xref: /netbsd-src/sys/arch/arm/ep93xx/epe.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: epe.c,v 1.22 2009/10/23 00:39:30 snj Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.22 2009/10/23 00:39:30 snj Exp $");
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ioctl.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/time.h>
40 #include <sys/device.h>
41 #include <uvm/uvm_extern.h>
42 
43 #include <machine/bus.h>
44 #include <machine/intr.h>
45 
46 #include <arm/cpufunc.h>
47 
48 #include <arm/ep93xx/epsocvar.h>
49 #include <arm/ep93xx/ep93xxvar.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #include <netinet/if_inarp.h>
66 #endif
67 
68 #ifdef NS
69 #include <netns/ns.h>
70 #include <netns/ns_if.h>
71 #endif
72 
73 #include "bpfilter.h"
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #include <net/bpfdesc.h>
77 #endif
78 
79 #include <arm/ep93xx/ep93xxreg.h>
80 #include <arm/ep93xx/epereg.h>
81 #include <arm/ep93xx/epevar.h>
82 
83 #define DEFAULT_MDCDIV	32
84 
85 #ifndef EPE_FAST
86 #define EPE_FAST
87 #endif
88 
89 #ifndef EPE_FAST
90 #define EPE_READ(x) \
91 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
92 #define EPE_WRITE(x, y) \
93 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
94 #define CTRLPAGE_DMASYNC(x, y, z) \
95 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
96 #else
97 #define EPE_READ(x) *(volatile u_int32_t *) \
98 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
99 #define EPE_WRITE(x, y) *(volatile u_int32_t *) \
100 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
101 #define CTRLPAGE_DMASYNC(x, y, z)
102 #endif /* ! EPE_FAST */
103 
104 static int	epe_match(struct device *, struct cfdata *, void *);
105 static void	epe_attach(struct device *, struct device *, void *);
106 static void	epe_init(struct epe_softc *);
107 static int      epe_intr(void* arg);
108 static int	epe_gctx(struct epe_softc *);
109 static int	epe_mediachange(struct ifnet *);
110 int		epe_mii_readreg (struct device *, int, int);
111 void		epe_mii_writereg (struct device *, int, int, int);
112 void		epe_statchg (struct device *);
113 void		epe_tick (void *);
114 static int	epe_ifioctl (struct ifnet *, u_long, void *);
115 static void	epe_ifstart (struct ifnet *);
116 static void	epe_ifwatchdog (struct ifnet *);
117 static int	epe_ifinit (struct ifnet *);
118 static void	epe_ifstop (struct ifnet *, int);
119 static void	epe_setaddr (struct ifnet *);
120 
121 CFATTACH_DECL(epe, sizeof(struct epe_softc),
122     epe_match, epe_attach, NULL, NULL);
123 
124 static int
125 epe_match(struct device *parent, struct cfdata *match, void *aux)
126 {
127 	return 2;
128 }
129 
130 static void
131 epe_attach(struct device *parent, struct device *self, void *aux)
132 {
133 	struct epe_softc		*sc;
134 	struct epsoc_attach_args	*sa;
135 	prop_data_t			 enaddr;
136 
137 	printf("\n");
138 	sc = (struct epe_softc*) self;
139 	sa = aux;
140 	sc->sc_iot = sa->sa_iot;
141 	sc->sc_intr = sa->sa_intr;
142 	sc->sc_dmat = sa->sa_dmat;
143 
144 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
145 		0, &sc->sc_ioh))
146 		panic("%s: Cannot map registers", self->dv_xname);
147 
148 	/* Fetch the Ethernet address from property if set. */
149 	enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
150 	if (enaddr != NULL) {
151 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
