1 /* $Id: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $ */ 2 /* $NetBSD: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $ */ 3 4 /* 5 * Copyright (c) 2007 Embedtronics Oy 6 * All rights reserved. 7 * 8 * Based on arch/arm/ep93xx/epe.c 9 * 10 * Copyright (c) 2004 Jesse Off 11 * All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.8 2010/01/22 08:56:04 martin Exp $"); 37 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/ioctl.h> 42 #include <sys/kernel.h> 43 #include <sys/proc.h> 44 #include <sys/malloc.h> 45 #include <sys/time.h> 46 #include <sys/device.h> 47 #include <uvm/uvm_extern.h> 48 49 #include <machine/bus.h> 50 #include <machine/intr.h> 51 52 #include <arm/cpufunc.h> 53 54 #include <net/if.h> 55 #include <net/if_dl.h> 56 #include <net/if_types.h> 57 #include <net/if_media.h> 58 #include <net/if_ether.h> 59 60 #include <dev/mii/mii.h> 61 #include <dev/mii/miivar.h> 62 63 #ifdef INET 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/if_inarp.h> 69 #endif 70 71 #ifdef NS 72 #include <netns/ns.h> 73 #include <netns/ns_if.h> 74 #endif 75 76 #include <net/bpf.h> 77 #include <net/bpfdesc.h> 78 79 #ifdef IPKDB_AT91 // @@@ 80 #include <ipkdb/ipkdb.h> 81 #endif 82 83 #include <arm/at91/at91var.h> 84 #include <arm/at91/at91emacreg.h> 85 #include <arm/at91/at91emacvar.h> 86 87 #define DEFAULT_MDCDIV 32 88 89 #ifndef EMAC_FAST 90 #define EMAC_FAST 91 #endif 92 93 #ifndef EMAC_FAST 94 #define EMAC_READ(x) \ 95 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x)) 96 #define EMAC_WRITE(x, y) \ 97 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y)) 98 #else 99 #define EMAC_READ(x) ETHREG(x) 100 #define EMAC_WRITE(x, y) ETHREG(x) = (y) 101 #endif /* ! EMAC_FAST */ 102 103 static int emac_match(device_t, cfdata_t, void *); 104 static void emac_attach(device_t, device_t, void *); 105 static void emac_init(struct emac_softc *); 106 static int emac_intr(void* arg); 107 static int emac_gctx(struct emac_softc *); 108 static int emac_mediachange(struct ifnet *); 109 static void emac_mediastatus(struct ifnet *, struct ifmediareq *); 110 int emac_mii_readreg (device_t, int, int); 111 void emac_mii_writereg (device_t, int, int, int); 112 void emac_statchg (device_t ); 113 void emac_tick (void *); 114 static int emac_ifioctl (struct ifnet *, u_long, void *); 115 static void emac_ifstart (struct ifnet *); 116 static void emac_ifwatchdog (struct ifnet *); 117 static int emac_ifinit (struct ifnet *); 118 static void emac_ifstop (struct ifnet *, int); 119 static void emac_setaddr (struct ifnet *); 120 121 CFATTACH_DECL(at91emac, sizeof(struct emac_softc), 122 emac_match, emac_attach, NULL, NULL); 123 124 #ifdef EMAC_DEBUG 125 int emac_debug = EMAC_DEBUG; 126 #define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt 127 #else 128 #define DPRINTFN(n,fmt) 129 #endif 130 131 static int 132 emac_match(device_t parent, cfdata_t match, void *aux) 133 { 134 if (strcmp(match->cf_name, "at91emac") == 0) 135 return 2; 136 return 0; 137 } 138 139 static void 140 emac_attach(device_t parent, device_t self, void *aux) 141 { 142 struct emac_softc *sc = device_private(self); 143 struct at91bus_attach_args *sa = aux; 144 prop_data_t enaddr; 145 uint32_t u; 146 147 printf("\n"); 148 sc->sc_dev = self; 149 sc->sc_iot = sa->sa_iot; 150 sc->sc_pid = sa->sa_pid; 151 sc->sc_dmat = sa->sa_dmat; 152 153 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh)) 154 panic("%s: Cannot map registers", device_xname(self)); 155 156 /* enable peripheral clock */ 157 at91_peripheral_clock(sc->sc_pid, 1); 158 159 /* configure emac: */ 160 EMAC_WRITE(ETH_CTL, 0); // disable everything 161 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 162 EMAC_WRITE(ETH_RBQP, 0); // clear receive 163 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 164 EMAC_WRITE(ETH_TCR, 0); // send nothing 165 //(void)EMAC_READ(ETH_ISR); 166 u = EMAC_READ(ETH_TSR); 167 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 