1 /* $NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Embedtronics Oy 5 * All rights reserved. 6 * 7 * Based on arch/arm/ep93xx/epe.c 8 * 9 * Copyright (c) 2004 Jesse Off 10 * All rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $"); 36 37 #include <sys/types.h> 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/ioctl.h> 41 #include <sys/kernel.h> 42 #include <sys/proc.h> 43 #include <sys/malloc.h> 44 #include <sys/time.h> 45 #include <sys/device.h> 46 #include <uvm/uvm_extern.h> 47 48 #include <sys/bus.h> 49 #include <machine/intr.h> 50 51 #include <arm/cpufunc.h> 52 53 #include <net/if.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 #include <net/if_media.h> 57 #include <net/if_ether.h> 58 #include <net/bpf.h> 59 60 #include <dev/mii/mii.h> 61 #include <dev/mii/miivar.h> 62 63 #ifdef INET 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/if_inarp.h> 69 #endif 70 71 #include <arm/at91/at91var.h> 72 #include <arm/at91/at91emacreg.h> 73 #include <arm/at91/at91emacvar.h> 74 75 #define DEFAULT_MDCDIV 32 76 77 #ifndef EMAC_FAST 78 #define EMAC_FAST 79 #endif 80 81 #ifndef EMAC_FAST 82 #define EMAC_READ(x) \ 83 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x)) 84 #define EMAC_WRITE(x, y) \ 85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y)) 86 #else 87 #define EMAC_READ(x) ETHREG(x) 88 #define EMAC_WRITE(x, y) ETHREG(x) = (y) 89 #endif /* ! EMAC_FAST */ 90 91 static int emac_match(device_t, cfdata_t, void *); 92 static void emac_attach(device_t, device_t, void *); 93 static void emac_init(struct emac_softc *); 94 static int emac_intr(void* arg); 95 static int emac_gctx(struct emac_softc *); 96 static int emac_mediachange(struct ifnet *); 97 static void emac_mediastatus(struct ifnet *, struct ifmediareq *); 98 int emac_mii_readreg (device_t, int, int, uint16_t *); 99 int emac_mii_writereg (device_t, int, int, uint16_t); 100 void emac_statchg (struct ifnet *); 101 void emac_tick (void *); 102 static int emac_ifioctl (struct ifnet *, u_long, void *); 103 static void emac_ifstart (struct ifnet *); 104 static void emac_ifwatchdog (struct ifnet *); 105 static int emac_ifinit (struct ifnet *); 106 static void emac_ifstop (struct ifnet *, int); 107 static void emac_setaddr (struct ifnet *); 108 109 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc), 110 emac_match, emac_attach, NULL, NULL); 111 112 #ifdef EMAC_DEBUG 113 int emac_debug = EMAC_DEBUG; 114 #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt 115 #else 116 #define DPRINTFN(n, fmt) 117 #endif 118 119 static int 120 emac_match(device_t parent, cfdata_t match, void *aux) 121 { 122 if (strcmp(match->cf_name, "at91emac") == 0) 123 return 2; 124 return 0; 125 } 126 127 static void 128 emac_attach(device_t parent, device_t self, void *aux) 129 { 130 struct emac_softc *sc = device_private(self); 131 struct at91bus_attach_args *sa = aux; 132 prop_data_t enaddr; 133 uint32_t u; 134 135 printf("\n"); 136 sc->sc_dev = self; 137 sc->sc_iot = sa->sa_iot; 138 sc->sc_pid = sa->sa_pid; 139 sc->sc_dmat = sa->sa_dmat; 140 141 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh)) 142 panic("%s: Cannot map registers", device_xname(self)); 143 144 /* enable peripheral clock */ 145 at91_peripheral_clock(sc->sc_pid, 1); 146 147 /* configure emac: */ 148 EMAC_WRITE(ETH_CTL, 0); // disable everything 149 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 150 EMAC_WRITE(ETH_RBQP, 0); // clear receive 151 EMAC_WRITE(ETH_CFG, 152 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 153 EMAC_WRITE(ETH_TCR, 0); // send nothing 154 //(void)EMAC_READ(ETH_ISR); 155 u = EMAC_READ(ETH_TSR); 156 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 157 | ETH_TSR_IDLE | ETH_TSR_RLE 158 | ETH_TSR_COL | ETH_TSR_OVR))); 159 u = EMAC_READ(ETH_RSR); 160 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 161 162 /* Fetch the Ethernet address from property if set. */ 163 enaddr = prop_dictionary_get(device_properties(self), "mac-address"); 164 165 if (enaddr != NULL) { 166 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); 167 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); 168 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr), 169 ETHER_ADDR_LEN); 170 } else { 171 static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 172 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 173 }; 174 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); 175 } 176 177 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, 178 sc); 179 emac_init(sc); 180 } 181 182 static int 183 emac_gctx(struct emac_softc *sc) 184 { 185 struct ifnet * ifp = &sc->sc_ec.ec_if; 186 uint32_t tsr; 187 188 tsr = EMAC_READ(ETH_TSR); 189 if (!