152 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
153 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
154 		       ETHER_ADDR_LEN);
155 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
156 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
157 					 sc->sc_enaddr, ETHER_ADDR_LEN);
158 	}
159 
160         ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
161 	epe_init(sc);
162 }
163 
164 static int
165 epe_gctx(struct epe_softc *sc)
166 {
167 	struct ifnet * ifp = &sc->sc_ec.ec_if;
168 	u_int32_t *cur, ndq = 0;
169 
170 	/* Handle transmit completions */
171 	cur = (u_int32_t *)(EPE_READ(TXStsQCurAdd) -
172 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
173 
174 	if (sc->TXStsQ_cur != cur) {
175 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(u_int32_t),
176 			TX_QLEN * sizeof(u_int32_t), BUS_DMASYNC_PREREAD);
177 	} else {
178 		return 0;
179 	}
180 
181 	do {
182 		u_int32_t tbi = *sc->TXStsQ_cur & 0x7fff;
183 		struct mbuf *m = sc->txq[tbi].m;
184 
185 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
186 			ifp->if_oerrors++;
187 		}
188 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
189 		m_freem(m);
190 		do {
191 			sc->txq[tbi].m = NULL;
192 			ndq++;
193 			tbi = (tbi + 1) % TX_QLEN;
194 		} while (sc->txq[tbi].m == m);
195 
196 		ifp->if_opackets++;
197 		sc->TXStsQ_cur++;
198 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
199 			sc->TXStsQ_cur = sc->TXStsQ;
200 		}
201 	} while (sc->TXStsQ_cur != cur);
202 
203 	sc->TXDQ_avail += ndq;
204 	if (ifp->if_flags & IFF_OACTIVE) {
205 		ifp->if_flags &= ~IFF_OACTIVE;
206 		/* Disable end-of-tx-chain interrupt */
207 		EPE_WRITE(IntEn, IntEn_REOFIE);
208 	}
209 	return ndq;
210 }
211 
212 static int
213 epe_intr(void *arg)
214 {
215 	struct epe_softc *sc = (struct epe_softc *)arg;
216 	struct ifnet * ifp = &sc->sc_ec.ec_if;
217 	u_int32_t ndq = 0, irq, *cur;
218 
219 	irq = EPE_READ(IntStsC);
220 begin:
221 	cur = (u_int32_t *)(EPE_READ(RXStsQCurAdd) -
222 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
223 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
224 		RX_QLEN * 4 * sizeof(u_int32_t),
225 		BUS_DMASYNC_PREREAD);
226 	while (sc->RXStsQ_cur != cur) {
227 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
228 			(RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
229 			u_int32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
230 			u_int32_t fl = sc->RXStsQ_cur[1] & 0xffff;
231 			struct mbuf *m;
232 
233 			MGETHDR(m, M_DONTWAIT, MT_DATA);
234 			if (m != NULL) MCLGET(m, M_DONTWAIT);
235 			if (m != NULL && (m->m_flags & M_EXT)) {
236 				bus_dmamap_unload(sc->sc_dmat,
237 					sc->rxq[bi].m_dmamap);
238 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
239 				sc->rxq[bi].m->m_pkthdr.len =
240 					sc->rxq[bi].m->m_len = fl;
241 #if NBPFILTER > 0
242 				if (ifp->if_bpf)
243 					bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
244 #endif /* NBPFILTER > 0 */
245                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
246 				sc->rxq[bi].m = m;
247 				bus_dmamap_load(sc->sc_dmat,
248 					sc->rxq[bi].m_dmamap,
249 					m->m_ext.ext_buf, MCLBYTES,
250 					NULL, BUS_DMA_NOWAIT);
251 				sc->RXDQ[bi * 2] =
252 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
253 			} else {
254 				/* Drop packets until we can get replacement
255 				 * empty mbufs for the RXDQ.