168 | ETH_TSR_IDLE | ETH_TSR_RLE 169 | ETH_TSR_COL|ETH_TSR_OVR))); 170 u = EMAC_READ(ETH_RSR); 171 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 172 173 /* Fetch the Ethernet address from property if set. */ 174 enaddr = prop_dictionary_get(device_properties(self), "mac-address"); 175 176 if (enaddr != NULL) { 177 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); 178 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); 179 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr), 180 ETHER_ADDR_LEN); 181 } else { 182 static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 183 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 184 }; 185 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); 186 } 187 188 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc); 189 emac_init(sc); 190 } 191 192 static int 193 emac_gctx(struct emac_softc *sc) 194 { 195 struct ifnet * ifp = &sc->sc_ec.ec_if; 196 u_int32_t tsr; 197 198 tsr = EMAC_READ(ETH_TSR); 199 if (!(tsr & ETH_TSR_BNQ)) { 200 // no space left 201 return 0; 202 } 203 204 // free sent frames 205 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) { 206 int i = sc->txqi % TX_QLEN; 207 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0, 208 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); 209 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap); 210 m_freem(sc->txq[i].m); 211 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc)); 212 sc->txq[i].m = NULL; 213 sc->txqi = (i + 1) % TX_QLEN; 214 sc->txqc--; 215 } 216 217 // mark we're free 218 if (ifp->if_flags & IFF_OACTIVE) { 219 ifp->if_flags &= ~IFF_OACTIVE; 220 /* Disable transmit-buffer-free interrupt */ 221 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ 222 } 223 224 return 1; 225 } 226 227 static int 228 emac_intr(void *arg) 229 { 230 struct emac_softc *sc = (struct emac_softc *)arg; 231 struct ifnet * ifp = &sc->sc_ec.ec_if; 232 u_int32_t imr, isr, rsr, ctl; 233 int bi; 234 235 imr = ~EMAC_READ(ETH_IMR); 236 if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) { 237 // interrupt not enabled, can't be us 238 return 0; 239 } 240 241 isr = EMAC_READ(ETH_ISR) & imr; 242 rsr = EMAC_READ(ETH_RSR); // get receive status register 243 244 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr)); 245 246 if (isr & ETH_ISR_RBNA) { // out of receive buffers 247 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt 248 ctl = EMAC_READ(ETH_CTL); // get current control register value 249 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver 250 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit 251 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver 252 ifp->if_ierrors++; 253 ifp->if_ipackets++; 254 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); 255 } 256 if (isr & ETH_ISR_ROVR) { 257 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt 258 ifp->if_ierrors++; 259 ifp->if_ipackets++; 260 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); 261 } 262 263 if (isr & ETH_ISR_RCOM) { // packet has been received! 264 uint32_t nfo; 265 // @@@ if memory is NOT coherent, then we're in trouble @@@@ 266 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); 267 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr); 268 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info)); 269 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { 270 int fl; 271 struct mbuf *m; 272 273 nfo = sc->RDSC[bi].Info; 274 fl = (nfo & ETH_RDSC_I_LEN) - 4; 275 DPRINTFN(2,("## nfo=0x%08X\n", nfo)); 276 277 MGETHDR(m, M_DONTWAIT, MT_DATA); 278 if (m != NULL) MCLGET(m, M_DONTWAIT); 279 if (m != NULL && (m->m_flags & M_EXT)) { 280 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 281 MCLBYTES, BUS_DMASYNC_POSTREAD); 282 bus_dmamap_unload(sc->sc_dmat, 283 sc->rxq[bi].m_dmamap); 284 sc->rxq[bi].m->m_pkthdr.rcvif = ifp; 285 sc->rxq[bi].m->m_pkthdr.len = 286 sc->rxq[bi].m->m_len = fl; 287 if (ifp->if_bpf) 288 