xref: /netbsd-src/sys/arch/arm/broadcom/bcm53xx_board.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: bcm53xx_board.c,v 1.21 2014/03/26 03:19:11 matt Exp $	*/
2 /*-
3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas of 3am Software Foundry.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "opt_broadcom.h"
32 #include "arml2cc.h"
33 
34 #define	_ARM32_BUS_DMA_PRIVATE
35 
36 #include <sys/cdefs.h>
37 
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.21 2014/03/26 03:19:11 matt Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 
45 #include <prop/proplib.h>
46 
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 
50 #define CCA_PRIVATE
51 #define CRU_PRIVATE
52 #define DDR_PRIVATE
53 #define DMU_PRIVATE
54 #define ARMCORE_PRIVATE
55 #define SRAB_PRIVATE
56 
57 #include <arm/cortex/a9tmr_var.h>
58 #include <arm/cortex/pl310_var.h>
59 #include <arm/mainbus/mainbus.h>
60 
61 #include <arm/broadcom/bcm53xx_reg.h>
62 #include <arm/broadcom/bcm53xx_var.h>
63 
64 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
65 bus_space_handle_t bcm53xx_ioreg_bsh;
66 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
67 bus_space_handle_t bcm53xx_armcore_bsh;
68 
69 static struct cpu_softc cpu_softc;
70 
71 struct arm32_dma_range bcm53xx_dma_ranges[] = {
72 #ifdef BCM5301X
73 	[0] = {
74 		.dr_sysbase = 0x80000000,
75 		.dr_busbase = 0x80000000,
76 		.dr_len = 0x10000000,
77 	}, [1] = {
78 		.dr_sysbase = 0x90000000,
79 		.dr_busbase = 0x90000000,
80 	},
81 #elif defined(BCM563XX)
82 	[0] = {
83 		.dr_sysbase = 0x60000000,
84 		.dr_busbase = 0x60000000,
85 		.dr_len = 0x20000000,
86 	}, [1] = {
87 		.dr_sysbase = 0x80000000,
88 		.dr_busbase = 0x80000000,
89 	},
90 #endif
91 };
92 
93 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
94 	._ranges = bcm53xx_dma_ranges,
95 	._nranges = __arraycount(bcm53xx_dma_ranges),
96 	_BUS_DMAMAP_FUNCS,
97 	_BUS_DMAMEM_FUNCS,
98 	_BUS_DMATAG_FUNCS,
99 };
100 
101 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
102 #ifdef BCM5301X
103 	[0] = {
104 		.dr_sysbase = 0x80000000,
105 		.dr_busbase = 0x80000000,
106 		.dr_len = 0x10000000,
107 		.dr_flags = _BUS_DMAMAP_COHERENT,
108 	}, [1] = {
109 		.dr_sysbase = 0x90000000,
110 		.dr_busbase = 0x90000000,
111 	},
112 #elif defined(BCM563XX)
113 	[0] = {
114 		.dr_sysbase = 0x60000000,
115 		.dr_busbase = 0x60000000,
116 		.dr_len = 0x20000000,
117 		.dr_flags = _BUS_DMAMAP_COHERENT,
118 	}, [1] = {
119 		.dr_sysbase = 0x80000000,
120 		.dr_busbase = 0x80000000,
121 	},
122 #endif
123 };
124 
125 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
126 	._ranges = bcm53xx_coherent_dma_ranges,
127 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
128 	_BUS_DMAMAP_FUNCS,
129 	_BUS_DMAMEM_FUNCS,
130 	_BUS_DMATAG_FUNCS,
131 };
132 
133 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
134 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
135 	._ranges = bcm53xx_coherent_dma_ranges,
136 	._nranges = 1,
137 	_BUS_DMAMAP_FUNCS,
138 	_BUS_DMAMEM_FUNCS,
139 	_BUS_DMATAG_FUNCS,
140 };
141 #endif
142 
143 #ifdef BCM53XX_CONSOLE_EARLY
144 #include <dev/ic/ns16550reg.h>
145 #include <dev/ic/comreg.h>
146 #include <dev/cons.h>
147 
148 static vaddr_t com_base;
149 
150 static inline uint32_t
151 uart_read(bus_size_t o)
152 {
153 	return *(volatile uint8_t *)(com_base + o);
154 }
155 
156 static inline void
157 uart_write(bus_size_t o, uint32_t v)
158 {
159 	*(volatile uint8_t *)(com_base + o) = v;
160 }
161 
162 static int
163 bcm53xx_cngetc(dev_t dv)
164 {
165         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
166 		return -1;
167 
168 	return uart_read(com_data) & 0xff;
169 }
170 
171 static void
172 bcm53xx_cnputc(dev_t dv, int c)
173 {
174 	int timo = 150000;
175 
176         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
177 		;
178 
179 	uart_write(com_data, c);
180 
181 	timo = 150000;
182         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
183 		;
184 }
185 
186 static struct consdev bcm53xx_earlycons = {
187 	.cn_putc = bcm53xx_cnputc,
188 	.cn_getc = bcm53xx_cngetc,
189 	.cn_pollc = nullcnpollc,
190 };
191 #endif /* BCM53XX_CONSOLE_EARLY */
192 
193 psize_t
194 bcm53xx_memprobe(void)
195 {
196 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
197 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
198 
199 	/*
200 	 * First, let's read the magic DDR registers!
