xref: /netbsd-src/sys/arch/arm/cortex/a9tmr.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: a9tmr.c,v 1.14 2015/07/24 05:20:01 ryo Exp $	*/
2 
3 /*-
4  * Copyright (c) 2012 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.14 2015/07/24 05:20:01 ryo Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/device.h>
38 #include <sys/intr.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42 #include <sys/timetc.h>
43 #include <sys/xcall.h>
44 
45 #include <prop/proplib.h>
46 
47 #include <arm/cortex/a9tmr_reg.h>
48 #include <arm/cortex/a9tmr_var.h>
49 
50 #include <arm/cortex/mpcore_var.h>
51 
52 static int a9tmr_match(device_t, cfdata_t, void *);
53 static void a9tmr_attach(device_t, device_t, void *);
54 
55 static int clockhandler(void *);
56 
57 static u_int a9tmr_get_timecount(struct timecounter *);
58 
59 static struct a9tmr_softc a9tmr_sc;
60 
61 static struct timecounter a9tmr_timecounter = {
62 	.tc_get_timecount = a9tmr_get_timecount,
63 	.tc_poll_pps = 0,
64 	.tc_counter_mask = ~0u,
65 	.tc_frequency = 0,			/* set by cpu_initclocks() */
66 	.tc_name = NULL,			/* set by attach */
67 	.tc_quality = 500,
68 	.tc_priv = &a9tmr_sc,
69 	.tc_next = NULL,
70 };
71 
72 CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
73 
74 static inline uint32_t
75 a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
76 {
77 	return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
78 }
79 
80 static inline void
81 a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
82 {
83 	bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
84 }
85 
86 
87 /* ARGSUSED */
88 static int
89 a9tmr_match(device_t parent, cfdata_t cf, void *aux)
90 {
91 	struct mpcore_attach_args * const mpcaa = aux;
92 
93 	if (a9tmr_sc.sc_dev != NULL)
94 		return 0;
95 
96 	if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
97 		return 0;
98 
99 	if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
100 	    !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
101 		return 0;
102 
103 	if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
104 		return 0;
105 
106 	/*
107 	 * This isn't present on UP A9s (since CBAR isn't present).
108 	 */
109 	uint32_t mpidr = armreg_mpidr_read();
110 	if (mpidr == 0 || (mpidr & MPIDR_U))
111 		return 0;
112 
113 	return 1;
114 }
115 
116 static void
117 a9tmr_attach(device_t parent, device_t self, void *aux)
118 {
119 	struct a9tmr_softc *sc = &a9tmr_sc;
120 	struct mpcore_attach_args * const mpcaa = aux;
121 	prop_dictionary_t dict = device_properties(self);
122 	char freqbuf[sizeof("XXX SHz")];
123 	const char *cpu_type;
124 
125 	/*
126 	 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
127 	 * The MD code should have setup our frequency for us.
128 	 */
129 	prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
130 
131 	humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
132 
133 	aprint_naive("\n");
134 	if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
135 		cpu_type = "A5";
136 	} else {
137 		cpu_type = "A9";
138 	}
139 	aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
140 
141 	self->dv_private = sc;
142 	sc->sc_dev = self;
143 	sc->sc_memt = mpcaa->mpcaa_memt;
144 	sc->sc_memh = mpcaa->mpcaa_memh;
145 
146 	evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
147 	    device_xname(self), "missing interrupts");
148 
149 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
150 	    TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
151 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
152 	    TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
153 	bus_space_subregion(sc->sc_memt, sc->sc_memh,
154 	    TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
155 
156 	sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
157 	    IST_EDGE | IST_MPSAFE, clockhandler, NULL);
158 	if (sc->sc_global_ih == NULL)
159 		panic("%s: unable to register timer interrupt", __func__);
160 	aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
161 	    IRQ_A9TMR_PPI_GTIMER);
162 }
163 
164 static inline uint64_t
165 a9tmr_gettime(struct a9tmr_softc *sc)
166 {
167 	uint32_t lo, hi;
168 
169 	do {
170 		hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
171 		lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
172 	} while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
173 
174 	return ((uint64_t)hi << 32) | lo;
175 }
176 
177 void
178 a9tmr_init_cpu_clock(struct cpu_info *ci)
179 {
180 	struct a9tmr_softc * const sc = &a9tmr_sc;
181 	uint64_t now = a9tmr_gettime(sc);
182 
183 	KASSERT(ci == curcpu());
184 
185 	ci->ci_lastintr = now;
186 
187 	a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
188 
189 	/*
190 	 * To update the compare register we have to disable comparisions first.
191 	 */
192 	uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
193 	if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
194 		a9tmr_global_write(sc, TMR_GBL_CTL,
195 		    ctl & ~TMR_GBL_CTL_CMP_ENABLE);
196 	}
197 
198 	/*
199 	 * Schedule the next interrupt.
200 	 */
201 	now += sc->sc_autoinc;
202 	a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
203 	a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
204 
205 	/*
206 	 * Re-enable the comparator and now enable interrupts.
