xref: /netbsd-src/sys/arch/arm/at91/at91emac.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: at91emac.c,v 1.32 2020/02/19 02:51:54 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2007 Embedtronics Oy
5  * All rights reserved.
6  *
7  * Based on arch/arm/ep93xx/epe.c
8  *
9  * Copyright (c) 2004 Jesse Off
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.32 2020/02/19 02:51:54 thorpej Exp $");
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/ioctl.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/time.h>
45 #include <sys/device.h>
46 #include <uvm/uvm_extern.h>
47 
48 #include <sys/bus.h>
49 #include <machine/intr.h>
50 
51 #include <arm/cpufunc.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 #include <net/bpf.h>
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #include <arm/at91/at91var.h>
72 #include <arm/at91/at91emacreg.h>
73 #include <arm/at91/at91emacvar.h>
74 
75 #define DEFAULT_MDCDIV	32
76 
77 #ifndef EMAC_FAST
78 #define EMAC_FAST
79 #endif
80 
81 #ifndef EMAC_FAST
82 #define EMAC_READ(x) \
83 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 #define EMAC_WRITE(x, y) \
85 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 #else
87 #define EMAC_READ(x) ETHREG(x)
88 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
89 #endif /* ! EMAC_FAST */
90 
91 static int	emac_match(device_t, cfdata_t, void *);
92 static void	emac_attach(device_t, device_t, void *);
93 static void	emac_init(struct emac_softc *);
94 static int	emac_intr(void* arg);
95 static int	emac_gctx(struct emac_softc *);
96 int		emac_mii_readreg (device_t, int, int, uint16_t *);
97 int		emac_mii_writereg (device_t, int, int, uint16_t);
98 void		emac_statchg (struct ifnet *);
99 void		emac_tick (void *);
100 static int	emac_ifioctl (struct ifnet *, u_long, void *);
101 static void	emac_ifstart (struct ifnet *);
102 static void	emac_ifwatchdog (struct ifnet *);
103 static int	emac_ifinit (struct ifnet *);
104 static void	emac_ifstop (struct ifnet *, int);
105 static void	emac_setaddr (struct ifnet *);
106 
107 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
108     emac_match, emac_attach, NULL, NULL);
109 
110 #ifdef	EMAC_DEBUG
111 int emac_debug = EMAC_DEBUG;
112 #define	DPRINTFN(n, fmt)	if (emac_debug >= (n)) printf fmt
113 #else
114 #define	DPRINTFN(n, fmt)
115 #endif
116 
117 static int
118 emac_match(device_t parent, cfdata_t match, void *aux)
119 {
120 	if (strcmp(match->cf_name, "at91emac") == 0)
121 		return 2;
122 	return 0;
123 }
124 
125 static void
126 emac_attach(device_t parent, device_t self, void *aux)
127 {
128 	struct emac_softc		*sc = device_private(self);
129 	struct at91bus_attach_args	*sa = aux;
130 	prop_data_t			enaddr;
131 	uint32_t			u;
132 
133 	printf("\n");
134 	sc->sc_dev = self;
135 	sc->sc_iot = sa->sa_iot;
136 	sc->sc_pid = sa->sa_pid;
137 	sc->sc_dmat = sa->sa_dmat;
138 
139 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
140 		panic("%s: Cannot map registers", device_xname(self));
141 
142 	/* enable peripheral clock */
143 	at91_peripheral_clock(sc->sc_pid, 1);
144 
145 	/* configure emac: */
146 	EMAC_WRITE(ETH_CTL, 0);			// disable everything
147 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
148 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
149 	EMAC_WRITE(ETH_CFG,
150 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
151 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
152 	//(void)EMAC_READ(ETH_ISR);
153 	u = EMAC_READ(ETH_TSR);
154 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
155 				  | ETH_TSR_IDLE | ETH_TSR_RLE
156 				  | ETH_TSR_COL | ETH_TSR_OVR)));
157 	u = EMAC_READ(ETH_RSR);
158 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
159 
160 	/* Fetch the Ethernet address from property if set. */
161 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
162 
163 	if (enaddr != NULL) {
164 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
165 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
166 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
167 		       ETHER_ADDR_LEN);
168 	} else {
169 		static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
170 		  0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
171 		};
172 		memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
173 	}
174 
175 	at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
