xref: /netbsd-src/sys/arch/arm/at91/at91emac.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$Id: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $	*/
2 /*	$NetBSD: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $	*/
3 
4 /*
5  * Copyright (c) 2007 Embedtronics Oy
6  * All rights reserved.
7  *
8  * Based on arch/arm/ep93xx/epe.c
9  *
10  * Copyright (c) 2004 Jesse Off
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $");
37 
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/ioctl.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/device.h>
47 #include <uvm/uvm_extern.h>
48 
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51 
52 #include <arm/cpufunc.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #include <net/bpf.h>
77 #include <net/bpfdesc.h>
78 
79 #ifdef IPKDB_AT91	// @@@
80 #include <ipkdb/ipkdb.h>
81 #endif
82 
83 #include <arm/at91/at91var.h>
84 #include <arm/at91/at91emacreg.h>
85 #include <arm/at91/at91emacvar.h>
86 
87 #define DEFAULT_MDCDIV	32
88 
89 #ifndef EMAC_FAST
90 #define EMAC_FAST
91 #endif
92 
93 #ifndef EMAC_FAST
94 #define EMAC_READ(x) \
95 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
96 #define EMAC_WRITE(x, y) \
97 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
98 #else
99 #define EMAC_READ(x) ETHREG(x)
100 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
101 #endif /* ! EMAC_FAST */
102 
103 static int	emac_match(device_t, cfdata_t, void *);
104 static void	emac_attach(device_t, device_t, void *);
105 static void	emac_init(struct emac_softc *);
106 static int      emac_intr(void* arg);
107 static int	emac_gctx(struct emac_softc *);
108 static int	emac_mediachange(struct ifnet *);
109 static void	emac_mediastatus(struct ifnet *, struct ifmediareq *);
110 int		emac_mii_readreg (device_t, int, int);
111 void		emac_mii_writereg (device_t, int, int, int);
112 void		emac_statchg (device_t );
113 void		emac_tick (void *);
114 static int	emac_ifioctl (struct ifnet *, u_long, void *);
115 static void	emac_ifstart (struct ifnet *);
116 static void	emac_ifwatchdog (struct ifnet *);
117 static int	emac_ifinit (struct ifnet *);
118 static void	emac_ifstop (struct ifnet *, int);
119 static void	emac_setaddr (struct ifnet *);
120 
121 CFATTACH_DECL(at91emac, sizeof(struct emac_softc),
122     emac_match, emac_attach, NULL, NULL);
123 
124 #ifdef	EMAC_DEBUG
125 int emac_debug = EMAC_DEBUG;
126 #define	DPRINTFN(n,fmt)	if (emac_debug >= (n)) printf fmt
127 #else
128 #define	DPRINTFN(n,fmt)
129 #endif
130 
131 static int
132 emac_match(device_t parent, cfdata_t match, void *aux)
133 {
134 	if (strcmp(match->cf_name, "at91emac") == 0)
135 		return 2;
136 	return 0;
137 }
138 
139 static void
140 emac_attach(device_t parent, device_t self, void *aux)
141 {
142 	struct emac_softc		*sc = device_private(self);
143 	struct at91bus_attach_args	*sa = aux;
144 	prop_data_t			enaddr;
145 	uint32_t			u;
146 
147 	printf("\n");
148 	sc->sc_dev = self;
149 	sc->sc_iot = sa->sa_iot;
150 	sc->sc_pid = sa->sa_pid;
151 	sc->sc_dmat = sa->sa_dmat;
152 
153 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
154 		panic("%s: Cannot map registers", device_xname(self));
155 
156 	/* enable peripheral clock */
157 	at91_peripheral_clock(sc->sc_pid, 1);
158 
159 	/* configure emac: */
160 	EMAC_WRITE(ETH_CTL, 0);			// disable everything
161 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
162 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
163 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
164 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
165 	//(void)EMAC_READ(ETH_ISR);
166 	u = EMAC_READ(ETH_TSR);
167 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
168 				  | ETH_TSR_IDLE | ETH_TSR_RLE
169 				  | ETH_TSR_COL|ETH_TSR_OVR)));
170 	u = EMAC_READ(ETH_RSR);
171 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
172 
173 	/* Fetch the Ethernet address from property if set. */
174 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
175 
176 	if (enaddr != NULL) {
177 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
178 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
179 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
180 		       ETHER_ADDR_LEN);
181 	} else {
182 		static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
183 		  0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