bpf_ops->bpf_mtap(ifp->if_bpf, sc->rxq[bi].m); 289 DPRINTFN(2,("received %u bytes packet\n", fl)); 290 (*ifp->if_input)(ifp, sc->rxq[bi].m); 291 if (mtod(m, intptr_t) & 3) { 292 m_adj(m, mtod(m, intptr_t) & 3); 293 } 294 sc->rxq[bi].m = m; 295 bus_dmamap_load(sc->sc_dmat, 296 sc->rxq[bi].m_dmamap, 297 m->m_ext.ext_buf, MCLBYTES, 298 NULL, BUS_DMA_NOWAIT); 299 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 300 MCLBYTES, BUS_DMASYNC_PREREAD); 301 sc->RDSC[bi].Info = 0; 302 sc->RDSC[bi].Addr = 303 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr 304 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 305 } else { 306 /* Drop packets until we can get replacement 307 * empty mbufs for the RXDQ. 308 */ 309 if (m != NULL) { 310 m_freem(m); 311 } 312 ifp->if_ierrors++; 313 } 314 sc->rxqi++; 315 } 316 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 317 } 318 319 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { 320 emac_ifstart(ifp); 321 } 322 #if 0 // reloop 323 irq = EMAC_READ(IntStsC); 324 if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0) 325 goto begin; 326 #endif 327 328 return (1); 329 } 330 331 332 static void 333 emac_init(struct emac_softc *sc) 334 { 335 bus_dma_segment_t segs; 336 void *addr; 337 int rsegs, err, i; 338 struct ifnet * ifp = &sc->sc_ec.ec_if; 339 uint32_t u; 340 #if 0 341 int mdcdiv = DEFAULT_MDCDIV; 342 #endif 343 344 callout_init(&sc->emac_tick_ch, 0); 345 346 // ok... 347 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 348 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 349 EMAC_WRITE(ETH_RBQP, 0); // clear receive 350 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 351 EMAC_WRITE(ETH_TCR, 0); // send nothing 352 // (void)EMAC_READ(ETH_ISR); 353 u = EMAC_READ(ETH_TSR); 354 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 355 | ETH_TSR_IDLE | ETH_TSR_RLE 356 | ETH_TSR_COL|ETH_TSR_OVR))); 357 u = EMAC_READ(ETH_RSR); 358 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 359 360 /* configure EMAC */ 361 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 362 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); 363 #if 0 364 if (device_cfdata(&sc->sc_dev)->cf_flags) 365 mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags; 366 #endif 367 /* set ethernet address */ 368 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 369 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 370 | (sc->sc_enaddr[0])); 371 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 372 | (sc->sc_enaddr[4])); 373 EMAC_WRITE(ETH_SA2L, 0); 374 EMAC_WRITE(ETH_SA2H, 0); 375 EMAC_WRITE(ETH_SA3L, 0); 376 EMAC_WRITE(ETH_SA3H, 0); 377 EMAC_WRITE(ETH_SA4L, 0); 378 EMAC_WRITE(ETH_SA4H, 0); 379 380 /* Allocate a page of memory for receive queue descriptors */ 381 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; 382 sc->rbqlen *= PAGE_SIZE; 383 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); 384 385 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, 386 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary 387 &segs, 1, &rsegs, BUS_DMA_WAITOK); 388 if (err == 0) { 389 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 390 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, 391 &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT)); 392 } 393 if (err == 0) { 394 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 395 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, 396 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 397 &sc->rbqpage_dmamap); 398 } 399 if (err == 0) { 400 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 401 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, 402 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); 403 } 404 if (err != 0) { 405 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 406 } 407 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; 408 409 memset(sc->rbqpage, 0, sc->rbqlen); 410 411 /* Set up pointers to start of each queue in kernel addr space. 