xref: /netbsd-src/sys/arch/arm/at91/at91emac.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$Id: at91emac.c,v 1.15 2015/09/21 13:31:30 skrll Exp $	*/
2 /*	$NetBSD: at91emac.c,v 1.15 2015/09/21 13:31:30 skrll Exp $	*/
3 
4 /*
5  * Copyright (c) 2007 Embedtronics Oy
6  * All rights reserved.
7  *
8  * Based on arch/arm/ep93xx/epe.c
9  *
10  * Copyright (c) 2004 Jesse Off
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.15 2015/09/21 13:31:30 skrll Exp $");
37 
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/ioctl.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/device.h>
47 #include <uvm/uvm_extern.h>
48 
49 #include <sys/bus.h>
50 #include <machine/intr.h>
51 
52 #include <arm/cpufunc.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #include <net/bpf.h>
72 #include <net/bpfdesc.h>
73 
74 #ifdef IPKDB_AT91	// @@@
75 #include <ipkdb/ipkdb.h>
76 #endif
77 
78 #include <arm/at91/at91var.h>
79 #include <arm/at91/at91emacreg.h>
80 #include <arm/at91/at91emacvar.h>
81 
82 #define DEFAULT_MDCDIV	32
83 
84 #ifndef EMAC_FAST
85 #define EMAC_FAST
86 #endif
87 
88 #ifndef EMAC_FAST
89 #define EMAC_READ(x) \
90 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
91 #define EMAC_WRITE(x, y) \
92 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
93 #else
94 #define EMAC_READ(x) ETHREG(x)
95 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
96 #endif /* ! EMAC_FAST */
97 
98 static int	emac_match(device_t, cfdata_t, void *);
99 static void	emac_attach(device_t, device_t, void *);
100 static void	emac_init(struct emac_softc *);
101 static int      emac_intr(void* arg);
102 static int	emac_gctx(struct emac_softc *);
103 static int	emac_mediachange(struct ifnet *);
104 static void	emac_mediastatus(struct ifnet *, struct ifmediareq *);
105 int		emac_mii_readreg (device_t, int, int);
106 void		emac_mii_writereg (device_t, int, int, int);
107 void		emac_statchg (struct ifnet *);
108 void		emac_tick (void *);
109 static int	emac_ifioctl (struct ifnet *, u_long, void *);
110 static void	emac_ifstart (struct ifnet *);
111 static void	emac_ifwatchdog (struct ifnet *);
112 static int	emac_ifinit (struct ifnet *);
113 static void	emac_ifstop (struct ifnet *, int);
114 static void	emac_setaddr (struct ifnet *);
115 
116 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
117     emac_match, emac_attach, NULL, NULL);
118 
119 #ifdef	EMAC_DEBUG
120 int emac_debug = EMAC_DEBUG;
121 #define	DPRINTFN(n,fmt)	if (emac_debug >= (n)) printf fmt
122 #else
123 #define	DPRINTFN(n,fmt)
124 #endif
125 
126 static int
127 emac_match(device_t parent, cfdata_t match, void *aux)
128 {
129 	if (strcmp(match->cf_name, "at91emac") == 0)
130 		return 2;
131 	return 0;
132 }
133 
134 static void
135 emac_attach(device_t parent, device_t self, void *aux)
136 {
137 	struct emac_softc		*sc = device_private(self);
138 	struct at91bus_attach_args	*sa = aux;
139 	prop_data_t			enaddr;
140 	uint32_t			u;
141 
142 	printf("\n");
143 	sc->sc_dev = self;
144 	sc->sc_iot = sa->sa_iot;
145 	sc->sc_pid = sa->sa_pid;
146 	sc->sc_dmat = sa->sa_dmat;
147 
148 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
149 		panic("%s: Cannot map registers", device_xname(self));
150 
151 	/* enable peripheral clock */
152 	at91_peripheral_clock(sc->sc_pid, 1);
153 
154 	/* configure emac: */
155 	EMAC_WRITE(ETH_CTL, 0);			// disable everything
156 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
157 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
158 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
159 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
160 	//(void)EMAC_READ(ETH_ISR);
161 	u = EMAC_READ(ETH_TSR);
162 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
163 				  | ETH_TSR_IDLE | ETH_TSR_RLE
164 				  | ETH_TSR_COL|ETH_TSR_OVR)));
165 	u = EMAC_READ(ETH_RSR);
166 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
167 
168 	/* Fetch the Ethernet address from property if set. */
169 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
170 
171 	if (enaddr != NULL) {
172 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
173 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
174 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
175 		       ETHER_ADDR_LEN);
176 	} else {
177 		static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