256 				 */
257 				if (m != NULL) {
258 					m_freem(m);
259 				}
260 				ifp->if_ierrors++;
261 			}
262 		} else {
263 			ifp->if_ierrors++;
264 		}
265 
266 		ndq++;
267 
268 		sc->RXStsQ_cur += 2;
269 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
270 			sc->RXStsQ_cur = sc->RXStsQ;
271 		}
272 	}
273 
274 	if (ndq > 0) {
275 		ifp->if_ipackets += ndq;
276 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
277  			RX_QLEN * 4 * sizeof(u_int32_t),
278 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
279 		EPE_WRITE(RXStsEnq, ndq);
280 		EPE_WRITE(RXDEnq, ndq);
281 		ndq = 0;
282 	}
283 
284 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
285 		epe_ifstart(ifp);
286 	}
287 
288 	irq = EPE_READ(IntStsC);
289 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
290 		goto begin;
291 
292 	return (1);
293 }
294 
295 
296 static void
297 epe_init(struct epe_softc *sc)
298 {
299 	bus_dma_segment_t segs;
300 	char *addr;
301 	int rsegs, err, i;
302 	struct ifnet * ifp = &sc->sc_ec.ec_if;
303 	int mdcdiv = DEFAULT_MDCDIV;
304 
305 	callout_init(&sc->epe_tick_ch, 0);
306 
307 	/* Select primary Individual Address in Address Filter Pointer */
308 	EPE_WRITE(AFP, 0);
309 	/* Read ethernet MAC, should already be set by bootrom */
310 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
311 		sc->sc_enaddr, ETHER_ADDR_LEN);
312 	printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
313 		ether_sprintf(sc->sc_enaddr));
314 
315 	/* Soft Reset the MAC */
316 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
317 	while(EPE_READ(SelfCtl) & SelfCtl_RESET);
318 
319 	/* suggested magic initialization values from datasheet */
320 	EPE_WRITE(RXBufThrshld, 0x800040);
321 	EPE_WRITE(TXBufThrshld, 0x200010);
322 	EPE_WRITE(RXStsThrshld, 0x40002);
323 	EPE_WRITE(TXStsThrshld, 0x40002);
324 	EPE_WRITE(RXDThrshld, 0x40002);
325 	EPE_WRITE(TXDThrshld, 0x40002);
326 
327 	/* Allocate a page of memory for descriptor and status queues */
328 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
329 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
330 	if (err == 0) {
331 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
332 			&sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
333 	}
334 	if (err == 0) {
335 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
336 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
337 	}
338 	if (err == 0) {
339 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
340 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
341 	}
342 	if (err != 0) {
343 		panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
344 	}
345 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
346 	memset(sc->ctrlpage, 0, PAGE_SIZE);
347 
348 	/* Set up pointers to start of each queue in kernel addr space.
349 	 * Each descriptor queue or status queue entry uses 2 words
350 	 */
351 	sc->TXDQ = (u_int32_t *)sc->ctrlpage;
352 	sc->TXDQ_cur = sc->TXDQ;
353 	sc->TXDQ_avail = TX_QLEN - 1;
354 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
355 	sc->TXStsQ_cur = sc->TXStsQ;
356 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
357 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
358 	sc->RXStsQ_cur = sc->RXStsQ;
359 
360 	/* Program each queue's start addr, cur addr, and len registers
361 	 * with the physical addresses.
362 	 */
363 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
364 	EPE_WRITE(TXDQBAdd, (u_int32_t)addr);
365 	EPE_WRITE(TXDQCurAdd, (u_int32_t)addr);
366 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(u_int32_t));
367 
368 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(u_int32_t);
369 	EPE_WRITE(TXStsQBAdd, (u_int32_t)addr);
370 	EPE_WRITE(TXStsQCurAdd, (u_int32_t)addr);
371 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(u_int32_t));
372 
373 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(u_int32_t);
374 	EPE_WRITE(RXDQBAdd, (u_int32_t)addr);
375 	EPE_WRITE(RXDCurAdd, (u_int32_t)addr);
376 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
377 
378 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(u_int32_t);
379 	EPE_WRITE(RXStsQBAdd, (u_int32_t)addr);
380 	EPE_WRITE(RXStsQCurAdd, (u_int32_t)addr);