412 * Each descriptor queue or status queue entry uses 2 words 413 */ 414 sc->RDSC = (void*)sc->rbqpage; 415 416 /* Populate the RXQ with mbufs */ 417 sc->rxqi = 0; 418 for(i = 0; i < RX_QLEN; i++) { 419 struct mbuf *m; 420 421 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE, 422 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); 423 if (err) { 424 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err); 425 } 426 MGETHDR(m, M_WAIT, MT_DATA); 427 MCLGET(m, M_WAIT); 428 sc->rxq[i].m = m; 429 if (mtod(m, intptr_t) & 3) { 430 m_adj(m, mtod(m, intptr_t) & 3); 431 } 432 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, 433 m->m_ext.ext_buf, MCLBYTES, NULL, 434 BUS_DMA_WAITOK); 435 if (err) { 436 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err); 437 } 438 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr 439 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 440 sc->RDSC[i].Info = 0; 441 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, 442 MCLBYTES, BUS_DMASYNC_PREREAD); 443 } 444 445 /* prepare transmit queue */ 446 for (i = 0; i < TX_QLEN; i++) { 447 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 448 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), 449 &sc->txq[i].m_dmamap); 450 if (err) 451 panic("ARGH #1"); 452 sc->txq[i].m = NULL; 453 } 454 455 /* Program each queue's start addr, cur addr, and len registers 456 * with the physical addresses. 457 */ 458 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, 459 BUS_DMASYNC_PREREAD); 460 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr; 461 EMAC_WRITE(ETH_RBQP, (u_int32_t)addr); 462 463 /* Divide HCLK by 32 for MDC clock */ 464 sc->sc_mii.mii_ifp = ifp; 465 sc->sc_mii.mii_readreg = emac_mii_readreg; 466 sc->sc_mii.mii_writereg = emac_mii_writereg; 467 sc->sc_mii.mii_statchg = emac_statchg; 468 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange, 469 emac_mediastatus); 470 mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 471 MII_OFFSET_ANY, 0); 472 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 473 474 // enable / disable interrupts 475 476 #if 0 477 // enable / disable interrupts 478 EMAC_WRITE(ETH_IDR, -1); 479 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 480 | ETH_ISR_RBNA | ETH_ISR_ROVR); 481 // (void)EMAC_READ(ETH_ISR); // why 482 483 // enable transmitter / receiver 484 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 485 | ETH_CTL_CSR | ETH_CTL_MPE); 486 #endif 487 /* 488 * We can support 802.1Q VLAN-sized frames. 489 */ 490 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 491 492 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 493 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; 494 ifp->if_ioctl = emac_ifioctl; 495 ifp->if_start = emac_ifstart; 496 ifp->if_watchdog = emac_ifwatchdog; 497 ifp->if_init = emac_ifinit; 498 ifp->if_stop = emac_ifstop; 499 ifp->if_timer = 0; 500 ifp->if_softc = sc; 501 IFQ_SET_READY(&ifp->if_snd); 502 if_attach(ifp); 503 ether_ifattach(ifp, (sc)->sc_enaddr); 504 } 505 506 static int 507 emac_mediachange(struct ifnet *ifp) 508 { 509 if (ifp->if_flags & IFF_UP) 510 emac_ifinit(ifp); 511 return (0); 512 } 513 514 static void 515 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 516 { 517 struct emac_softc *sc = ifp->if_softc; 518 519 mii_pollstat(&sc->sc_mii); 520 ifmr->ifm_active = sc->sc_mii.mii_media_active; 521 ifmr->ifm_status = sc->sc_mii.mii_media_status; 522 } 523 524 525 int 526 emac_mii_readreg(device_t self, int phy, int reg) 527 { 528 struct emac_softc *sc; 529 530 sc = (struct emac_softc *)self; 531 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD 532 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 533 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 534 | ETH_MAN_CODE_IEEE802_3)); 535 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; 536 return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA); 537 } 