(tsr & ETH_TSR_BNQ)) { 190 // no space left 191 return 0; 192 } 193 194 // free sent frames 195 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) { 196 int i = sc->txqi % TX_QLEN; 197 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0, 198 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); 199 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap); 200 m_freem(sc->txq[i].m); 201 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", 202 __FUNCTION__, i, sc->txq[i].m, sc->txqc)); 203 sc->txq[i].m = NULL; 204 sc->txqi = (i + 1) % TX_QLEN; 205 sc->txqc--; 206 } 207 208 // mark we're free 209 if (ifp->if_flags & IFF_OACTIVE) { 210 ifp->if_flags &= ~IFF_OACTIVE; 211 /* Disable transmit-buffer-free interrupt */ 212 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ 213 } 214 215 return 1; 216 } 217 218 static int 219 emac_intr(void *arg) 220 { 221 struct emac_softc *sc = (struct emac_softc *)arg; 222 struct ifnet * ifp = &sc->sc_ec.ec_if; 223 uint32_t imr, isr, ctl; 224 int bi; 225 226 imr = ~EMAC_READ(ETH_IMR); 227 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 228 | ETH_ISR_RBNA | ETH_ISR_ROVR))) { 229 // interrupt not enabled, can't be us 230 return 0; 231 } 232 233 isr = EMAC_READ(ETH_ISR) & imr; 234 #ifdef EMAC_DEBUG 235 uint32_t rsr = 236 #endif 237 EMAC_READ(ETH_RSR); // get receive status register 238 239 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, 240 isr, rsr, imr)); 241 242 if (isr & ETH_ISR_RBNA) { // out of receive buffers 243 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt 244 ctl = EMAC_READ(ETH_CTL); // get current control register value 245 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver 246 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit 247 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver 248 ifp->if_ierrors++; 249 ifp->if_ipackets++; 250 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); 251 } 252 if (isr & ETH_ISR_ROVR) { 253 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt 254 ifp->if_ierrors++; 255 ifp->if_ipackets++; 256 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); 257 } 258 259 if (isr & ETH_ISR_RCOM) { // packet has been received! 260 uint32_t nfo; 261 // @@@ if memory is NOT coherent, then we're in trouble @@@@ 262 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); 263 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr); 264 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, 265 sc->RDSC[sc->rxqi % RX_QLEN].Info)); 266 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { 267 int fl; 268 struct mbuf *m; 269 270 nfo = sc->RDSC[bi].Info; 271 fl = (nfo & ETH_RDSC_I_LEN) - 4; 272 DPRINTFN(2,("## nfo=0x%08X\n", nfo)); 273 274 MGETHDR(m, M_DONTWAIT, MT_DATA); 275 if (m != NULL) MCLGET(m, M_DONTWAIT); 276 if (m != NULL && (m->m_flags & M_EXT)) { 277 bus_dmamap_sync(sc->sc_dmat, 278 sc->rxq[bi].m_dmamap, 0, 279 MCLBYTES, BUS_DMASYNC_POSTREAD); 280 bus_dmamap_unload(sc->sc_dmat, 281 sc->rxq[bi].m_dmamap); 282 m_set_rcvif(sc->rxq[bi].m, ifp); 283 sc->rxq[bi].m->m_pkthdr.len = 284 sc->rxq[bi].m->m_len = fl; 285 DPRINTFN(2,("received %u bytes packet\n", fl)); 286 if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m); 287 if (mtod(m, intptr_t) & 3) { 288 m_adj(m, mtod(m, intptr_t) & 3); 289 } 290 sc->rxq[bi].m = m; 291 bus_dmamap_load(sc->sc_dmat, 292 sc->rxq[bi].m_dmamap, 293 m->m_ext.ext_buf, MCLBYTES, 294 NULL, BUS_DMA_NOWAIT); 295 bus_dmamap_sync(sc->sc_dmat, 296 sc->rxq[bi].m_dmamap, 0, 297 MCLBYTES, BUS_DMASYNC_PREREAD); 298 sc->RDSC[bi].Info = 0; 299 sc->RDSC[bi].Addr = 300 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr 301 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 302 } else { 303 /* Drop packets until we can get replacement 304 * empty mbufs for the RXDQ. 305 */ 306 if (m != NULL) { 307 