184 		};
185 		memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
186 	}
187 
188         at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
189 	emac_init(sc);
190 }
191 
192 static int
193 emac_gctx(struct emac_softc *sc)
194 {
195 	struct ifnet * ifp = &sc->sc_ec.ec_if;
196 	u_int32_t tsr;
197 
198 	tsr = EMAC_READ(ETH_TSR);
199 	if (!(tsr & ETH_TSR_BNQ)) {
200 		// no space left
201 		return 0;
202 	}
203 
204 	// free sent frames
205 	while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
206 		int i = sc->txqi % TX_QLEN;
207 		bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
208 				sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
209 		bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
210 		m_freem(sc->txq[i].m);
211 		DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
212 		sc->txq[i].m = NULL;
213 		sc->txqi = (i + 1) % TX_QLEN;
214 		sc->txqc--;
215 	}
216 
217 	// mark we're free
218 	if (ifp->if_flags & IFF_OACTIVE) {
219 		ifp->if_flags &= ~IFF_OACTIVE;
220 		/* Disable transmit-buffer-free interrupt */
221 		/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
222 	}
223 
224 	return 1;
225 }
226 
227 static int
228 emac_intr(void *arg)
229 {
230 	struct emac_softc *sc = (struct emac_softc *)arg;
231 	struct ifnet * ifp = &sc->sc_ec.ec_if;
232 	u_int32_t imr, isr, rsr, ctl;
233 	int bi;
234 
235 	imr = ~EMAC_READ(ETH_IMR);
236 	if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
237 		// interrupt not enabled, can't be us
238 		return 0;
239 	}
240 
241 	isr = EMAC_READ(ETH_ISR) & imr;
242 	rsr = EMAC_READ(ETH_RSR);		// get receive status register
243 
244 	DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
245 
246 	if (isr & ETH_ISR_RBNA) {		// out of receive buffers
247 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear interrupt
248 		ctl = EMAC_READ(ETH_CTL);		// get current control register value
249 		EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);	// disable receiver
250 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear BNA bit
251 		EMAC_WRITE(ETH_CTL, ctl |  ETH_CTL_RE);	// re-enable receiver
252 		ifp->if_ierrors++;
253 		ifp->if_ipackets++;
254 		DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
255 	}
256 	if (isr & ETH_ISR_ROVR) {
257 		EMAC_WRITE(ETH_RSR, ETH_RSR_OVR);	// clear interrupt
258 		ifp->if_ierrors++;
259 		ifp->if_ipackets++;
260 		DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
261 	}
262 
263 	if (isr & ETH_ISR_RCOM) {			// packet has been received!
264 		uint32_t nfo;
265 		// @@@ if memory is NOT coherent, then we're in trouble @@@@
266 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
267 //		printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
268 		DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
269 		while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
270 			int fl;
271 			struct mbuf *m;
272 
273 			nfo = sc->RDSC[bi].Info;
274 		  	fl = (nfo & ETH_RDSC_I_LEN) - 4;
275 			DPRINTFN(2,("## nfo=0x%08X\n", nfo));
276 
277 			MGETHDR(m, M_DONTWAIT, MT_DATA);
278 			if (m != NULL) MCLGET(m, M_DONTWAIT);
279 			if (m != NULL && (m->m_flags & M_EXT)) {
280 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
281 						MCLBYTES, BUS_DMASYNC_POSTREAD);
282 				bus_dmamap_unload(sc->sc_dmat,
283 					sc->rxq[bi].m_dmamap);
284 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
285 				sc->rxq[bi].m->m_pkthdr.len =
286 					sc->rxq[bi].m->m_len = fl;
287 				if (ifp->if_bpf)
288 					bpf_ops->bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
289 				DPRINTFN(2,("received %u bytes packet\n", fl));
290                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
291 				if (mtod(m, intptr_t) & 3) {
292 					m_adj(m, mtod(m, intptr_t) & 3);
293 				}
294 				sc->rxq[bi].m = m;
295 				bus_dmamap_load(sc->sc_dmat,
296 					sc->rxq[bi].m_dmamap,
297 					m->m_ext.ext_buf, MCLBYTES,
298 					NULL, BUS_DMA_NOWAIT);
299 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
300 						MCLBYTES, BUS_DMASYNC_PREREAD);
301 				sc->RDSC[bi].Info = 0;
302 				sc->RDSC[bi].Addr =
303 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
304 					| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
305 			} else {
306 				/* Drop packets until we can get replacement
307 				 * empty mbufs for the RXDQ.
