xref: /netbsd-src/sys/arch/arm/cortex/a9tmr.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: a9tmr.c,v 1.12 2015/03/04 23:18:21 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2012 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.12 2015/03/04 23:18:21 jmcneill Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/device.h>
38 #include <sys/intr.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42 #include <sys/timetc.h>
43 #include <sys/xcall.h>
44 
45 #include <prop/proplib.h>
46 
47 #include <arm/cortex/a9tmr_reg.h>
48 #include <arm/cortex/a9tmr_var.h>
49 
50 #include <arm/cortex/mpcore_var.h>
51 
52 static int a9tmr_match(device_t, cfdata_t, void *);
53 static void a9tmr_attach(device_t, device_t, void *);
54 
55 static int clockhandler(void *);
56 
57 static u_int a9tmr_get_timecount(struct timecounter *);
58 
59 static struct a9tmr_softc a9tmr_sc;
60 
61 static struct timecounter a9tmr_timecounter = {
62 	.tc_get_timecount = a9tmr_get_timecount,
63 	.tc_poll_pps = 0,
64 	.tc_counter_mask = ~0u,
65 	.tc_frequency = 0,			/* set by cpu_initclocks() */
66 	.tc_name = NULL,			/* set by attach */
67 	.tc_quality = 500,
68 	.tc_priv = &a9tmr_sc,
69 	.tc_next = NULL,
70 };
71 
72 CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
73 
74 static inline uint32_t
75 a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
76 {
77 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
78 }
79 
80 static inline void
81 a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
82 {
83 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
84 }
85 
86 
87 /* ARGSUSED */
88 static int
89 a9tmr_match(device_t parent, cfdata_t cf, void *aux)
90 {
91 	struct mpcore_attach_args * const mpcaa = aux;
92 
93 	if (a9tmr_sc.sc_dev != NULL)
94 		return 0;
95 
96 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
97 		return 0;
98 
99 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
100 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
101 		return 0;
102 
103 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
104 		return 0;
105 
106 	/*
107 	 * This isn't present on UP A9s (since CBAR isn't present).
108 	 */
109 	uint32_t mpidr = armreg_mpidr_read();
110 	if (mpidr == 0 || (mpidr & MPIDR_U))
111 		return 0;
112 
113 	return 1;
114 }
115 
116 static void
117 a9tmr_attach(device_t parent, device_t self, void *aux)
118 {
119         struct a9tmr_softc *sc = &a9tmr_sc;
120 	struct mpcore_attach_args * const mpcaa = aux;
121 	prop_dictionary_t dict = device_properties(self);
122 	char freqbuf[sizeof("XXX SHz")];
123 	const char *cpu_type;
124 
125 	/*
126 	 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
127 	 * The MD code should have setup our frequency for us.
128 	 */
129 	prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
130 
131 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
132 
133 	aprint_naive("\n");
134 	if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
135 		cpu_type = "A5";
136 	} else {
137 		cpu_type = "A9";
138 	}
139 	aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
140 
141 	self->dv_private = sc;
142 	sc->sc_dev = self;
143 	sc->sc_memt = mpcaa->mpcaa_memt;
144 	sc->sc_memh = mpcaa->mpcaa_memh;
145 
146 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
147 	    device_xname(self), "missing interrupts");
148 
149 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
150 	    TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
151 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
152 	    TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
153 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
154 	    TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
155 
156 	sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
157 	    IST_EDGE | IST_MPSAFE, clockhandler, NULL);
158 	if (sc->sc_global_ih == NULL)
159 		panic("%s: unable to register timer interrupt", __func__);
160 	aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
161 	    IRQ_A9TMR_PPI_GTIMER);
162 }
163 
164 static inline uint64_t
165 a9tmr_gettime(struct a9tmr_softc *sc)
166 {
167 	uint32_t lo, hi;
168 
169 	do {
170 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
171 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
172 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
173 
174 	return ((uint64_t)hi << 32) | lo;
175 }
176 
177 void
178 a9tmr_init_cpu_clock(struct cpu_info *ci)
179 {
180 	struct a9tmr_softc * const sc = &a9tmr_sc;
181 	uint64_t now = a9tmr_gettime(sc);
182 
183 	KASSERT(ci == curcpu());
184 
185 	ci->ci_lastintr = now;
186 
187 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
188 
189 	/*
190 	 * To update the compare register we have to disable comparisions first.
191 	 */
192 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
193 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
194 		a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
195 	}
196 
197 	/*
198 	 * Schedule the next interrupt.
199 	 */
200 	now += sc->sc_autoinc;
201 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
202 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
203 
204 	/*
205 	 * Re-enable the comparator and now enable interrupts.