m_freem(m); 308 } 309 ifp->if_ierrors++; 310 } 311 sc->rxqi++; 312 } 313 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 314 } 315 316 if (emac_gctx(sc) > 0) 317 if_schedule_deferred_start(ifp); 318 #if 0 // reloop 319 irq = EMAC_READ(IntStsC); 320 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0) 321 goto begin; 322 #endif 323 324 return (1); 325 } 326 327 328 static void 329 emac_init(struct emac_softc *sc) 330 { 331 bus_dma_segment_t segs; 332 void *addr; 333 int rsegs, err, i; 334 struct ifnet * ifp = &sc->sc_ec.ec_if; 335 struct mii_data * const mii = &sc->sc_mii; 336 uint32_t u; 337 #if 0 338 int mdcdiv = DEFAULT_MDCDIV; 339 #endif 340 341 callout_init(&sc->emac_tick_ch, 0); 342 343 // ok... 344 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 345 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 346 EMAC_WRITE(ETH_RBQP, 0); // clear receive 347 EMAC_WRITE(ETH_CFG, 348 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 349 EMAC_WRITE(ETH_TCR, 0); // send nothing 350 // (void)EMAC_READ(ETH_ISR); 351 u = EMAC_READ(ETH_TSR); 352 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 353 | ETH_TSR_IDLE | ETH_TSR_RLE 354 | ETH_TSR_COL | ETH_TSR_OVR))); 355 u = EMAC_READ(ETH_RSR); 356 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 357 358 /* configure EMAC */ 359 EMAC_WRITE(ETH_CFG, 360 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 361 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); 362 #if 0 363 if (device_cfdata(sc->sc_dev)->cf_flags) 364 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags; 365 #endif 366 /* set ethernet address */ 367 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 368 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 369 | (sc->sc_enaddr[0])); 370 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 371 | (sc->sc_enaddr[4])); 372 EMAC_WRITE(ETH_SA2L, 0); 373 EMAC_WRITE(ETH_SA2H, 0); 374 EMAC_WRITE(ETH_SA3L, 0); 375 EMAC_WRITE(ETH_SA3H, 0); 376 EMAC_WRITE(ETH_SA4L, 0); 377 EMAC_WRITE(ETH_SA4H, 0); 378 379 /* Allocate a page of memory for receive queue descriptors */ 380 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; 381 sc->rbqlen *= PAGE_SIZE; 382 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); 383 384 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, 385 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary 386 &segs, 1, &rsegs, BUS_DMA_WAITOK); 387 if (err == 0) { 388 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 389 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, 390 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); 391 } 392 if (err == 0) { 393 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 394 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, 395 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 396 &sc->rbqpage_dmamap); 397 } 398 if (err == 0) { 399 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 400 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, 401 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); 402 } 403 if (err != 0) { 404 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 405 } 406 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; 407 408 memset(sc->rbqpage, 0, sc->rbqlen); 409 410 /* Set up pointers to start of each queue in kernel addr space. 411 * Each descriptor queue or status queue entry uses 2 words 412 */ 413 sc->RDSC = (void*)sc->rbqpage; 414 415 /* Populate the RXQ with mbufs */ 416 sc->rxqi = 0; 417 for (i = 0; i < RX_QLEN; i++) { 418 struct mbuf *m; 419 420 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 421 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); 422 if (err) 423 panic("%s: dmamap_create failed: %i\n", 424 __FUNCTION__, err); 425 426 MGETHDR(m, M_WAIT, MT_DATA); 427 MCLGET(m, M_WAIT); 428 sc->rxq[i].m = m; 429 if (mtod(m, intptr_t) & 3) { 430 m_adj(m, mtod(m, intptr_t) & 3); 431 } 432 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, 433 m->m_ext.ext_buf, MCLBYTES, NULL, 434 BUS_DMA_WAITOK); 435 if (err) 436 panic("%s: dmamap_load failed: %i\n", 437 __FUNCTION__, err); 438 439 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr 440 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 441 sc->RDSC[i].Info = 0; 442 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, 443 MCLBYTES, BUS_DMASYNC_PREREAD); 444 } 445 446 /* prepare transmit queue */ 447 for (i = 0; i < TX_QLEN; i++) { 448 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 449 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), 450 &sc->txq[i].m_dmamap); 451 if (err) 452 panic("ARGH #1"); 453 sc->txq[i].m = NULL; 454 } 455 456 /* Program each queue's start addr, cur addr, and len registers 457 * with the physical addresses. 