178 		  0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
179 		};
180 		memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
181 	}
182 
183         at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
184 	emac_init(sc);
185 }
186 
187 static int
188 emac_gctx(struct emac_softc *sc)
189 {
190 	struct ifnet * ifp = &sc->sc_ec.ec_if;
191 	uint32_t tsr;
192 
193 	tsr = EMAC_READ(ETH_TSR);
194 	if (!(tsr & ETH_TSR_BNQ)) {
195 		// no space left
196 		return 0;
197 	}
198 
199 	// free sent frames
200 	while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
201 		int i = sc->txqi % TX_QLEN;
202 		bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
203 				sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
204 		bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
205 		m_freem(sc->txq[i].m);
206 		DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
207 		sc->txq[i].m = NULL;
208 		sc->txqi = (i + 1) % TX_QLEN;
209 		sc->txqc--;
210 	}
211 
212 	// mark we're free
213 	if (ifp->if_flags & IFF_OACTIVE) {
214 		ifp->if_flags &= ~IFF_OACTIVE;
215 		/* Disable transmit-buffer-free interrupt */
216 		/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
217 	}
218 
219 	return 1;
220 }
221 
222 static int
223 emac_intr(void *arg)
224 {
225 	struct emac_softc *sc = (struct emac_softc *)arg;
226 	struct ifnet * ifp = &sc->sc_ec.ec_if;
227 	uint32_t imr, isr, ctl;
228 	int bi;
229 
230 	imr = ~EMAC_READ(ETH_IMR);
231 	if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
232 		// interrupt not enabled, can't be us
233 		return 0;
234 	}
235 
236 	isr = EMAC_READ(ETH_ISR) & imr;
237 #ifdef EMAC_DEBUG
238 	uint32_t rsr =
239 #endif
240 	EMAC_READ(ETH_RSR);		// get receive status register
241 
242 	DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
243 
244 	if (isr & ETH_ISR_RBNA) {		// out of receive buffers
245 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear interrupt
246 		ctl = EMAC_READ(ETH_CTL);		// get current control register value
247 		EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);	// disable receiver
248 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear BNA bit
249 		EMAC_WRITE(ETH_CTL, ctl |  ETH_CTL_RE);	// re-enable receiver
250 		ifp->if_ierrors++;
251 		ifp->if_ipackets++;
252 		DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
253 	}
254 	if (isr & ETH_ISR_ROVR) {
255 		EMAC_WRITE(ETH_RSR, ETH_RSR_OVR);	// clear interrupt
256 		ifp->if_ierrors++;
257 		ifp->if_ipackets++;
258 		DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
259 	}
260 
261 	if (isr & ETH_ISR_RCOM) {			// packet has been received!
262 		uint32_t nfo;
263 		// @@@ if memory is NOT coherent, then we're in trouble @@@@
264 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
265 //		printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
266 		DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
267 		while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
268 			int fl;
269 			struct mbuf *m;
270 
271 			nfo = sc->RDSC[bi].Info;
272 		  	fl = (nfo & ETH_RDSC_I_LEN) - 4;
273 			DPRINTFN(2,("## nfo=0x%08X\n", nfo));
274 
275 			MGETHDR(m, M_DONTWAIT, MT_DATA);
276 			if (m != NULL) MCLGET(m, M_DONTWAIT);
277 			if (m != NULL && (m->m_flags & M_EXT)) {
278 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
279 						MCLBYTES, BUS_DMASYNC_POSTREAD);
280 				bus_dmamap_unload(sc->sc_dmat,
281 					sc->rxq[bi].m_dmamap);
282 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
283 				sc->rxq[bi].m->m_pkthdr.len =
284 					sc->rxq[bi].m->m_len = fl;
285 				bpf_mtap(ifp, sc->rxq[bi].m);
286 				DPRINTFN(2,("received %u bytes packet\n", fl));
287                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
288 				if (mtod(m, intptr_t) & 3) {
289 					m_adj(m, mtod(m, intptr_t) & 3);
290 				}
291 				sc->rxq[bi].m = m;
292 				bus_dmamap_load(sc->sc_dmat,
293 					sc->rxq[bi].m_dmamap,
294 					m->m_ext.ext_buf, MCLBYTES,
295 					NULL, BUS_DMA_NOWAIT);
296 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
297 						MCLBYTES, BUS_DMASYNC_PREREAD);
298 				sc->RDSC[bi].Info = 0;
299 				sc->RDSC[bi].Addr =
300 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
301 					| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
302 			} else {
303 				/* Drop packets until we can get replacement
304 				 * empty mbufs for the RXDQ.