308 				 */
309 				if (m != NULL) {
310 					m_freem(m);
311 				}
312 				ifp->if_ierrors++;
313 			}
314 			sc->rxqi++;
315 		}
316 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
317 	}
318 
319 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
320 		emac_ifstart(ifp);
321 	}
322 #if 0 // reloop
323 	irq = EMAC_READ(IntStsC);
324 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
325 		goto begin;
326 #endif
327 
328 	return (1);
329 }
330 
331 
332 static void
333 emac_init(struct emac_softc *sc)
334 {
335 	bus_dma_segment_t segs;
336 	void *addr;
337 	int rsegs, err, i;
338 	struct ifnet * ifp = &sc->sc_ec.ec_if;
339 	uint32_t u;
340 #if 0
341 	int mdcdiv = DEFAULT_MDCDIV;
342 #endif
343 
344 	callout_init(&sc->emac_tick_ch, 0);
345 
346 	// ok...
347 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
348 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
349 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
350 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
351 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
352 //	(void)EMAC_READ(ETH_ISR);
353 	u = EMAC_READ(ETH_TSR);
354 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
355 				  | ETH_TSR_IDLE | ETH_TSR_RLE
356 				  | ETH_TSR_COL|ETH_TSR_OVR)));
357 	u = EMAC_READ(ETH_RSR);
358 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
359 
360 	/* configure EMAC */
361 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
362 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
363 #if 0
364 	if (device_cfdata(&sc->sc_dev)->cf_flags)
365 		mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
366 #endif
367 	/* set ethernet address */
368 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
369 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
370 		   | (sc->sc_enaddr[0]));
371 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
372 		   | (sc->sc_enaddr[4]));
373 	EMAC_WRITE(ETH_SA2L, 0);
374 	EMAC_WRITE(ETH_SA2H, 0);
375 	EMAC_WRITE(ETH_SA3L, 0);
376 	EMAC_WRITE(ETH_SA3H, 0);
377 	EMAC_WRITE(ETH_SA4L, 0);
378 	EMAC_WRITE(ETH_SA4H, 0);
379 
380 	/* Allocate a page of memory for receive queue descriptors */
381 	sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
382 	sc->rbqlen *= PAGE_SIZE;
383 	DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
384 
385 	err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
386 		MAX(16384, PAGE_SIZE),	// see EMAC errata why forced to 16384 byte boundary
387 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
388 	if (err == 0) {
389 		DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
390 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
391 			&sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
392 	}
393 	if (err == 0) {
394 		DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
395 		err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
396 			sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
397 			&sc->rbqpage_dmamap);
398 	}
399 	if (err == 0) {
400 		DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
401 		err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
402 			sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
403 	}
404 	if (err != 0) {
405 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
406 	}
407 	sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
408 
409 	memset(sc->rbqpage, 0, sc->rbqlen);
410 
411 	/* Set up pointers to start of each queue in kernel addr space.
412 	 * Each descriptor queue or status queue entry uses 2 words
413 	 */
414 	sc->RDSC = (void*)sc->rbqpage;
415 
416 	/* Populate the RXQ with mbufs */
417 	sc->rxqi = 0;
418 	for(i = 0; i < RX_QLEN; i++) {
419 		struct mbuf *m;
420 
421 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
422 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
423 		if (err) {
424 			panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
425 		}
426 		MGETHDR(m, M_WAIT, MT_DATA);
427 		MCLGET(m, M_WAIT);
428 		sc->rxq[i].m = m;
429 		if (mtod(m, intptr_t) & 3) {
430 			m_adj(m, mtod(m, intptr_t) & 3);
431 		}
432 		err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
433 			m->m_ext.ext_buf, MCLBYTES, NULL,
434 			BUS_DMA_WAITOK);
435 		if (err) {
436 			panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
437 		}
438 		sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
439 			| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
440 		sc->RDSC[i].Info = 0;
441 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
442 			MCLBYTES, BUS_DMASYNC_PREREAD);
443 	}
444 
445 	/* prepare transmit queue */
446 	for (i = 0; i < TX_QLEN; i++) {
447 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
448 					(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
449 					&sc->txq[i].m_dmamap);
450 		if (err)
451 			panic("ARGH #1");
452 		sc->txq[i].m = NULL;
453 	}
454 
455 	/* Program each queue's start addr, cur addr, and len registers
456 	 * with the physical addresses.