458 */ 459 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, 460 BUS_DMASYNC_PREREAD); 461 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr; 462 EMAC_WRITE(ETH_RBQP, (uint32_t)addr); 463 464 /* Divide HCLK by 32 for MDC clock */ 465 mii->mii_ifp = ifp; 466 mii->mii_readreg = emac_mii_readreg; 467 mii->mii_writereg = emac_mii_writereg; 468 mii->mii_statchg = emac_statchg; 469 sc->sc_ec.ec_mii = mii; 470 ifmedia_init(&mii->mii_media, IFM_IMASK, emac_mediachange, 471 emac_mediastatus); 472 mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY, 473 MII_OFFSET_ANY, 0); 474 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 475 476 // enable / disable interrupts 477 478 #if 0 479 // enable / disable interrupts 480 EMAC_WRITE(ETH_IDR, -1); 481 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 482 | ETH_ISR_RBNA | ETH_ISR_ROVR); 483 // (void)EMAC_READ(ETH_ISR); // why 484 485 // enable transmitter / receiver 486 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 487 | ETH_CTL_CSR | ETH_CTL_MPE); 488 #endif 489 /* 490 * We can support 802.1Q VLAN-sized frames. 491 */ 492 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 493 494 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 495 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 496 ifp->if_ioctl = emac_ifioctl; 497 ifp->if_start = emac_ifstart; 498 ifp->if_watchdog = emac_ifwatchdog; 499 ifp->if_init = emac_ifinit; 500 ifp->if_stop = emac_ifstop; 501 ifp->if_timer = 0; 502 ifp->if_softc = sc; 503 IFQ_SET_READY(&ifp->if_snd); 504 if_attach(ifp); 505 if_deferred_start_init(ifp, NULL); 506 ether_ifattach(ifp, (sc)->sc_enaddr); 507 } 508 509 static int 510 emac_mediachange(struct ifnet *ifp) 511 { 512 if (ifp->if_flags & IFF_UP) 513 emac_ifinit(ifp); 514 return (0); 515 } 516 517 static void 518 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 519 { 520 struct emac_softc *sc = ifp->if_softc; 521 522 mii_pollstat(&sc->sc_mii); 523 ifmr->ifm_active = sc->sc_mii.mii_media_active; 524 ifmr->ifm_status = sc->sc_mii.mii_media_status; 525 } 526 527 528 int 529 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 530 { 531 #ifndef EMAC_FAST 532 struct emac_softc *sc = device_private(self); 533 #endif 534 535 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD 536 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 537 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 538 | ETH_MAN_CODE_IEEE802_3)); 539 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) 540 ; 541 *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA; 542 543 return 0; 544 } 545 546 int 547 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val) 548 { 549 #ifndef EMAC_FAST 550 struct emac_softc *sc = device_private(self); 551 #endif 552 553 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR 554 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 555 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 556 | ETH_MAN_CODE_IEEE802_3 557 | (val & ETH_MAN_DATA))); 558 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) 559 ; 560 561 return 0; 562 } 563 564 void 565 emac_statchg(struct ifnet *ifp) 566 { 567 struct emac_softc *sc = ifp->if_softc; 568 uint32_t reg; 569 570 /* 571 * We must keep the MAC and the PHY in sync as 572 * to the status of full-duplex! 