207 	 */
208 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* clear interrupt pending */
209 	ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE |
210 	    TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
211 	a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
212 #if 0
213 	printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
214 	    __func__, ci->ci_data.cpu_name,
215 	    a9tmr_global_read(sc, TMR_GBL_CTL),
216 	    a9tmr_global_read(sc, TMR_GBL_AUTOINC),
217 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
218 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
219 	    a9tmr_gettime(sc));
220 
221 	int s = splsched();
222 	uint64_t when = now;
223 	u_int n = 0;
224 	while ((now = a9tmr_gettime(sc)) < when) {
225 		/* spin */
226 		n++;
227 		KASSERTMSG(n <= sc->sc_autoinc,
228 		    "spun %u times but only %"PRIu64" has passed",
229 		    n, when - now);
230 	}
231 	printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
232 	    __func__, ci->ci_data.cpu_name,
233 	    a9tmr_global_read(sc, TMR_GBL_INT),
234 	    a9tmr_global_read(sc, TMR_GBL_CMP_H),
235 	    a9tmr_global_read(sc, TMR_GBL_CMP_L),
236 	    a9tmr_gettime(sc));
237 	splx(s);
238 #elif 0
239 	delay(1000000 / hz + 1000);
240 #endif
241 }
242 
243 void
244 cpu_initclocks(void)
245 {
246 	struct a9tmr_softc * const sc = &a9tmr_sc;
247 
248 	KASSERT(sc->sc_dev != NULL);
249 	KASSERT(sc->sc_freq != 0);
250 
251 	sc->sc_autoinc = sc->sc_freq / hz;
252 
253 	a9tmr_init_cpu_clock(curcpu());
254 
255 	a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
256 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
257 
258 	tc_init(&a9tmr_timecounter);
259 }
260 
261 static void
262 a9tmr_update_freq_cb(void *arg1, void *arg2)
263 {
264 	a9tmr_init_cpu_clock(curcpu());
265 }
266 
267 void
268 a9tmr_update_freq(uint32_t freq)
269 {
270 	struct a9tmr_softc * const sc = &a9tmr_sc;
271 	uint64_t xc;
272 
273 	KASSERT(sc->sc_dev != NULL);
274 	KASSERT(freq != 0);
275 
276 	tc_detach(&a9tmr_timecounter);
277 
278 	sc->sc_freq = freq;
279 	sc->sc_autoinc = sc->sc_freq / hz;
280 
281 	xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
282 	xc_wait(xc);
283 
284 	a9tmr_timecounter.tc_frequency = sc->sc_freq;
285 	tc_init(&a9tmr_timecounter);
286 }
287 
288 void
289 a9tmr_delay(unsigned int n)
290 {
291 	struct a9tmr_softc * const sc = &a9tmr_sc;
292 
293 	KASSERT(sc != NULL);
294 
295 	uint32_t freq = sc->sc_freq ? sc->sc_freq :
296 	    curcpu()->ci_data.cpu_cc_freq / 2;
297 	KASSERT(freq != 0);
298 
299 	/*
300 	 * not quite divide by 1000000 but close enough
301 	 * (higher by 1.3% which means we wait 1.3% longer).
302 	 */
303 	const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
304 
305 	const uint64_t delta = n * incr_per_us;
306 	const uint64_t base = a9tmr_gettime(sc);
307 	const uint64_t finish = base + delta;
308 
309 	while (a9tmr_gettime(sc) < finish) {
310 		/* spin */
311 	}
312 }
313 
314 /*
315  * clockhandler:
316  *
317  *	Handle the hardclock interrupt.
318  */
319 static int
320 clockhandler(void *arg)
321 {
322 	struct clockframe * const cf = arg;
323 	struct a9tmr_softc * const sc = &a9tmr_sc;
324 	struct cpu_info * const ci = curcpu();
325 
326 	const uint64_t now = a9tmr_gettime(sc);
327 	uint64_t delta = now - ci->ci_lastintr;
328 
329 	a9tmr_global_write(sc, TMR_GBL_INT, 1);	/* Ack the interrupt */
330 
331 #if 0
332 	printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
333 	     __func__, cf, ci->ci_data.cpu_name, now, delta);
334 #endif
335 	KASSERTMSG(delta > sc->sc_autoinc / 64,
336 	    "%s: interrupting too quickly (delta=%"PRIu64")",
337 	    ci->ci_data.cpu_name, delta);
338 
339 	ci->ci_lastintr = now;
340 
341 	hardclock(cf);
342 
343 	if (delta > sc->sc_autoinc) {
344 		u_int ticks = hz;
345 		for (delta -= sc->sc_autoinc;
346 		     delta >= sc->sc_autoinc && ticks > 0;
347 		     delta -= sc->sc_autoinc, ticks--) {
348 #if 0
349 			/*
350 			 * Try to make up up to a seconds amount of
351 			 * missed clock interrupts
352 			 */
353 			hardclock(cf);
354 #else
355 			sc->sc_ev_missing_ticks.ev_count++;
356 #endif
357 		}
358 	}
359 
360 	return 1;
361 }
362 
363 void
364 setstatclockrate(int newhz)
365 {
366 }
367 
368 static u_int
369 a9tmr_get_timecount(struct timecounter *tc)
370 {
371 	struct a9tmr_softc * const sc = tc->tc_priv;
372 
373 	return (u_int) (a9tmr_gettime(sc));
374 }
375