206 	 */
207 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
208 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
209 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
210 #if 0
211 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
212 	    __func__, ci->ci_data.cpu_name,
213 	    a9tmr_global_read(sc, TMR_GBL_CTL),
214 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
215 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
216 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
217 	    a9tmr_gettime(sc));
218 
219 	int s = splsched();
220 	uint64_t when = now;
221 	u_int n = 0;
222 	while ((now = a9tmr_gettime(sc)) < when) {
223 		/* spin */
224 		n++;
225 		KASSERTMSG(n <= sc->sc_autoinc,
226 		    "spun %u times but only %"PRIu64" has passed",
227 		    n, when - now);
228 	}
229 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
230 	    __func__, ci->ci_data.cpu_name,
231 	    a9tmr_global_read(sc, TMR_GBL_INT),
232 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
233 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
234 	    a9tmr_gettime(sc));
235 	splx(s);
236 #elif 0
237 	delay(1000000 / hz + 1000);
238 #endif
239 }
240 
241 void
242 cpu_initclocks(void)
243 {
244 	struct a9tmr_softc * const sc = &a9tmr_sc;
245 
246 	KASSERT(sc->sc_dev != NULL);
247 	KASSERT(sc->sc_freq != 0);
248 
249 	sc->sc_autoinc = sc->sc_freq / hz;
250 
251 	a9tmr_init_cpu_clock(curcpu());
252 
253 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
254 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
255 
256 	tc_init(&a9tmr_timecounter);
257 }
258 
259 static void
260 a9tmr_update_freq_cb(void *arg1, void *arg2)
261 {
262 	a9tmr_init_cpu_clock(curcpu());
263 }
264 
265 void
266 a9tmr_update_freq(uint32_t freq)
267 {
268 	struct a9tmr_softc * const sc = &a9tmr_sc;
269 	uint64_t xc;
270 
271 	KASSERT(sc->sc_dev != NULL);
272 	KASSERT(freq != 0);
273 
274 	tc_detach(&a9tmr_timecounter);
275 
276 	sc->sc_freq = freq;
277 	sc->sc_autoinc = sc->sc_freq / hz;
278 
279 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
280 	xc_wait(xc);
281 
282 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
283 	tc_init(&a9tmr_timecounter);
284 }
285 
286 void
287 a9tmr_delay(unsigned int n)
288 {
289 	struct a9tmr_softc * const sc = &a9tmr_sc;
290 
291 	KASSERT(sc != NULL);
292 
293 	uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
294 	KASSERT(freq != 0);
295 
296 	/*
297 	 * not quite divide by 1000000 but close enough
298 	 * (higher by 1.3% which means we wait 1.3% longer).
299 	 */
300 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
301 
302 	const uint64_t delta = n * incr_per_us;
303 	const uint64_t base = a9tmr_gettime(sc);
304 	const uint64_t finish = base + delta;
305 
306 	while (a9tmr_gettime(sc) < finish) {
307 		/* spin */
308 	}
309 }
310 
311 /*
312  * clockhandler:
313  *
314  *	Handle the hardclock interrupt.
315  */
316 static int
317 clockhandler(void *arg)
318 {
319 	struct clockframe * const cf = arg;
320 	struct a9tmr_softc * const sc = &a9tmr_sc;
321 	struct cpu_info * const ci = curcpu();
322 
323 	const uint64_t now = a9tmr_gettime(sc);
324 	uint64_t delta = now - ci->ci_lastintr;
325 
326 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	// Ack the interrupt
327 
328 #if 0
329 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
330 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
331 #endif
332 	KASSERTMSG(delta > sc->sc_autoinc / 100,
333 	    "%s: interrupting too quickly (delta=%"PRIu64")",
334 	    ci->ci_data.cpu_name, delta);
335 
336 	ci->ci_lastintr = now;
337 
338 	hardclock(cf);
339 
340 #if 0
341 	/*
342 	 * Try to make up up to a seconds amount of missed clock interrupts
343 	 */
344 	u_int ticks = hz;
345 	for (delta -= sc->sc_autoinc;
346 	     ticks > 0 && delta >= sc->sc_autoinc;
347 	     delta -= sc->sc_autoinc, ticks--) {
348 		hardclock(cf);
349 	}
350 #else
351 	if (delta > sc->sc_autoinc)
352 		sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc;
353 #endif
354 
355 	return 1;
356 }
357 
358 void
359 setstatclockrate(int newhz)
360 {
361 }
362 
363 static u_int
364 a9tmr_get_timecount(struct timecounter *tc)
365 {
366 	struct a9tmr_softc * const sc = tc->tc_priv;
367 
368 	return (u_int) (a9tmr_gettime(sc));
369 }
370