573 */ 574 reg = EMAC_READ(ETH_CFG); 575 if (sc->sc_mii.mii_media_active & IFM_FDX) 576 reg |= ETH_CFG_FD; 577 else 578 reg &= ~ETH_CFG_FD; 579 EMAC_WRITE(ETH_CFG, reg); 580 } 581 582 void 583 emac_tick(void *arg) 584 { 585 struct emac_softc* sc = (struct emac_softc *)arg; 586 struct ifnet * ifp = &sc->sc_ec.ec_if; 587 int s; 588 uint32_t misses; 589 590 ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL); 591 /* These misses are ok, they will happen if the RAM/CPU can't keep up */ 592 misses = EMAC_READ(ETH_DRFC); 593 if (misses > 0) 594 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses); 595 596 s = splnet(); 597 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { 598 emac_ifstart(ifp); 599 } 600 splx(s); 601 602 mii_tick(&sc->sc_mii); 603 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 604 } 605 606 607 static int 608 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 609 { 610 int s, error; 611 612 s = splnet(); 613 switch (cmd) { 614 default: 615 error = ether_ioctl(ifp, cmd, data); 616 if (error == ENETRESET) { 617 if (ifp->if_flags & IFF_RUNNING) 618 emac_setaddr(ifp); 619 error = 0; 620 } 621 } 622 splx(s); 623 return error; 624 } 625 626 static void 627 emac_ifstart(struct ifnet *ifp) 628 { 629 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 630 struct mbuf *m; 631 bus_dma_segment_t *segs; 632 int s, bi, err, nsegs; 633 634 s = splnet(); 635 start: 636 if (emac_gctx(sc) == 0) { 637 /* Enable transmit-buffer-free interrupt */ 638 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE); 639 ifp->if_flags |= IFF_OACTIVE; 640 ifp->if_timer = 10; 641 splx(s); 642 return; 643 } 644 645 ifp->if_timer = 0; 646 647 IFQ_POLL(&ifp->if_snd, m); 648 if (m == NULL) { 649 splx(s); 650 return; 651 } 652 //more: 653 bi = (sc->txqi + sc->txqc) % TX_QLEN; 654 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 655 BUS_DMA_NOWAIT)) || 656 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || 657 sc->txq[bi].m_dmamap->dm_nsegs > 1) { 658 /* Copy entire mbuf chain to new single */ 659 struct mbuf *mn; 660 661 if (err == 0) 662 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 663 664 MGETHDR(mn, M_DONTWAIT, MT_DATA); 665 if (mn == NULL) goto stop; 666 if (m->m_pkthdr.len > MHLEN) { 667 MCLGET(mn, M_DONTWAIT); 668 if ((mn->m_flags & M_EXT) == 0) { 669 m_freem(mn); 670 goto stop; 671 } 672 } 673 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); 674 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; 675 IFQ_DEQUEUE(&ifp->if_snd, m); 676 m_freem(m); 677 m = mn; 678 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 679 BUS_DMA_NOWAIT); 680 } else { 681 IFQ_DEQUEUE(&ifp->if_snd, m); 682 } 683 684 bpf_mtap(ifp, m, BPF_D_OUT); 685 686 nsegs = sc->txq[bi].m_dmamap->dm_nsegs; 687 segs = sc->txq[bi].m_dmamap->dm_segs; 688 if (nsegs > 1) { 689 panic("#### ARGH #2"); 690 } 691 692 sc->txq[bi].m = m; 693 sc->txqc++; 694 695 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr, 696 (unsigned)m->m_pkthdr.len)); 697 #ifdef DIAGNOSTIC 698 if (sc->txqc > TX_QLEN) { 699 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); 700 } 701 #endif 702 703 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 704 sc->txq[bi].m_dmamap->dm_mapsize, 705 BUS_DMASYNC_PREWRITE); 706 707 EMAC_WRITE(ETH_TAR, segs->ds_addr); 708 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len); 709 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 710 goto start; 711 stop: 712 713 splx(s); 714 return; 715 } 716 717 static void 718 emac_ifwatchdog(struct ifnet *ifp) 719 { 720 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 721 722 if ((ifp->if_flags & IFF_RUNNING) == 0) 723 return; 724 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n", 725 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG)); 726 } 727 728 static int 729 emac_ifinit(struct ifnet *ifp) 730 { 731 struct emac_softc *sc = ifp->if_softc; 732 int s = splnet(); 733 734 callout_stop(&sc->emac_tick_ch); 735 736 // enable interrupts 737 EMAC_WRITE(ETH_IDR, -1); 738 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 739 | ETH_ISR_RBNA | ETH_ISR_ROVR); 740 741 // enable transmitter / receiver 742 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 743 | ETH_CTL_CSR | ETH_CTL_MPE); 744 745 mii_mediachg(&sc->sc_mii); 746 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 747 ifp->if_flags |= IFF_RUNNING; 748 splx(s); 749 return 0; 750 } 751 752 static void 753 emac_ifstop(struct ifnet *ifp, int disable) 754 { 755 // uint32_t u; 756 struct emac_softc *sc = ifp->if_softc; 757 758 #if 0 759 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 760 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 761 // EMAC_WRITE(ETH_RBQP, 0); // clear receive 762 EMAC_WRITE(ETH_CFG, 763 