201 	 */
202 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
203 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
204 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
205 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
206 
207 	/*
208 	 * Calculate chip parameters
209 	 * */
210 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
211 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
212 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
213 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
214 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
215 
216 	/*
217 	 * For each chip select, increase the chip count if if is enabled.
218 	 */
219 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
220 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
221 	u_int chips = 0;
222 
223 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
224 		chips += (cs_map & 1);
225 	}
226 
227 	/* get log2(ddr width) */
228 
229 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
230 
231 	/*
232 	 * Let's add up all the things that contribute to the size of a chip.
233 	 */
234 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
235 
236 	/*
237 	 * Now our memory size is simply the number of chip shifted by the
238 	 * log2(chip_size).
239 	 */
240 	return (psize_t) chips << chip_size_log2;
241 }
242 
243 static inline uint32_t
244 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
245 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
246 {
247 	if (ndiv_frac == 0 && pdiv == 1)
248 		return ndiv_int * clk->clk_ref;
249 
250 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
251 	freq64 *= clk->clk_ref;
252 	if (pdiv > 1)
253 		freq64 /= pdiv;
254 	return (uint32_t) (freq64 >> 30);
255 }
256 
257 static uint32_t
258 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
259 {
260 	/*
261 	 * n is n except when n is 0 then n = mask + 1.
262 	 */
263 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
264 }
265 
266 static void
267 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
268 	uint32_t control6, uint32_t control7)
269 {
270 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
271 	    GENPLL_CONTROL6_PDIV);
272 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
273 	    GENPLL_CONTROL5_NDIV_INT);
274 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
275 	    GENPLL_CONTROL5_NDIV_FRAC);
276 
277 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
278 
279 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
280 	    GENPLL_CONTROL6_CH0_MDIV);
281 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
282 	    GENPLL_CONTROL6_CH1_MDIV);
283 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
284 	    GENPLL_CONTROL6_CH2_MDIV);
285 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
286 	    GENPLL_CONTROL7_CH3_MDIV);
287 
288 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
289 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
290 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
291 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
292 }
293 
294 static void
295 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
296 	uint32_t control2)
297 {
298 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
299 	    LCPLL_CONTROL1_PDIV);
300 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
301 	    LCPLL_CONTROL1_NDIV_INT);
302 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
303 	    LCPLL_CONTROL1_NDIV_FRAC);
304 
305 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
306 
307 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
308 	    LCPLL_CONTROL2_CH0_MDIV);
309 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
310 	    LCPLL_CONTROL2_CH1_MDIV);
311 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
312 	    LCPLL_CONTROL2_CH2_MDIV);
313 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
314 	    LCPLL_CONTROL2_CH3_MDIV);
315 
316 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
317 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
318 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
319 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
320 }
321 
322 static void
323 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
324 {
325 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
326 	    USB2_CONTROL_PDIV);
327 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
328 	    USB2_CONTROL_NDIV_INT);
329 
330 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
331 	if (usb_ref != USB2_REF_CLK) {
332 		/*
333 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
334 		 * USB2_CONTROL to produce it.