305 				 */
306 				if (m != NULL) {
307 					m_freem(m);
308 				}
309 				ifp->if_ierrors++;
310 			}
311 			sc->rxqi++;
312 		}
313 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
314 	}
315 
316 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
317 		emac_ifstart(ifp);
318 	}
319 #if 0 // reloop
320 	irq = EMAC_READ(IntStsC);
321 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
322 		goto begin;
323 #endif
324 
325 	return (1);
326 }
327 
328 
329 static void
330 emac_init(struct emac_softc *sc)
331 {
332 	bus_dma_segment_t segs;
333 	void *addr;
334 	int rsegs, err, i;
335 	struct ifnet * ifp = &sc->sc_ec.ec_if;
336 	uint32_t u;
337 #if 0
338 	int mdcdiv = DEFAULT_MDCDIV;
339 #endif
340 
341 	callout_init(&sc->emac_tick_ch, 0);
342 
343 	// ok...
344 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
345 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
346 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
347 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
348 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
349 //	(void)EMAC_READ(ETH_ISR);
350 	u = EMAC_READ(ETH_TSR);
351 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
352 				  | ETH_TSR_IDLE | ETH_TSR_RLE
353 				  | ETH_TSR_COL|ETH_TSR_OVR)));
354 	u = EMAC_READ(ETH_RSR);
355 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
356 
357 	/* configure EMAC */
358 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
359 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
360 #if 0
361 	if (device_cfdata(sc->sc_dev)->cf_flags)
362 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
363 #endif
364 	/* set ethernet address */
365 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
366 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
367 		   | (sc->sc_enaddr[0]));
368 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
369 		   | (sc->sc_enaddr[4]));
370 	EMAC_WRITE(ETH_SA2L, 0);
371 	EMAC_WRITE(ETH_SA2H, 0);
372 	EMAC_WRITE(ETH_SA3L, 0);
373 	EMAC_WRITE(ETH_SA3H, 0);
374 	EMAC_WRITE(ETH_SA4L, 0);
375 	EMAC_WRITE(ETH_SA4H, 0);
376 
377 	/* Allocate a page of memory for receive queue descriptors */
378 	sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
379 	sc->rbqlen *= PAGE_SIZE;
380 	DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
381 
382 	err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
383 		MAX(16384, PAGE_SIZE),	// see EMAC errata why forced to 16384 byte boundary
384 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
385 	if (err == 0) {
386 		DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
387 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
388 			&sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
389 	}
390 	if (err == 0) {
391 		DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
392 		err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
393 			sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
394 			&sc->rbqpage_dmamap);
395 	}
396 	if (err == 0) {
397 		DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
398 		err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
399 			sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
400 	}
401 	if (err != 0) {
402 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
403 	}
404 	sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
405 
406 	memset(sc->rbqpage, 0, sc->rbqlen);
407 
408 	/* Set up pointers to start of each queue in kernel addr space.
409 	 * Each descriptor queue or status queue entry uses 2 words
410 	 */
411 	sc->RDSC = (void*)sc->rbqpage;
412 
413 	/* Populate the RXQ with mbufs */
414 	sc->rxqi = 0;
415 	for(i = 0; i < RX_QLEN; i++) {
416 		struct mbuf *m;
417 
418 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
419 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
420 		if (err) {
421 			panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
422 		}
423 		MGETHDR(m, M_WAIT, MT_DATA);
424 		MCLGET(m, M_WAIT);
425 		sc->rxq[i].m = m;
426 		if (mtod(m, intptr_t) & 3) {
427 			m_adj(m, mtod(m, intptr_t) & 3);
428 		}
429 		err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
430 			m->m_ext.ext_buf, MCLBYTES, NULL,
431 			BUS_DMA_WAITOK);
432 		if (err) {
433 			panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
434 		}
435 		sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
436 			| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
437 		sc->RDSC[i].Info = 0;
438 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
439 			MCLBYTES, BUS_DMASYNC_PREREAD);
440 	}
441 
442 	/* prepare transmit queue */
443 	for (i = 0; i < TX_QLEN; i++) {
444 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
445 					(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
446 					&sc->txq[i].m_dmamap);
447 		if (err)
448 			panic("ARGH #1");
449 		sc->txq[i].m = NULL;
450 	}
451 
452 	/* Program each queue's start addr, cur addr, and len registers
453 	 * with the physical addresses.