176 	    sc);
177 	emac_init(sc);
178 }
179 
180 static int
181 emac_gctx(struct emac_softc *sc)
182 {
183 	struct ifnet * ifp = &sc->sc_ec.ec_if;
184 	uint32_t tsr;
185 
186 	tsr = EMAC_READ(ETH_TSR);
187 	if (!(tsr & ETH_TSR_BNQ)) {
188 		// no space left
189 		return 0;
190 	}
191 
192 	// free sent frames
193 	while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
194 		int i = sc->txqi % TX_QLEN;
195 		bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
196 		    sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
197 		bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
198 		m_freem(sc->txq[i].m);
199 		DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
200 			__FUNCTION__, i, sc->txq[i].m, sc->txqc));
201 		sc->txq[i].m = NULL;
202 		sc->txqi = (i + 1) % TX_QLEN;
203 		sc->txqc--;
204 	}
205 
206 	// mark we're free
207 	if (ifp->if_flags & IFF_OACTIVE) {
208 		ifp->if_flags &= ~IFF_OACTIVE;
209 		/* Disable transmit-buffer-free interrupt */
210 		/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
211 	}
212 
213 	return 1;
214 }
215 
216 static int
217 emac_intr(void *arg)
218 {
219 	struct emac_softc *sc = (struct emac_softc *)arg;
220 	struct ifnet * ifp = &sc->sc_ec.ec_if;
221 	uint32_t imr, isr, ctl;
222 	int bi;
223 
224 	imr = ~EMAC_READ(ETH_IMR);
225 	if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
226 	    | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
227 		// interrupt not enabled, can't be us
228 		return 0;
229 	}
230 
231 	isr = EMAC_READ(ETH_ISR) & imr;
232 #ifdef EMAC_DEBUG
233 	uint32_t rsr =
234 #endif
235 	EMAC_READ(ETH_RSR);		// get receive status register
236 
237 	DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
238 		isr, rsr, imr));
239 
240 	if (isr & ETH_ISR_RBNA) {		// out of receive buffers
241 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear interrupt
242 		ctl = EMAC_READ(ETH_CTL);		// get current control register value
243 		EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);	// disable receiver
244 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear BNA bit
245 		EMAC_WRITE(ETH_CTL, ctl |  ETH_CTL_RE);	// re-enable receiver
246 		if_statinc(ifp, if_ierrors);
247 		if_statinc(ifp, if_ipackets);
248 		DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
249 	}
250 	if (isr & ETH_ISR_ROVR) {
251 		EMAC_WRITE(ETH_RSR, ETH_RSR_OVR);	// clear interrupt
252 		if_statinc(ifp, if_ierrors);
253 		if_statinc(ifp, if_ipackets);
254 		DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
255 	}
256 
257 	if (isr & ETH_ISR_RCOM) {			// packet has been received!
258 		uint32_t nfo;
259 		// @@@ if memory is NOT coherent, then we're in trouble @@@@
260 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
261 //		printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
262 		DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
263 			sc->RDSC[sc->rxqi % RX_QLEN].Info));
264 		while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
265 			int fl;
266 			struct mbuf *m;
267 
268 			nfo = sc->RDSC[bi].Info;
269 			fl = (nfo & ETH_RDSC_I_LEN) - 4;
270 			DPRINTFN(2,("## nfo=0x%08X\n", nfo));
271 
272 			MGETHDR(m, M_DONTWAIT, MT_DATA);
273 			if (m != NULL) MCLGET(m, M_DONTWAIT);
274 			if (m != NULL && (m->m_flags & M_EXT)) {
275 				bus_dmamap_sync(sc->sc_dmat,
276 				    sc->rxq[bi].m_dmamap, 0,
277 				    MCLBYTES, BUS_DMASYNC_POSTREAD);
278 				bus_dmamap_unload(sc->sc_dmat,
279 					sc->rxq[bi].m_dmamap);
280 				m_set_rcvif(sc->rxq[bi].m, ifp);
281 				sc->rxq[bi].m->m_pkthdr.len =
282 					sc->rxq[bi].m->m_len = fl;
283 				DPRINTFN(2,("received %u bytes packet\n", fl));
284 				if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
285 				if (mtod(m, intptr_t) & 3) {
286 					m_adj(m, mtod(m, intptr_t) & 3);
287 				}
288 				sc->rxq[bi].m = m;
289 				bus_dmamap_load(sc->sc_dmat,
290 					sc->rxq[bi].m_dmamap,
291 					m->m_ext.ext_buf, MCLBYTES,
292 					NULL, BUS_DMA_NOWAIT);
293 				bus_dmamap_sync(sc->sc_dmat,
294 				    sc->rxq[bi].m_dmamap, 0,
295 				    MCLBYTES, BUS_DMASYNC_PREREAD);
296 				sc->RDSC[bi].Info = 0;
297 				sc->RDSC[bi].Addr =
298 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
299 					| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
300 			} else {
301 				/* Drop packets until we can get replacement
302 				 * empty mbufs for the RXDQ.