381 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
382 
383 	/* Populate the RXDQ with mbufs */
384 	for(i = 0; i < RX_QLEN; i++) {
385 		struct mbuf *m;
386 
387 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
388 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
389 		MGETHDR(m, M_WAIT, MT_DATA);
390 		MCLGET(m, M_WAIT);
391 		sc->rxq[i].m = m;
392 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
393 			m->m_ext.ext_buf, MCLBYTES, NULL,
394 			BUS_DMA_WAITOK);
395 
396 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
397 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
398 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
399 			MCLBYTES, BUS_DMASYNC_PREREAD);
400 	}
401 
402 	for(i = 0; i < TX_QLEN; i++) {
403 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
404 			(BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
405 			&sc->txq[i].m_dmamap);
406 		sc->txq[i].m = NULL;
407 		sc->TXDQ[i * 2 + 1] = (i << 16);
408 	}
409 
410 	/* Divide HCLK by 32 for MDC clock */
411 	if (device_cfdata(&sc->sc_dev)->cf_flags)
412 		mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
413 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
414 
415 	sc->sc_mii.mii_ifp = ifp;
416 	sc->sc_mii.mii_readreg = epe_mii_readreg;
417 	sc->sc_mii.mii_writereg = epe_mii_writereg;
418 	sc->sc_mii.mii_statchg = epe_statchg;
419 	sc->sc_ec.ec_mii = &sc->sc_mii;
420 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
421 		ether_mediastatus);
422 	mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
423 		MII_OFFSET_ANY, 0);
424 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
425 
426 	EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
427 	EPE_WRITE(IntEn, IntEn_REOFIE);
428 	/* maximum valid max frame length */
429 	EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
430 	/* wait for receiver ready */
431 	while((EPE_READ(BMSts) & BMSts_RxAct) == 0);
432 	/* enqueue the entries in RXStsQ and RXDQ */
433 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
434 		BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
435 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
436 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
437 
438 	/*
439 	 * We can support 802.1Q VLAN-sized frames.
440 	 */
441 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
442 
443         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
444         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
445         ifp->if_ioctl = epe_ifioctl;
446         ifp->if_start = epe_ifstart;
447         ifp->if_watchdog = epe_ifwatchdog;
448         ifp->if_init = epe_ifinit;
449         ifp->if_stop = epe_ifstop;
450         ifp->if_timer = 0;
451 	ifp->if_softc = sc;
452         IFQ_SET_READY(&ifp->if_snd);
453         if_attach(ifp);
454         ether_ifattach(ifp, (sc)->sc_enaddr);
455 }
456 
457 static int
458 epe_mediachange(struct ifnet *ifp)
459 {
460 	if (ifp->if_flags & IFF_UP)
461 		epe_ifinit(ifp);
462 	return (0);
463 }
464 
465 int
466 epe_mii_readreg(struct device *self, int phy, int reg)
467 {
468 	u_int32_t d, v;
469 	struct epe_softc *sc;
470 
471 	sc = (struct epe_softc *)self;
472 	d = EPE_READ(SelfCtl);
473 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
474 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
475 	while(EPE_READ(MIISts) & MIISts_BUSY);
476 	v = EPE_READ(MIIData);
477 	EPE_WRITE(SelfCtl, d); /* restore old value */
478 	return v;
479 }
480 
481 void
482 epe_mii_writereg(struct device *self, int phy, int reg, int val)
483 {
484 	struct epe_softc *sc;
485 	u_int32_t d;
486 
487 	sc = (struct epe_softc *)self;
488 	d = EPE_READ(SelfCtl);
489 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
490 	EPE_WRITE(MIIData, val);
491 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
492 	while(EPE_READ(MIISts) & MIISts_BUSY);
493 	EPE_WRITE(SelfCtl, d); /* restore old value */
494 }
495 
496 
497 void
498 epe_statchg(struct device *self)
499 {
500         struct epe_softc *sc = (struct epe_softc *)self;
501         u_int32_t reg;
502 
503         /*
504          * We must keep the MAC and the PHY in sync as
505          * to the status of full-duplex!