457 	 */
458 	bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
459 			 BUS_DMASYNC_PREREAD);
460 	addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
461 	EMAC_WRITE(ETH_RBQP, (u_int32_t)addr);
462 
463 	/* Divide HCLK by 32 for MDC clock */
464 	sc->sc_mii.mii_ifp = ifp;
465 	sc->sc_mii.mii_readreg = emac_mii_readreg;
466 	sc->sc_mii.mii_writereg = emac_mii_writereg;
467 	sc->sc_mii.mii_statchg = emac_statchg;
468 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
469 		emac_mediastatus);
470 	mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
471 		MII_OFFSET_ANY, 0);
472 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
473 
474 	// enable / disable interrupts
475 
476 #if 0
477 	// enable / disable interrupts
478 	EMAC_WRITE(ETH_IDR, -1);
479 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
480 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
481 //	(void)EMAC_READ(ETH_ISR); // why
482 
483 	// enable transmitter / receiver
484 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
485 		   | ETH_CTL_CSR | ETH_CTL_MPE);
486 #endif
487 	/*
488 	 * We can support 802.1Q VLAN-sized frames.
489 	 */
490 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
491 
492         strcpy(ifp->if_xname, device_xname(sc->sc_dev));
493         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
494         ifp->if_ioctl = emac_ifioctl;
495         ifp->if_start = emac_ifstart;
496         ifp->if_watchdog = emac_ifwatchdog;
497         ifp->if_init = emac_ifinit;
498         ifp->if_stop = emac_ifstop;
499         ifp->if_timer = 0;
500 	ifp->if_softc = sc;
501         IFQ_SET_READY(&ifp->if_snd);
502         if_attach(ifp);
503         ether_ifattach(ifp, (sc)->sc_enaddr);
504 }
505 
506 static int
507 emac_mediachange(struct ifnet *ifp)
508 {
509 	if (ifp->if_flags & IFF_UP)
510 		emac_ifinit(ifp);
511 	return (0);
512 }
513 
514 static void
515 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
516 {
517 	struct emac_softc *sc = ifp->if_softc;
518 
519 	mii_pollstat(&sc->sc_mii);
520 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
521 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
522 }
523 
524 
525 int
526 emac_mii_readreg(device_t self, int phy, int reg)
527 {
528 	struct emac_softc *sc;
529 
530 	sc = (struct emac_softc *)self;
531 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
532 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
533 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
534 			     | ETH_MAN_CODE_IEEE802_3));
535 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
536 	return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
537 }
538 
539 void
540 emac_mii_writereg(device_t self, int phy, int reg, int val)
541 {
542 	struct emac_softc *sc;
543 	sc = (struct emac_softc *)self;
544 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
545 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
546 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
547 			     | ETH_MAN_CODE_IEEE802_3
548 			     | (val & ETH_MAN_DATA)));
549 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
550 }
551 
552 
553 void
554 emac_statchg(device_t self)
555 {
556         struct emac_softc *sc = (struct emac_softc *)self;
557         u_int32_t reg;
558 
559         /*
560          * We must keep the MAC and the PHY in sync as
561          * to the status of full-duplex!