303 				 */
304 				if (m != NULL) {
305 					m_freem(m);
306 				}
307 				if_statinc(ifp, if_ierrors);
308 			}
309 			sc->rxqi++;
310 		}
311 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
312 	}
313 
314 	if (emac_gctx(sc) > 0)
315 		if_schedule_deferred_start(ifp);
316 #if 0 // reloop
317 	irq = EMAC_READ(IntStsC);
318 	if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
319 		goto begin;
320 #endif
321 
322 	return (1);
323 }
324 
325 
326 static void
327 emac_init(struct emac_softc *sc)
328 {
329 	bus_dma_segment_t segs;
330 	void *addr;
331 	int rsegs, err, i;
332 	struct ifnet * ifp = &sc->sc_ec.ec_if;
333 	struct mii_data * const mii = &sc->sc_mii;
334 	uint32_t u;
335 #if 0
336 	int mdcdiv = DEFAULT_MDCDIV;
337 #endif
338 
339 	callout_init(&sc->emac_tick_ch, 0);
340 
341 	// ok...
342 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
343 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
344 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
345 	EMAC_WRITE(ETH_CFG,
346 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
347 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
348 //	(void)EMAC_READ(ETH_ISR);
349 	u = EMAC_READ(ETH_TSR);
350 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
351 				  | ETH_TSR_IDLE | ETH_TSR_RLE
352 				  | ETH_TSR_COL | ETH_TSR_OVR)));
353 	u = EMAC_READ(ETH_RSR);
354 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
355 
356 	/* configure EMAC */
357 	EMAC_WRITE(ETH_CFG,
358 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
359 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
360 #if 0
361 	if (device_cfdata(sc->sc_dev)->cf_flags)
362 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
363 #endif
364 	/* set ethernet address */
365 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
366 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
367 		   | (sc->sc_enaddr[0]));
368 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
369 		   | (sc->sc_enaddr[4]));
370 	EMAC_WRITE(ETH_SA2L, 0);
371 	EMAC_WRITE(ETH_SA2H, 0);
372 	EMAC_WRITE(ETH_SA3L, 0);
373 	EMAC_WRITE(ETH_SA3H, 0);
374 	EMAC_WRITE(ETH_SA4L, 0);
375 	EMAC_WRITE(ETH_SA4H, 0);
376 
377 	/* Allocate a page of memory for receive queue descriptors */
378 	sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
379 	sc->rbqlen *= PAGE_SIZE;
380 	DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
381 
382 	err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
383 		MAX(16384, PAGE_SIZE),	// see EMAC errata why forced to 16384 byte boundary
384 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
385 	if (err == 0) {
386 		DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
387 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
388 			&sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
389 	}
390 	if (err == 0) {
391 		DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
392 		err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
393 			sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
394 			&sc->rbqpage_dmamap);
395 	}
396 	if (err == 0) {
397 		DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
398 		err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
399 			sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
400 	}
401 	if (err != 0) {
402 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
403 	}
404 	sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
405 
406 	memset(sc->rbqpage, 0, sc->rbqlen);
407 
408 	/* Set up pointers to start of each queue in kernel addr space.
409 	 * Each descriptor queue or status queue entry uses 2 words
410 	 */
411 	sc->RDSC = (void*)sc->rbqpage;
412 
413 	/* Populate the RXQ with mbufs */
414 	sc->rxqi = 0;
415 	for (i = 0; i < RX_QLEN; i++) {
416 		struct mbuf *m;
417 
418 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
419 		    PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
420 		if (err)
421 			panic("%s: dmamap_create failed: %i\n",
422 			    __FUNCTION__, err);
423 
424 		MGETHDR(m, M_WAIT, MT_DATA);
425 		MCLGET(m, M_WAIT);
426 		sc->rxq[i].m = m;
427 		if (mtod(m, intptr_t) & 3) {
428 			m_adj(m, mtod(m, intptr_t) & 3);
429 		}
430 		err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
431 			m->m_ext.ext_buf, MCLBYTES, NULL,
432 			BUS_DMA_WAITOK);
433 		if (err)
434 			panic("%s: dmamap_load failed: %i\n",
435 			    __FUNCTION__, err);
436 
437 		sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
438 			| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
439 		sc->RDSC[i].Info = 0;
440 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
441 			MCLBYTES, BUS_DMASYNC_PREREAD);
442 	}
443 
444 	/* prepare transmit queue */
445 	for (i = 0; i < TX_QLEN; i++) {
446 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
447 					(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
448 					&sc->txq[i].m_dmamap);
449 		if (err)
450 			panic("ARGH #1");
451 		sc->txq[i].m = NULL;
452 	}
453 
454 	/* Program each queue's start addr, cur addr, and len registers
455 	 * with the physical addresses.
