(ifp)
747 	struct ifnet *ifp;
748 {
749 	struct epe_softc *sc = ifp->if_softc;
750 	struct ethercom *ac = &sc->sc_ec;
751 	struct ether_multi *enm;
752 	struct ether_multistep step;
753 	u_int8_t ias[2][ETHER_ADDR_LEN];
754 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
755 	u_int32_t rxctl = EPE_READ(RXCtl);
756 
757 	/* disable receiver temporarily */
758 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
759 
760 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
761 
762 	if (ifp->if_flags & IFF_PROMISC) {
763 		rxctl |= RXCtl_PA;
764 	}
765 
766 	ifp->if_flags &= ~IFF_ALLMULTI;
767 
768 	ETHER_FIRST_MULTI(step, ac, enm);
769 	while (enm != NULL) {
770 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
771 			/*
772 			 * We must listen to a range of multicast addresses.
773 			 * For now, just accept all multicasts, rather than
774 			 * trying to set only those filter bits needed to match
775 			 * the range.  (At this time, the only use of address
776 			 * ranges is for IP multicast routing, for which the
777 			 * range is big enough to require all bits set.)
778 			 */
779 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
780 			rxctl |= RXCtl_MA;
781 			hashes[0] = 0xffffffffUL;
782 			hashes[1] = 0xffffffffUL;
783 			ifp->if_flags |= IFF_ALLMULTI;
784 			break;
785 		}
786 
787 		if (nma < 2) {
788 			/* We can program 2 perfect address filters for mcast */
789 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
790 			rxctl |= (1 << (nma + 2));
791 		} else {
792 			/*
793 			 * XXX: Datasheet is not very clear here, I'm not sure
794 			 * if I'm doing this right.  --joff
795 			 */
796 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
797 
798 			/* Just want the 6 most-significant bits. */
799 			h = h >> 26;
800 
801 			hashes[ h / 32 ] |=  (1 << (h % 32));
802 			rxctl |= RXCtl_MA;
803 		}
804 		ETHER_NEXT_MULTI(step, enm);
805 		nma++;
806 	}
807 
808 	EPE_WRITE(AFP, 0);
809 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
810 		sc->sc_enaddr, ETHER_ADDR_LEN);
811 	if (rxctl & RXCtl_IA2) {
812 		EPE_WRITE(AFP, 2);
813 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
814 			ias[0], ETHER_ADDR_LEN);
815 	}
816 	if (rxctl & RXCtl_IA3) {
817 		EPE_WRITE(AFP, 3);
818 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
819 			ias[1], ETHER_ADDR_LEN);
820 	}
821 	if (hashes[0] != 0 && hashes[1] != 0) {
822 		EPE_WRITE(AFP, 7);
823 		EPE_WRITE(HashTbl, hashes[0]);
824 		EPE_WRITE(HashTbl + 4, hashes[1]);
825 	}
826 	EPE_WRITE(RXCtl, rxctl);
827 }
828