562          */
563 	reg = EMAC_READ(ETH_CFG);
564         if (sc->sc_mii.mii_media_active & IFM_FDX)
565                 reg |= ETH_CFG_FD;
566         else
567                 reg &= ~ETH_CFG_FD;
568 	EMAC_WRITE(ETH_CFG, reg);
569 }
570 
571 void
572 emac_tick(void *arg)
573 {
574 	struct emac_softc* sc = (struct emac_softc *)arg;
575 	struct ifnet * ifp = &sc->sc_ec.ec_if;
576 	int s;
577 	u_int32_t misses;
578 
579 	ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
580 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
581 	misses = EMAC_READ(ETH_DRFC);
582 	if (misses > 0)
583 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
584 
585 	s = splnet();
586 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
587 		emac_ifstart(ifp);
588 	}
589 	splx(s);
590 
591 	mii_tick(&sc->sc_mii);
592 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
593 }
594 
595 
596 static int
597 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
598 {
599 	struct emac_softc *sc = ifp->if_softc;
600 	struct ifreq *ifr = (struct ifreq *)data;
601 	int s, error;
602 
603 	s = splnet();
604 	switch(cmd) {
605 	case SIOCSIFMEDIA:
606 	case SIOCGIFMEDIA:
607 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
608 		break;
609 	default:
610 		error = ether_ioctl(ifp, cmd, data);
611 		if (error == ENETRESET) {
612 			if (ifp->if_flags & IFF_RUNNING)
613 				emac_setaddr(ifp);
614 			error = 0;
615 		}
616 	}
617 	splx(s);
618 	return error;
619 }
620 
621 static void
622 emac_ifstart(struct ifnet *ifp)
623 {
624 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
625 	struct mbuf *m;
626 	bus_dma_segment_t *segs;
627 	int s, bi, err, nsegs;
628 
629 	s = splnet();
630 start:
631 	if (emac_gctx(sc) == 0) {
632 		/* Enable transmit-buffer-free interrupt */
633 		EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
634 		ifp->if_flags |= IFF_OACTIVE;
635 		ifp->if_timer = 10;
636 		splx(s);
637 		return;
638 	}
639 
640 	ifp->if_timer = 0;
641 
642 	IFQ_POLL(&ifp->if_snd, m);
643 	if (m == NULL) {
644 		splx(s);
645 		return;
646 	}
647 //more:
648 	bi = (sc->txqi + sc->txqc) % TX_QLEN;
649 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
650 		BUS_DMA_NOWAIT)) ||
651 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
652 		sc->txq[bi].m_dmamap->dm_nsegs > 1) {
653 		/* Copy entire mbuf chain to new single */
654 		struct mbuf *mn;
655 
656 		if (err == 0)
657 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
658 
659 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
660 		if (mn == NULL) goto stop;
661 		if (m->m_pkthdr.len > MHLEN) {
662 			MCLGET(mn, M_DONTWAIT);
663 			if ((mn->m_flags & M_EXT) == 0) {
664 				m_freem(mn);
665 				goto stop;
666 			}
667 		}
668 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
669 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
670 		IFQ_DEQUEUE(&ifp->if_snd, m);
671 		m_freem(m);
672 		m = mn;
673 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
674 			BUS_DMA_NOWAIT);
675 	} else {
676 		IFQ_DEQUEUE(&ifp->if_snd, m);
677 	}
678 
679 	if (ifp->if_bpf)
680 		bpf_ops->bpf_mtap(ifp->if_bpf, m);
681 
682 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
683 	segs = sc->txq[bi].m_dmamap->dm_segs;
684 	if (nsegs > 1) {
685 		panic("#### ARGH #2");
686 	}
687 
688 	sc->txq[bi].m = m;
689 	sc->txqc++;
690 
691 	DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
692 		       (unsigned)m->m_pkthdr.len));
693 #ifdef	DIAGNOSTIC
694 	if (sc->txqc > TX_QLEN) {
695 		panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
696 	}
697 #endif
698 
699 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
700 		sc->txq[bi].m_dmamap->dm_mapsize,
701 		BUS_DMASYNC_PREWRITE);
702 
703 	EMAC_WRITE(ETH_TAR, segs->ds_addr);
704 	EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
705 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
706 		goto start;
707 stop:
708 
709 	splx(s);
710 	return;
711 }
712 
713 static void
714 emac_ifwatchdog(struct ifnet *ifp)
715 {
716 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
717 
718 	if ((ifp->if_flags & IFF_RUNNING) == 0)
719 		return;
720        	printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
721 		device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
722 }
723 
724 static int
725 emac_ifinit(struct ifnet *ifp)
726 {
727 	struct emac_softc *sc = ifp->if_softc;
728 	int s = splnet();
729 
730 	callout_stop(&sc->emac_tick_ch);
731 
732 	// enable interrupts
733 	EMAC_WRITE(ETH_IDR, -1);
734 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
735 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
736 
737 	// enable transmitter / receiver
738 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
739 		   | ETH_CTL_CSR | ETH_CTL_MPE);
740 
741 	mii_mediachg(&sc->sc_mii);
742 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
743         ifp->if_flags |= IFF_RUNNING;