454 	 */
455 	bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
456 			 BUS_DMASYNC_PREREAD);
457 	addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
458 	EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
459 
460 	/* Divide HCLK by 32 for MDC clock */
461 	sc->sc_mii.mii_ifp = ifp;
462 	sc->sc_mii.mii_readreg = emac_mii_readreg;
463 	sc->sc_mii.mii_writereg = emac_mii_writereg;
464 	sc->sc_mii.mii_statchg = emac_statchg;
465 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
466 		emac_mediastatus);
467 	mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
468 		MII_OFFSET_ANY, 0);
469 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
470 
471 	// enable / disable interrupts
472 
473 #if 0
474 	// enable / disable interrupts
475 	EMAC_WRITE(ETH_IDR, -1);
476 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
477 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
478 //	(void)EMAC_READ(ETH_ISR); // why
479 
480 	// enable transmitter / receiver
481 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
482 		   | ETH_CTL_CSR | ETH_CTL_MPE);
483 #endif
484 	/*
485 	 * We can support 802.1Q VLAN-sized frames.
486 	 */
487 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
488 
489         strcpy(ifp->if_xname, device_xname(sc->sc_dev));
490         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
491         ifp->if_ioctl = emac_ifioctl;
492         ifp->if_start = emac_ifstart;
493         ifp->if_watchdog = emac_ifwatchdog;
494         ifp->if_init = emac_ifinit;
495         ifp->if_stop = emac_ifstop;
496         ifp->if_timer = 0;
497 	ifp->if_softc = sc;
498         IFQ_SET_READY(&ifp->if_snd);
499         if_attach(ifp);
500         ether_ifattach(ifp, (sc)->sc_enaddr);
501 }
502 
503 static int
504 emac_mediachange(struct ifnet *ifp)
505 {
506 	if (ifp->if_flags & IFF_UP)
507 		emac_ifinit(ifp);
508 	return (0);
509 }
510 
511 static void
512 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
513 {
514 	struct emac_softc *sc = ifp->if_softc;
515 
516 	mii_pollstat(&sc->sc_mii);
517 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
518 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
519 }
520 
521 
522 int
523 emac_mii_readreg(device_t self, int phy, int reg)
524 {
525 #ifndef EMAC_FAST
526 	struct emac_softc *sc = device_private(self);
527 #endif
528 
529 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
530 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
531 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
532 			     | ETH_MAN_CODE_IEEE802_3));
533 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
534 	return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
535 }
536 
537 void
538 emac_mii_writereg(device_t self, int phy, int reg, int val)
539 {
540 #ifndef EMAC_FAST
541 	struct emac_softc *sc = device_private(self);
542 #endif
543 
544 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
545 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
546 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
547 			     | ETH_MAN_CODE_IEEE802_3
548 			     | (val & ETH_MAN_DATA)));
549 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
550 }
551 
552 
553 void
554 emac_statchg(struct ifnet *ifp)
555 {
556         struct emac_softc *sc = ifp->if_softc;
557         uint32_t reg;
558 
559         /*
560          * We must keep the MAC and the PHY in sync as
561          * to the status of full-duplex!