456 	 */
457 	bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
458 			 BUS_DMASYNC_PREREAD);
459 	addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
460 	EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
461 
462 	/* Divide HCLK by 32 for MDC clock */
463 	mii->mii_ifp = ifp;
464 	mii->mii_readreg = emac_mii_readreg;
465 	mii->mii_writereg = emac_mii_writereg;
466 	mii->mii_statchg = emac_statchg;
467 	sc->sc_ec.ec_mii = mii;
468 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
469 		ether_mediastatus);
470 	mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
471 		MII_OFFSET_ANY, 0);
472 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
473 
474 	// enable / disable interrupts
475 
476 #if 0
477 	// enable / disable interrupts
478 	EMAC_WRITE(ETH_IDR, -1);
479 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
480 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
481 //	(void)EMAC_READ(ETH_ISR); // why
482 
483 	// enable transmitter / receiver
484 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
485 		   | ETH_CTL_CSR | ETH_CTL_MPE);
486 #endif
487 	/*
488 	 * We can support 802.1Q VLAN-sized frames.
489 	 */
490 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
491 
492 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
493 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
494 	ifp->if_ioctl = emac_ifioctl;
495 	ifp->if_start = emac_ifstart;
496 	ifp->if_watchdog = emac_ifwatchdog;
497 	ifp->if_init = emac_ifinit;
498 	ifp->if_stop = emac_ifstop;
499 	ifp->if_timer = 0;
500 	ifp->if_softc = sc;
501 	IFQ_SET_READY(&ifp->if_snd);
502 	if_attach(ifp);
503 	if_deferred_start_init(ifp, NULL);
504 	ether_ifattach(ifp, (sc)->sc_enaddr);
505 }
506 
507 int
508 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
509 {
510 #ifndef EMAC_FAST
511 	struct emac_softc *sc = device_private(self);
512 #endif
513 
514 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
515 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
516 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
517 			     | ETH_MAN_CODE_IEEE802_3));
518 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
519 		;
520 	*val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
521 
522 	return 0;
523 }
524 
525 int
526 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
527 {
528 #ifndef EMAC_FAST
529 	struct emac_softc *sc = device_private(self);
530 #endif
531 
532 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
533 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
534 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
535 			     | ETH_MAN_CODE_IEEE802_3
536 			     | (val & ETH_MAN_DATA)));
537 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
538 		;
539 
540 	return 0;
541 }
542 
543 void
544 emac_statchg(struct ifnet *ifp)
545 {
546 	struct emac_softc *sc = ifp->if_softc;
547 	uint32_t reg;
548 
549 	/*
550 	 * We must keep the MAC and the PHY in sync as
551 	 * to the status of full-duplex!