506          */
507         reg = EPE_READ(TestCtl);
508         if (sc->sc_mii.mii_media_active & IFM_FDX)
509                 reg |= TestCtl_MFDX;
510         else
511                 reg &= ~TestCtl_MFDX;
512 	EPE_WRITE(TestCtl, reg);
513 }
514 
515 void
516 epe_tick(void *arg)
517 {
518 	struct epe_softc* sc = (struct epe_softc *)arg;
519 	struct ifnet * ifp = &sc->sc_ec.ec_if;
520 	int s;
521 	u_int32_t misses;
522 
523 	ifp->if_collisions += EPE_READ(TXCollCnt);
524 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
525 	misses = EPE_READ(RXMissCnt);
526 	if (misses > 0)
527 		printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
528 
529 	s = splnet();
530 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
531 		epe_ifstart(ifp);
532 	}
533 	splx(s);
534 
535 	mii_tick(&sc->sc_mii);
536 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
537 }
538 
539 
540 static int
541 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
542 {
543 	int s, error;
544 
545 	s = splnet();
546 	error = ether_ioctl(ifp, cmd, data);
547 	if (error == ENETRESET) {
548 		if (ifp->if_flags & IFF_RUNNING)
549 			epe_setaddr(ifp);
550 		error = 0;
551 	}
552 	splx(s);
553 	return error;
554 }
555 
556 static void
557 epe_ifstart(struct ifnet *ifp)
558 {
559 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
560 	struct mbuf *m;
561 	bus_dma_segment_t *segs;
562 	int s, bi, err, nsegs, ndq;
563 
564 	s = splnet();
565 start:
566 	ndq = 0;
567 	if (sc->TXDQ_avail == 0) {
568 		if (epe_gctx(sc) == 0) {
569 			/* Enable End-Of-TX-Chain interrupt */
570 			EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
571 			ifp->if_flags |= IFF_OACTIVE;
572 			ifp->if_timer = 10;
573 			splx(s);
574 			return;
575 		}
576 	}
577 
578 	bi = sc->TXDQ_cur - sc->TXDQ;
579 
580 	IFQ_POLL(&ifp->if_snd, m);
581 	if (m == NULL) {
582 		splx(s);
583 		return;
584 	}
585 more:
586 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
587 		BUS_DMA_NOWAIT)) ||
588 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
589 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
590 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
591 		struct mbuf *mn;
592 
593 		if (err == 0)
594 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
595 
596 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
597 		if (mn == NULL) goto stop;
598 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
599 			MCLGET(mn, M_DONTWAIT);
600 			if ((mn->m_flags & M_EXT) == 0) {
601 				m_freem(mn);
602 				goto stop;
603 			}
604 		}
605 		mn->m_data = (void *)(((u_int32_t)mn->m_data + 0x3) & (~0x3));
606 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
607 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
608 		IFQ_DEQUEUE(&ifp->if_snd, m);
609 		m_freem(m);
610 		m = mn;
611 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
612 			BUS_DMA_NOWAIT);
613 	} else {
614 		IFQ_DEQUEUE(&ifp->if_snd, m);
615 	}
616 
617 #if NBPFILTER > 0
618 	if (ifp->if_bpf)
619 		bpf_mtap(ifp->if_bpf, m);
620 #endif /* NBPFILTER > 0 */
621 
622 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
623 	segs = sc->txq[bi].m_dmamap->dm_segs;
624 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
625 		sc->txq[bi].m_dmamap->dm_mapsize,
626 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
627 
628 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
629 	while (nsegs > 0) {
630 		nsegs--;
631 		sc->txq[bi].m = m;
632 		sc->TXDQ[bi * 2] = segs->ds_addr;
633 		if (nsegs == 0)
634 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
635 				(1 << 31);
636 		else
637 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
638 		segs++;
639 		bi = (bi + 1) % TX_QLEN;
640 		ndq++;
641 	}
642 
643 
644 	/*
645 	 * Enqueue another.  Don't do more than half the available
646 	 * descriptors before telling the MAC about them
647 	 */
648 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
649 		IFQ_POLL(&ifp->if_snd, m);
650 		if (m != NULL) {
651 			goto more;
652 		}
653 	}
654 stop:
655 	if (ndq > 0) {
656 		sc->TXDQ_avail -= ndq;
657 		sc->TXDQ_cur = &sc->TXDQ[bi];
658 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(u_int32_t),