562          */
563 	reg = EMAC_READ(ETH_CFG);
564         if (sc->sc_mii.mii_media_active & IFM_FDX)
565                 reg |= ETH_CFG_FD;
566         else
567                 reg &= ~ETH_CFG_FD;
568 	EMAC_WRITE(ETH_CFG, reg);
569 }
570 
571 void
572 emac_tick(void *arg)
573 {
574 	struct emac_softc* sc = (struct emac_softc *)arg;
575 	struct ifnet * ifp = &sc->sc_ec.ec_if;
576 	int s;
577 	uint32_t misses;
578 
579 	ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
580 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
581 	misses = EMAC_READ(ETH_DRFC);
582 	if (misses > 0)
583 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
584 
585 	s = splnet();
586 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
587 		emac_ifstart(ifp);
588 	}
589 	splx(s);
590 
591 	mii_tick(&sc->sc_mii);
592 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
593 }
594 
595 
596 static int
597 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
598 {
599 	struct emac_softc *sc = ifp->if_softc;
600 	struct ifreq *ifr = (struct ifreq *)data;
601 	int s, error;
602 
603 	s = splnet();
604 	switch(cmd) {
605 	case SIOCSIFMEDIA:
606 	case SIOCGIFMEDIA:
607 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
608 		break;
609 	default:
610 		error = ether_ioctl(ifp, cmd, data);
611 		if (error == ENETRESET) {
612 			if (ifp->if_flags & IFF_RUNNING)
613 				emac_setaddr(ifp);
614 			error = 0;
615 		}
616 	}
617 	splx(s);
618 	return error;
619 }
620 
621 static void
622 emac_ifstart(struct ifnet *ifp)
623 {
624 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
625 	struct mbuf *m;
626 	bus_dma_segment_t *segs;
627 	int s, bi, err, nsegs;
628 
629 	s = splnet();
630 start:
631 	if (emac_gctx(sc) == 0) {
632 		/* Enable transmit-buffer-free interrupt */
633 		EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
634 		ifp->if_flags |= IFF_OACTIVE;
635 		ifp->if_timer = 10;
636 		splx(s);
637 		return;
638 	}
639 
640 	ifp->if_timer = 0;
641 
642 	IFQ_POLL(&ifp->if_snd, m);
643 	if (m == NULL) {
644 		splx(s);
645 		return;
646 	}
647 //more:
648 	bi = (sc->txqi + sc->txqc) % TX_QLEN;
649 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
650 		BUS_DMA_NOWAIT)) ||
651 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
652 		sc->txq[bi].m_dmamap->dm_nsegs > 1) {
653 		/* Copy entire mbuf chain to new single */
654 		struct mbuf *mn;
655 
656 		if (err == 0)
657 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
658 
659 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
660 		if (mn == NULL) goto stop;
661 		if (m->m_pkthdr.len > MHLEN) {
662 			MCLGET(mn, M_DONTWAIT);
663 			if ((mn->m_flags & M_EXT) == 0) {
664 				m_freem(mn);
665 				goto stop;
666 			}
667 		}
668 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
669 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
670 		IFQ_DEQUEUE(&ifp->if_snd, m);
671 		m_freem(m);
672 		m = mn;
673 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
674 			BUS_DMA_NOWAIT);
675 	} else {
676 		IFQ_DEQUEUE(&ifp->if_snd, m);
677 	}
678 
679 	bpf_mtap(ifp, m);
680 
681 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
682 	segs = sc->txq[bi].m_dmamap->dm_segs;
683 	if (nsegs > 1) {
684 		panic("#### ARGH #2");
685 	}
686 
687 	sc->txq[bi].m = m;
688 	sc->txqc++;
689 
690 	DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
691 		       (unsigned)m->m_pkthdr.len));
692 #ifdef	DIAGNOSTIC
693 	if (sc->txqc > TX_QLEN) {
694 		panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
695 	}
696 #endif
697 
698 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
699 		sc->txq[bi].m_dmamap->dm_mapsize,
700 		BUS_DMASYNC_PREWRITE);
701 
702 	EMAC_WRITE(ETH_TAR, segs->ds_addr);
703 	EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
704 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
705 		goto start;
706 stop:
707 
708 	splx(s);
709 	return;
710 }
711 
712 static void
713 emac_ifwatchdog(struct ifnet *ifp)
714 {
715 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
716 
717 	if ((ifp->if_flags & IFF_RUNNING) == 0)
718 		return;
719        	printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
720 		device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
721 }
722 
723 static int
724 emac_ifinit(struct ifnet *ifp)
725 {
726 	struct emac_softc *sc = ifp->if_softc;
727 	int s = splnet();
728 
729 	callout_stop(&sc->emac_tick_ch);
730 
731 	// enable interrupts
732 	EMAC_WRITE(ETH_IDR, -1);
733 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
734 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
735 
736 	// enable transmitter / receiver
737 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
738 		   | ETH_CTL_CSR | ETH_CTL_MPE);
739 
740 	mii_mediachg(&sc->sc_mii);
741 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
742         ifp->if_flags |= IFF_RUNNING;