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 764 EMAC_WRITE(ETH_TCR, 0); // send nothing 765 // (void)EMAC_READ(ETH_ISR); 766 u = EMAC_READ(ETH_TSR); 767 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 768 | ETH_TSR_IDLE | ETH_TSR_RLE 769 | ETH_TSR_COL | ETH_TSR_OVR))); 770 u = EMAC_READ(ETH_RSR); 771 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 772 #endif 773 callout_stop(&sc->emac_tick_ch); 774 775 /* Down the MII. */ 776 mii_down(&sc->sc_mii); 777 778 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 779 ifp->if_timer = 0; 780 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; 781 } 782 783 static void 784 emac_setaddr(struct ifnet *ifp) 785 { 786 struct emac_softc *sc = ifp->if_softc; 787 struct ethercom *ec = &sc->sc_ec; 788 struct ether_multi *enm; 789 struct ether_multistep step; 790 uint8_t ias[3][ETHER_ADDR_LEN]; 791 uint32_t h, nma = 0, hashes[2] = { 0, 0 }; 792 uint32_t ctl = EMAC_READ(ETH_CTL); 793 uint32_t cfg = EMAC_READ(ETH_CFG); 794 795 /* disable receiver temporarily */ 796 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 797 798 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); 799 800 if (ifp->if_flags & IFF_PROMISC) { 801 cfg |= ETH_CFG_CAF; 802 } else { 803 cfg &= ~ETH_CFG_CAF; 804 } 805 806 // ETH_CFG_BIG? 807 808 ifp->if_flags &= ~IFF_ALLMULTI; 809 810 ETHER_LOCK(ec); 811 ETHER_FIRST_MULTI(step, ec, enm); 812 while (enm != NULL) { 813 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 814 /* 815 * We must listen to a range of multicast addresses. 816 * For now, just accept all multicasts, rather than 817 * trying to set only those filter bits needed to match 818 * the range. (At this time, the only use of address 819 * ranges is for IP multicast routing, for which the 820 * range is big enough to require all bits set.) 821 */ 822 cfg |= ETH_CFG_CAF; 823 hashes[0] = 0xffffffffUL; 824 hashes[1] = 0xffffffffUL; 825 ifp->if_flags |= IFF_ALLMULTI; 826 nma = 0; 827 break; 828 } 829 830 if (nma < 3) { 831 /* We can program 3 perfect address filters for mcast */ 832 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); 833 } else { 834 /* 835 * XXX: Datasheet is not very clear here, I'm not sure 836 * if I'm doing this right. --joff 837 */ 838 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 839 840 /* Just want the 6 most-significant bits. */ 841 h = h >> 26; 842 843 hashes[ h / 32 ] |= (1 << (h % 32)); 844 cfg |= ETH_CFG_MTI; 845 } 846 ETHER_NEXT_MULTI(step, enm); 847 nma++; 848 } 849 ETHER_UNLOCK(ec); 850 851 // program... 852 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 853 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], 854 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); 855 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 856 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 857 | (sc->sc_enaddr[0])); 858 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 859 | (sc->sc_enaddr[4])); 860 if (nma > 1) { 861 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", 862 __FUNCTION__, 863 ias[0][0], ias[0][1], ias[0][2], 864 ias[0][3], ias[0][4], ias[0][5])); 865 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) 866 | (ias[0][2] << 16) | (ias[0][1] << 8) 867 | (ias[0][0])); 868 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) 869 | (ias[0][5])); 870 } 871 if (nma > 2) { 872 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", 873 __FUNCTION__, 874 ias[1][0], ias[1][1], ias[1][2], 875 ias[1][3], ias[1][4], ias[1][5])); 876 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) 877 | (ias[1][2] << 16) | (ias[1][1] << 8) 878 | (ias[1][0])); 879 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) 880 | (ias[1][5])); 881 } 882 if (nma > 3) { 883 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", 884 __FUNCTION__, 885 ias[2][0], ias[2][1], ias[2][2], 886 ias[2][3], ias[2][4], ias[2][5])); 887 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24) 888 | (ias[2][2] << 16) | (ias[2][1] << 8) 889 | (ias[2][0])); 890 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8) 891 | (ias[2][5])); 892 } 893 EMAC_WRITE(ETH_HSH, hashes[0]); 894 EMAC_WRITE(ETH_HSL, hashes[1]); 895 EMAC_WRITE(ETH_CFG, cfg); 896 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 897 } 898