335 		 */
336 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
337 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
338 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
339 
340 		// Allow Clocks to be modified
341 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
342 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
343 
344 		// Update USB2 clock generator
345 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
346 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
347 
348 		// Prevent Clock modification
349 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
350 		    CRU_BASE + CRU_CLKSET_KEY, 0);
351 
352 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
353 	}
354 
355 	clk->clk_usb_ref = usb_ref;
356 }
357 
358 
359 static void
360 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
361 {
362 	clk->clk_ref = BCM53XX_REF_CLK;
363 	clk->clk_sys = 8*clk->clk_ref;
364 }
365 
366 /*
367  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
368  */
369 static void
370 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
371     uint32_t pll_dividers)
372 {
373 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
374 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
375 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
376 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
377 
378 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
379 
380 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
381 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
382 }
383 
384 /*
385  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
386  */
387 static void
388 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
389 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
390 {
391 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
392 
393 	if (policy == CLK_POLICY_REF_CLK) {
394 		clk->clk_cpu = clk->clk_ref;
395 		clk->clk_apb = clk->clk_cpu;
396 		return;
397 	}
398 
399 	if (policy == CLK_POLICY_SYS_CLK) {
400 		clk->clk_cpu = clk->clk_sys;
401 		clk->clk_apb = clk->clk_cpu / 4;
402 		return;
403 	}
404 
405 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
406 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
407 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
408 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
409 
410 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
411 
412 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
413 	clk->clk_apb = clk->clk_cpu / 4;
414 }
415 
416 struct bcm53xx_chip_state {
417 	uint32_t bcs_lcpll_control1;
418 	uint32_t bcs_lcpll_control2;
419 
420 	uint32_t bcs_genpll_control5;
421 	uint32_t bcs_genpll_control6;
422 	uint32_t bcs_genpll_control7;
423 
424 	uint32_t bcs_usb2_control;
425 
426 	uint32_t bcs_ddr_phy_ctl_pll_status;
427 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
428 
429 	uint32_t bcs_armcore_clk_policy;
430 	uint32_t bcs_armcore_clk_pllarma;
431 	uint32_t bcs_armcore_clk_pllarmb;
432 };
433 
434 static void
435 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
436 	bus_space_tag_t bst, bus_space_handle_t bsh)
437 {
438 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
439 	    DMU_BASE + DMU_LCPLL_CONTROL1);
440 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
441 	    DMU_BASE + DMU_LCPLL_CONTROL2);
442 
443 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
444 	    CRU_BASE + CRU_GENPLL_CONTROL5);
445 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
446 	    CRU_BASE + CRU_GENPLL_CONTROL6);
447 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
448 	    CRU_BASE + CRU_GENPLL_CONTROL7);
449 
450 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
451 	    CRU_BASE + CRU_USB2_CONTROL);
452 
453 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
454 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
455 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
456 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
457 }
458 
459 static void
460 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
461 	bus_space_tag_t bst, bus_space_handle_t bsh)
462 {
463 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
464 	    ARMCORE_CLK_POLICY_FREQ);
465 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
466 	    ARMCORE_CLK_PLLARMA);
467 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
468 	    ARMCORE_CLK_PLLARMB);
469 }
470 
471 void
472 bcm53xx_cpu_softc_init(struct cpu_info *ci)
473 {
474 	struct cpu_softc * const cpu = ci->ci_softc;
475 
476 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
477 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
478 
479 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
480 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
481 
482 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
483 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
484 
485 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
486 }
487 
488 void
489 bcm53xx_print_clocks(void)
490 {
491 #if defined(VERBOSE_INIT_ARM)
492 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
493 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
494 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
495 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
496 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
497 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
498 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
499 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
500 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
501 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
502 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
503 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
504 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
505 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
506 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
507 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
508 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
509 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
510 #endif
511 }
512 
513 void
514 bcm53xx_bootstrap(vaddr_t iobase)
515 {
516 	struct bcm53xx_chip_state bcs;
517 	int error;
518 
519 #ifdef BCM53XX_CONSOLE_EARLY
520 	com_base = iobase + CCA_UART0_BASE;
521 	cn_tab = &bcm53xx_earlycons;
522 #endif
523 
524 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
525 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
526 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
527 	if (error)
528 		panic("%s: failed to map BCM53xx %s registers: %d",
529 		    __func__, "io", error);
530 
531 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
532 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
533 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
534 	if (error)
535 		panic("%s: failed to map BCM53xx %s registers: %d",
536 		    __func__, "armcore", error);
537 
538 	curcpu()->ci_softc = &cpu_softc;
539 
540 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
541 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
542 
543 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
544 
545 	bcm53xx_clock_init(clk);
546 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
547 	    bcs.bcs_lcpll_control2);
548 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
549 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
550 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
551 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
552 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
553 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
554 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
555 
556 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
557 
558 #if NARML2CC > 0
559 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
560 	    ARMCORE_L2C_BASE);
561 #endif
562 }
563 
564 void
565 bcm53xx_dma_bootstrap(psize_t memsize)
566 {
567 	if (memsize <= 256*1024*1024) {
568 		bcm53xx_dma_ranges[0].dr_len = memsize;
569 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
570 		bcm53xx_dma_tag._nranges = 1;
571 		bcm53xx_coherent_dma_tag._nranges = 1;
572 	} else {
573 		/*
574 		 * By setting up two ranges, bus_dmamem_alloc will always
575 		 * try to allocate from range 0 first resulting in allocations
576 		 * below 256MB which for PCI and GMAC are coherent.