552 	 */
553 	reg = EMAC_READ(ETH_CFG);
554 	if (sc->sc_mii.mii_media_active & IFM_FDX)
555 		reg |= ETH_CFG_FD;
556 	else
557 		reg &= ~ETH_CFG_FD;
558 	EMAC_WRITE(ETH_CFG, reg);
559 }
560 
561 void
562 emac_tick(void *arg)
563 {
564 	struct emac_softc* sc = (struct emac_softc *)arg;
565 	struct ifnet * ifp = &sc->sc_ec.ec_if;
566 	int s;
567 	uint32_t misses;
568 
569 	if_statadd(ifp, if_collisions, EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL));
570 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
571 	misses = EMAC_READ(ETH_DRFC);
572 	if (misses > 0)
573 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
574 
575 	s = splnet();
576 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
577 		emac_ifstart(ifp);
578 	}
579 	splx(s);
580 
581 	mii_tick(&sc->sc_mii);
582 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
583 }
584 
585 
586 static int
587 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
588 {
589 	int s, error;
590 
591 	s = splnet();
592 	switch (cmd) {
593 	default:
594 		error = ether_ioctl(ifp, cmd, data);
595 		if (error == ENETRESET) {
596 			if (ifp->if_flags & IFF_RUNNING)
597 				emac_setaddr(ifp);
598 			error = 0;
599 		}
600 	}
601 	splx(s);
602 	return error;
603 }
604 
605 static void
606 emac_ifstart(struct ifnet *ifp)
607 {
608 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
609 	struct mbuf *m;
610 	bus_dma_segment_t *segs;
611 	int s, bi, err, nsegs;
612 
613 	s = splnet();
614 start:
615 	if (emac_gctx(sc) == 0) {
616 		/* Enable transmit-buffer-free interrupt */
617 		EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
618 		ifp->if_flags |= IFF_OACTIVE;
619 		ifp->if_timer = 10;
620 		splx(s);
621 		return;
622 	}
623 
624 	ifp->if_timer = 0;
625 
626 	IFQ_POLL(&ifp->if_snd, m);
627 	if (m == NULL) {
628 		splx(s);
629 		return;
630 	}
631 //more:
632 	bi = (sc->txqi + sc->txqc) % TX_QLEN;
633 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
634 		BUS_DMA_NOWAIT)) ||
635 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
636 		sc->txq[bi].m_dmamap->dm_nsegs > 1) {
637 		/* Copy entire mbuf chain to new single */
638 		struct mbuf *mn;
639 
640 		if (err == 0)
641 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
642 
643 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
644 		if (mn == NULL) goto stop;
645 		if (m->m_pkthdr.len > MHLEN) {
646 			MCLGET(mn, M_DONTWAIT);
647 			if ((mn->m_flags & M_EXT) == 0) {
648 				m_freem(mn);
649 				goto stop;
650 			}
651 		}
652 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
653 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
654 		IFQ_DEQUEUE(&ifp->if_snd, m);
655 		m_freem(m);
656 		m = mn;
657 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
658 			BUS_DMA_NOWAIT);
659 	} else {
660 		IFQ_DEQUEUE(&ifp->if_snd, m);
661 	}
662 
663 	bpf_mtap(ifp, m, BPF_D_OUT);
664 
665 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
666 	segs = sc->txq[bi].m_dmamap->dm_segs;
667 	if (nsegs > 1) {
668 		panic("#### ARGH #2");
669 	}
670 
671 	sc->txq[bi].m = m;
672 	sc->txqc++;
673 
674 	DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
675 		       (unsigned)m->m_pkthdr.len));
676 #ifdef	DIAGNOSTIC
677 	if (sc->txqc > TX_QLEN) {
678 		panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
679 	}
680 #endif
681 
682 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
683 		sc->txq[bi].m_dmamap->dm_mapsize,
684 		BUS_DMASYNC_PREWRITE);
685 
686 	EMAC_WRITE(ETH_TAR, segs->ds_addr);
687 	EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
688 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
689 		goto start;
690 stop:
691 
692 	splx(s);
693 	return;
694 }
695 
696 static void
697 emac_ifwatchdog(struct ifnet *ifp)
698 {
699 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
700 
701 	if ((ifp->if_flags & IFF_RUNNING) == 0)
702 		return;
703 	printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
704 		device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
705 }
706 
707 static int
708 emac_ifinit(struct ifnet *ifp)
709 {
710 	struct emac_softc *sc = ifp->if_softc;
711 	int s = splnet();
712 
713 	callout_stop(&sc->emac_tick_ch);
714 
715 	// enable interrupts
716 	EMAC_WRITE(ETH_IDR, -1);
717 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
718 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
719 
720 	// enable transmitter / receiver
721 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
722 		   | ETH_CTL_CSR | ETH_CTL_MPE);
723 
724 	mii_mediachg(&sc->sc_mii);
725 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
726 	ifp->if_flags |= IFF_RUNNING;
727 	splx(s);
728 	return 0;
729 }
730 
731 static void
732 emac_ifstop(struct ifnet *ifp, int disable)
733 {
734 //	uint32_t u;
735 	struct emac_softc *sc = ifp->if_softc;
736 
737 #if 0
738 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
739 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
740 //	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
741 	EMAC_WRITE(ETH_CFG,
742 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
743 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
744 //	(void)EMAC_READ(ETH_ISR);
745 	u = EMAC_READ(ETH_TSR);
746 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
747 				  | ETH_TSR_IDLE | ETH_TSR_RLE
748 				  | ETH_TSR_COL | ETH_TSR_OVR)));
749 	u = EMAC_READ(ETH_RSR);
750 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
751 #endif
752 	callout_stop(&sc->emac_tick_ch);
753 
754 	/* Down the MII. */
755 	mii_down(&sc->sc_mii);
756 
757 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 	ifp->if_timer = 0;
759 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
760 }
761 
762 static void
763 emac_setaddr(struct ifnet *ifp)
764 {
765 	struct emac_softc *sc = ifp->if_softc;
766 	struct ethercom *ec = &sc->sc_ec;
767 	struct ether_multi *enm;
768 	struct ether_multistep step;
769 	uint8_t ias[3][ETHER_ADDR_LEN];
770 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
771 	uint32_t ctl = EMAC_READ(ETH_CTL);
772 	uint32_t cfg = EMAC_READ(ETH_CFG);
773 
774 	/* disable receiver temporarily */
775 	EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
776 
777 	cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
778 
779 	if (ifp->if_flags & IFF_PROMISC) {
780 		cfg |=	ETH_CFG_CAF;
781 	} else {
782 		cfg &= ~ETH_CFG_CAF;
783 	}
784 
785 	// ETH_CFG_BIG?