744 	splx(s);
745 	return 0;
746 }
747 
748 static void
749 emac_ifstop(struct ifnet *ifp, int disable)
750 {
751 //	u_int32_t u;
752 	struct emac_softc *sc = ifp->if_softc;
753 
754 #if 0
755 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
756 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
757 //	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
758 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
759 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
760 //	(void)EMAC_READ(ETH_ISR);
761 	u = EMAC_READ(ETH_TSR);
762 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
763 				  | ETH_TSR_IDLE | ETH_TSR_RLE
764 				  | ETH_TSR_COL|ETH_TSR_OVR)));
765 	u = EMAC_READ(ETH_RSR);
766 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
767 #endif
768 	callout_stop(&sc->emac_tick_ch);
769 
770 	/* Down the MII. */
771 	mii_down(&sc->sc_mii);
772 
773 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
774 	ifp->if_timer = 0;
775 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
776 }
777 
778 static void
779 emac_setaddr(struct ifnet *ifp)
780 {
781 	struct emac_softc *sc = ifp->if_softc;
782 	struct ethercom *ac = &sc->sc_ec;
783 	struct ether_multi *enm;
784 	struct ether_multistep step;
785 	u_int8_t ias[3][ETHER_ADDR_LEN];
786 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
787 	u_int32_t ctl = EMAC_READ(ETH_CTL);
788 	u_int32_t cfg = EMAC_READ(ETH_CFG);
789 
790 	/* disable receiver temporarily */
791 	EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
792 
793 	cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
794 
795 	if (ifp->if_flags & IFF_PROMISC) {
796 		cfg |=  ETH_CFG_CAF;
797 	} else {
798 		cfg &= ~ETH_CFG_CAF;
799 	}
800 
801 	// ETH_CFG_BIG?
802 
803 	ifp->if_flags &= ~IFF_ALLMULTI;
804 
805 	ETHER_FIRST_MULTI(step, ac, enm);
806 	while (enm != NULL) {
807 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
808 			/*
809 			 * We must listen to a range of multicast addresses.
810 			 * For now, just accept all multicasts, rather than
811 			 * trying to set only those filter bits needed to match
812 			 * the range.  (At this time, the only use of address
813 			 * ranges is for IP multicast routing, for which the
814 			 * range is big enough to require all bits set.)
815 			 */
816 			cfg |= ETH_CFG_CAF;
817 			hashes[0] = 0xffffffffUL;
818 			hashes[1] = 0xffffffffUL;
819 			ifp->if_flags |= IFF_ALLMULTI;
820 			nma = 0;
821 			break;
822 		}
823 
824 		if (nma < 3) {
825 			/* We can program 3 perfect address filters for mcast */
826 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
827 		} else {
828 			/*
829 			 * XXX: Datasheet is not very clear here, I'm not sure
830 			 * if I'm doing this right.  --joff
831 			 */
832 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
833 
834 			/* Just want the 6 most-significant bits. */
835 			h = h >> 26;
836 
837 			hashes[ h / 32 ] |=  (1 << (h % 32));
838 			cfg |= ETH_CFG_MTI;
839 		}
840 		ETHER_NEXT_MULTI(step, enm);
841 		nma++;
842 	}
843 
844 	// program...
845 	DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
846 		    sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
847 		    sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
848 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
849 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
850 		   | (sc->sc_enaddr[0]));
851 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
852 		   | (sc->sc_enaddr[4]));
853 	if (nma > 1) {
854 		DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
855 		       ias[0][0], ias[0][1], ias[0][2],
856 		       ias[0][3], ias[0][4], ias[0][5]));
857 		EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
858 			   | (ias[0][2] << 16) | (ias[0][1] << 8)
859 			   | (ias[0][0]));
860 		EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
861 			   | (ias[0][5]));
862 	}
863 	if (nma > 2) {
864 		DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
865 		       ias[1][0], ias[1][1], ias[1][2],
866 		       ias[1][3], ias[1][4], ias[1][5]));
867 		EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
868 			   | (ias[1][2] << 16) | (ias[1][1] << 8)
869 			   | (ias[1][0]));
870 		EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
871 			   | (ias[1][5]));
872 	}
873 	if (nma > 3) {
874 		DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
875 		       ias[2][0], ias[2][1], ias[2][2],
876 		       ias[2][3], ias[2][4], ias[2][5]));
877 		EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
878 			   | (ias[2][2] << 16) | (ias[2][1] << 8)
879 			   | (ias[2][0]));
880 		EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
881 			   | (ias[2][5]));
882 	}
883 	EMAC_WRITE(ETH_HSH, hashes[0]);
884 	EMAC_WRITE(ETH_HSL, hashes[1]);
885 	EMAC_WRITE(ETH_CFG, cfg);
886 	EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
887 }
888