577 		 */
578 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
579 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
580 	}
581 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
582 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
583 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
584 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
585 #endif
586 }
587 
588 #ifdef MULTIPROCESSOR
589 void
590 bcm53xx_cpu_hatch(struct cpu_info *ci)
591 {
592 	a9tmr_init_cpu_clock(ci);
593 }
594 #endif
595 
596 void
597 bcm53xx_device_register(device_t self, void *aux)
598 {
599 	prop_dictionary_t dict = device_properties(self);
600 
601 	if (device_is_a(self, "armperiph")
602 	    && device_is_a(device_parent(self), "mainbus")) {
603 		/*
604 		 * XXX KLUDGE ALERT XXX
605 		 * The iot mainbus supplies is completely wrong since it scales
606 		 * addresses by 2.  The simpliest remedy is to replace with our
607 		 * bus space used for the armcore regisers (which armperiph uses).
608 		 */
609 		struct mainbus_attach_args * const mb = aux;
610 		mb->mb_iot = bcm53xx_armcore_bst;
611 		return;
612 	}
613 
614 	/*
615 	 * We need to tell the A9 Global/Watchdog Timer
616 	 * what frequency it runs at.
617 	 */
618 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
619 		/*
620 		 * This clock always runs at (arm_clk div 2) and only goes
621 		 * to timers that are part of the A9 MP core subsystem.
622 		 */
623                 prop_dictionary_set_uint32(dict, "frequency",
624 		    cpu_softc.cpu_clk.clk_cpu / 2);
625 		return;
626 	}
627 
628 	if (device_is_a(self, "bcmeth")) {
629 		const struct bcmccb_attach_args * const ccbaa = aux;
630 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
631 			0x00, 0x01, 0x02, 0x03, 0x04,
632 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
633 		};
634 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
635 		KASSERT(pd != NULL);
636 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
637 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
638 		}
639 		prop_object_release(pd);
640 	}
641 }
642 
643 #ifdef SRAB_BASE
644 static kmutex_t srab_lock __cacheline_aligned;
645 
646 void
647 bcm53xx_srab_init(void)
648 {
649 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
650 
651 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
652 	for (u_int port = 0; port < 8; port++) {
653 		/* per port control: no stp */
654 		bcm53xx_srab_write_4(port, 0x00);
655 	}
656 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
657 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
658 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
659 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
660 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
661 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
662 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
663 }
664 
665 static inline void
666 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
667 {
668 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
669 		delay(10);
670 	}
671 }
672 
673 uint32_t
674 bcm53xx_srab_read_4(u_int pageoffset)
675 {
676 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
677 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
678 	uint32_t rv;
679 
680 	mutex_spin_enter(&srab_lock);
681 
682 	bcm53xx_srab_busywait(bst, bsh);
683 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
684 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
685 	bcm53xx_srab_busywait(bst, bsh);
686 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
687 
688 	mutex_spin_exit(&srab_lock);
689 	return rv;
690 }
691 
692 uint64_t
693 bcm53xx_srab_read_8(u_int pageoffset)
694 {
695 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
696 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
697 	uint64_t rv;
698 
699 	mutex_spin_enter(&srab_lock);
700 
701 	bcm53xx_srab_busywait(bst, bsh);
702 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
703 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
704 	bcm53xx_srab_busywait(bst, bsh);
705 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
706 	rv <<= 32;
707 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
708 
709 	mutex_spin_exit(&srab_lock);
710 	return rv;
711 }
712 
713 void
714 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
715 {
716 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
717 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
718 
719 	mutex_spin_enter(&srab_lock);
720 
721 	bcm53xx_srab_busywait(bst, bsh);
722 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
723 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
724 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
725 	bcm53xx_srab_busywait(bst, bsh);
726 
727 	mutex_spin_exit(&srab_lock);
728 }
729 
730 void
731 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
732 {
733 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
734 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
735 
736 	mutex_spin_enter(&srab_lock);
737 
738 	bcm53xx_srab_busywait(bst, bsh);
739 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
740 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
741 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
742 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
743 	bcm53xx_srab_busywait(bst, bsh);
744 	mutex_spin_exit(&srab_lock);
745 }
746 #endif
747