786 
787 	ifp->if_flags &= ~IFF_ALLMULTI;
788 
789 	ETHER_LOCK(ec);
790 	ETHER_FIRST_MULTI(step, ec, enm);
791 	while (enm != NULL) {
792 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
793 			/*
794 			 * We must listen to a range of multicast addresses.
795 			 * For now, just accept all multicasts, rather than
796 			 * trying to set only those filter bits needed to match
797 			 * the range.  (At this time, the only use of address
798 			 * ranges is for IP multicast routing, for which the
799 			 * range is big enough to require all bits set.)
800 			 */
801 			cfg |= ETH_CFG_CAF;
802 			hashes[0] = 0xffffffffUL;
803 			hashes[1] = 0xffffffffUL;
804 			ifp->if_flags |= IFF_ALLMULTI;
805 			nma = 0;
806 			break;
807 		}
808 
809 		if (nma < 3) {
810 			/* We can program 3 perfect address filters for mcast */
811 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
812 		} else {
813 			/*
814 			 * XXX: Datasheet is not very clear here, I'm not sure
815 			 * if I'm doing this right.  --joff
816 			 */
817 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
818 
819 			/* Just want the 6 most-significant bits. */
820 			h = h >> 26;
821 
822 			hashes[ h / 32 ] |=  (1 << (h % 32));
823 			cfg |= ETH_CFG_MTI;
824 		}
825 		ETHER_NEXT_MULTI(step, enm);
826 		nma++;
827 	}
828 	ETHER_UNLOCK(ec);
829 
830 	// program...
831 	DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
832 		    sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
833 		    sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
834 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
835 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
836 		   | (sc->sc_enaddr[0]));
837 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
838 		   | (sc->sc_enaddr[4]));
839 	if (nma > 1) {
840 		DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
841 			__FUNCTION__,
842 			ias[0][0], ias[0][1], ias[0][2],
843 			ias[0][3], ias[0][4], ias[0][5]));
844 		EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
845 			   | (ias[0][2] << 16) | (ias[0][1] << 8)
846 			   | (ias[0][0]));
847 		EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
848 			   | (ias[0][5]));
849 	}
850 	if (nma > 2) {
851 		DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
852 			__FUNCTION__,
853 			ias[1][0], ias[1][1], ias[1][2],
854 			ias[1][3], ias[1][4], ias[1][5]));
855 		EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
856 			   | (ias[1][2] << 16) | (ias[1][1] << 8)
857 			   | (ias[1][0]));
858 		EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
859 			   | (ias[1][5]));
860 	}
861 	if (nma > 3) {
862 		DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
863 			__FUNCTION__,
864 			ias[2][0], ias[2][1], ias[2][2],
865 			ias[2][3], ias[2][4], ias[2][5]));
866 		EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
867 			   | (ias[2][2] << 16) | (ias[2][1] << 8)
868 			   | (ias[2][0]));
869 		EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
870 			   | (ias[2][5]));
871 	}
872 	EMAC_WRITE(ETH_HSH, hashes[0]);
873 	EMAC_WRITE(ETH_HSL, hashes[1]);
874 	EMAC_WRITE(ETH_CFG, cfg);
875 	EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
876 }
877