659 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
660 		EPE_WRITE(TXDEnq, ndq);
661 	}
662 
663 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
664 		goto start;
665 
666 	splx(s);
667 	return;
668 }
669 
670 static void
671 epe_ifwatchdog(struct ifnet *ifp)
672 {
673 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
674 
675 	if ((ifp->if_flags & IFF_RUNNING) == 0)
676 		return;
677        	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
678 		sc->sc_dev.dv_xname, EPE_READ(BMCtl), EPE_READ(BMSts));
679 }
680 
681 static int
682 epe_ifinit(struct ifnet *ifp)
683 {
684 	struct epe_softc *sc = ifp->if_softc;
685 	int rc, s = splnet();
686 
687 	callout_stop(&sc->epe_tick_ch);
688 	EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
689 	EPE_WRITE(TXCtl, TXCtl_STxON);
690 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
691 
692 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
693 		rc = 0;
694 	else if (rc != 0)
695 		goto out;
696 
697 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
698         ifp->if_flags |= IFF_RUNNING;
699 out:
700 	splx(s);
701 	return 0;
702 }
703 
704 static void
705 epe_ifstop(struct ifnet *ifp, int disable)
706 {
707 	struct epe_softc *sc = ifp->if_softc;
708 
709 
710 	EPE_WRITE(RXCtl, 0);
711 	EPE_WRITE(TXCtl, 0);
712 	EPE_WRITE(GIIntMsk, 0);
713 	callout_stop(&sc->epe_tick_ch);
714 
715 	/* Down the MII. */
716 	mii_down(&sc->sc_mii);
717 
718 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
719 	ifp->if_timer = 0;
720 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
721 }
722 
723 static void
724 epe_setaddr(struct ifnet *ifp)
725 {
726 	struct epe_softc *sc = ifp->if_softc;
727 	struct ethercom *ac = &sc->sc_ec;
728 	struct ether_multi *enm;
729 	struct ether_multistep step;
730 	u_int8_t ias[2][ETHER_ADDR_LEN];
731 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
732 	u_int32_t rxctl = EPE_READ(RXCtl);
733 
734 	/* disable receiver temporarily */
735 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
736 
737 	rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
738 
739 	if (ifp->if_flags & IFF_PROMISC) {
740 		rxctl |= RXCtl_PA;
741 	}
742 
743 	ifp->if_flags &= ~IFF_ALLMULTI;
744 
745 	ETHER_FIRST_MULTI(step, ac, enm);
746 	while (enm != NULL) {
747 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
748 			/*
749 			 * We must listen to a range of multicast addresses.
750 			 * For now, just accept all multicasts, rather than
751 			 * trying to set only those filter bits needed to match
752 			 * the range.  (At this time, the only use of address
753 			 * ranges is for IP multicast routing, for which the
754 			 * range is big enough to require all bits set.)
755 			 */
756 			rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
757 			rxctl |= RXCtl_MA;
758 			hashes[0] = 0xffffffffUL;
759 			hashes[1] = 0xffffffffUL;
760 			ifp->if_flags |= IFF_ALLMULTI;
761 			break;
762 		}
763 
764 		if (nma < 2) {
765 			/* We can program 2 perfect address filters for mcast */
766 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
767 			rxctl |= (1 << (nma + 2));
768 		} else {
769 			/*
770 			 * XXX: Datasheet is not very clear here, I'm not sure
771 			 * if I'm doing this right.  --joff
772 			 */
773 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
774 
775 			/* Just want the 6 most-significant bits. */
776 			h = h >> 26;
777 
778 			hashes[ h / 32 ] |=  (1 << (h % 32));
779 			rxctl |= RXCtl_MA;
780 		}
781 		ETHER_NEXT_MULTI(step, enm);
782 		nma++;
783 	}
784 
785 	EPE_WRITE(AFP, 0);
786 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
787 		sc->sc_enaddr, ETHER_ADDR_LEN);
788 	if (rxctl & RXCtl_IA2) {
789 		EPE_WRITE(AFP, 2);
790 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
791 			ias[0], ETHER_ADDR_LEN);
792 	}
793 	if (rxctl & RXCtl_IA3) {
794 		EPE_WRITE(AFP, 3);
795 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
796 			ias[1], ETHER_ADDR_LEN);
797 	}
798 	if (hashes[0] != 0 && hashes[1] != 0) {
799 		EPE_WRITE(AFP, 7);
800 		EPE_WRITE(HashTbl, hashes[0]);
801 		EPE_WRITE(HashTbl + 4, hashes[1]);
802 	}
803 	EPE_WRITE(RXCtl, rxctl);
804 }
805