743 	splx(s);
744 	return 0;
745 }
746 
747 static void
748 emac_ifstop(struct ifnet *ifp, int disable)
749 {
750 //	uint32_t u;
751 	struct emac_softc *sc = ifp->if_softc;
752 
753 #if 0
754 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
755 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
756 //	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
757 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
758 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
759 //	(void)EMAC_READ(ETH_ISR);
760 	u = EMAC_READ(ETH_TSR);
761 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
762 				  | ETH_TSR_IDLE | ETH_TSR_RLE
763 				  | ETH_TSR_COL|ETH_TSR_OVR)));
764 	u = EMAC_READ(ETH_RSR);
765 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
766 #endif
767 	callout_stop(&sc->emac_tick_ch);
768 
769 	/* Down the MII. */
770 	mii_down(&sc->sc_mii);
771 
772 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
773 	ifp->if_timer = 0;
774 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
775 }
776 
777 static void
778 emac_setaddr(struct ifnet *ifp)
779 {
780 	struct emac_softc *sc = ifp->if_softc;
781 	struct ethercom *ac = &sc->sc_ec;
782 	struct ether_multi *enm;
783 	struct ether_multistep step;
784 	uint8_t ias[3][ETHER_ADDR_LEN];
785 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
786 	uint32_t ctl = EMAC_READ(ETH_CTL);
787 	uint32_t cfg = EMAC_READ(ETH_CFG);
788 
789 	/* disable receiver temporarily */
790 	EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
791 
792 	cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
793 
794 	if (ifp->if_flags & IFF_PROMISC) {
795 		cfg |=  ETH_CFG_CAF;
796 	} else {
797 		cfg &= ~ETH_CFG_CAF;
798 	}
799 
800 	// ETH_CFG_BIG?
801 
802 	ifp->if_flags &= ~IFF_ALLMULTI;
803 
804 	ETHER_FIRST_MULTI(step, ac, enm);
805 	while (enm != NULL) {
806 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
807 			/*
808 			 * We must listen to a range of multicast addresses.
809 			 * For now, just accept all multicasts, rather than
810 			 * trying to set only those filter bits needed to match
811 			 * the range.  (At this time, the only use of address
812 			 * ranges is for IP multicast routing, for which the
813 			 * range is big enough to require all bits set.)
814 			 */
815 			cfg |= ETH_CFG_CAF;
816 			hashes[0] = 0xffffffffUL;
817 			hashes[1] = 0xffffffffUL;
818 			ifp->if_flags |= IFF_ALLMULTI;
819 			nma = 0;
820 			break;
821 		}
822 
823 		if (nma < 3) {
824 			/* We can program 3 perfect address filters for mcast */
825 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
826 		} else {
827 			/*
828 			 * XXX: Datasheet is not very clear here, I'm not sure
829 			 * if I'm doing this right.  --joff
830 			 */
831 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
832 
833 			/* Just want the 6 most-significant bits. */
834 			h = h >> 26;
835 
836 			hashes[ h / 32 ] |=  (1 << (h % 32));
837 			cfg |= ETH_CFG_MTI;
838 		}
839 		ETHER_NEXT_MULTI(step, enm);
840 		nma++;
841 	}
842 
843 	// program...
844 	DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
845 		    sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
846 		    sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
847 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
848 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
849 		   | (sc->sc_enaddr[0]));
850 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
851 		   | (sc->sc_enaddr[4]));
852 	if (nma > 1) {
853 		DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
854 		       ias[0][0], ias[0][1], ias[0][2],
855 		       ias[0][3], ias[0][4], ias[0][5]));
856 		EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
857 			   | (ias[0][2] << 16) | (ias[0][1] << 8)
858 			   | (ias[0][0]));
859 		EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
860 			   | (ias[0][5]));
861 	}
862 	if (nma > 2) {
863 		DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
864 		       ias[1][0], ias[1][1], ias[1][2],
865 		       ias[1][3], ias[1][4], ias[1][5]));
866 		EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
867 			   | (ias[1][2] << 16) | (ias[1][1] << 8)
868 			   | (ias[1][0]));
869 		EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
870 			   | (ias[1][5]));
871 	}
872 	if (nma > 3) {
873 		DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
874 		       ias[2][0], ias[2][1], ias[2][2],
875 		       ias[2][3], ias[2][4], ias[2][5]));
876 		EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
877 			   | (ias[2][2] << 16) | (ias[2][1] << 8)
878 			   | (ias[2][0]));
879 		EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
880 			   | (ias[2][5]));
881 	}
882 	EMAC_WRITE(ETH_HSH, hashes[0]);
883 	EMAC_WRITE(ETH_HSL, hashes[1]);
884 	EMAC_WRITE(ETH_CFG, cfg);
885 	EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
886 }
887