538 539 void 540 emac_mii_writereg(device_t self, int phy, int reg, int val) 541 { 542 struct emac_softc *sc; 543 sc = (struct emac_softc *)self; 544 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR 545 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 546 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 547 | ETH_MAN_CODE_IEEE802_3 548 | (val & ETH_MAN_DATA))); 549 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; 550 } 551 552 553 void 554 emac_statchg(device_t self) 555 { 556 struct emac_softc *sc = (struct emac_softc *)self; 557 u_int32_t reg; 558 559 /* 560 * We must keep the MAC and the PHY in sync as 561 * to the status of full-duplex! 562 */ 563 reg = EMAC_READ(ETH_CFG); 564 if (sc->sc_mii.mii_media_active & IFM_FDX) 565 reg |= ETH_CFG_FD; 566 else 567 reg &= ~ETH_CFG_FD; 568 EMAC_WRITE(ETH_CFG, reg); 569 } 570 571 void 572 emac_tick(void *arg) 573 { 574 struct emac_softc* sc = (struct emac_softc *)arg; 575 struct ifnet * ifp = &sc->sc_ec.ec_if; 576 int s; 577 u_int32_t misses; 578 579 ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL); 580 /* These misses are ok, they will happen if the RAM/CPU can't keep up */ 581 misses = EMAC_READ(ETH_DRFC); 582 if (misses > 0) 583 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses); 584 585 s = splnet(); 586 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { 587 emac_ifstart(ifp); 588 } 589 splx(s); 590 591 mii_tick(&sc->sc_mii); 592 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 593 } 594 595 596 static int 597 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 598 { 599 struct emac_softc *sc = ifp->if_softc; 600 struct ifreq *ifr = (struct ifreq *)data; 601 int s, error; 602 603 s = splnet(); 604 switch(cmd) { 605 case SIOCSIFMEDIA: 606 case SIOCGIFMEDIA: 607 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 608 break; 609 default: 610 error = ether_ioctl(ifp, cmd, data); 611 if (error == ENETRESET) { 612 if (ifp->if_flags & IFF_RUNNING) 613 emac_setaddr(ifp); 614 error = 0; 615 } 616 } 617 splx(s); 618 return error; 619 } 620 621 static void 622 emac_ifstart(struct ifnet *ifp) 623 { 624 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 625 struct mbuf *m; 626 bus_dma_segment_t *segs; 627 int s, bi, err, nsegs; 628 629 s = splnet(); 630 start: 631 if (emac_gctx(sc) == 0) { 632 /* Enable transmit-buffer-free interrupt */ 633 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE); 634 ifp->if_flags |= IFF_OACTIVE; 635 ifp->if_timer = 10; 636 splx(s); 637 return; 638 } 639 640 ifp->if_timer = 0; 641 642 IFQ_POLL(&ifp->if_snd, m); 643 if (m == NULL) { 644 splx(s); 645 return; 646 } 647 //more: 648 bi = (sc->txqi + sc->txqc) % TX_QLEN; 649 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 650 BUS_DMA_NOWAIT)) || 651 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || 652 sc->txq[bi].m_dmamap->dm_nsegs > 1) { 653 /* Copy entire mbuf chain to new single */ 654 struct mbuf *mn; 655 656 if (err == 0) 657 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 658 659 MGETHDR(mn, M_DONTWAIT, MT_DATA); 660 if (mn == NULL) goto stop; 661 if (m->m_pkthdr.len > MHLEN) { 662 MCLGET(mn, M_DONTWAIT); 663 if ((mn->m_flags & M_EXT) == 0) { 664 m_freem(mn); 665 goto stop; 666 } 667 } 668 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); 669 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; 670 IFQ_DEQUEUE(&ifp->if_snd, m); 671 m_freem(m); 672 m = mn; 673 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 674 BUS_DMA_NOWAIT); 675 } else { 676 IFQ_DEQUEUE(&ifp->if_snd, m); 677 } 678 679 if (ifp->if_bpf) 680 bpf_ops->bpf_mtap(ifp->if_bpf, m); 681 682 nsegs = sc->txq[bi].m_dmamap->dm_nsegs; 683 segs = sc->txq[bi].m_dmamap->dm_segs; 684 if (nsegs > 1) { 685 panic("#### ARGH #2"); 686 } 687 688 sc->txq[bi].m = m; 689 sc->txqc++; 690 691 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr, 692 (unsigned)m->m_pkthdr.len)); 693 #ifdef DIAGNOSTIC 694 if (sc->txqc > TX_QLEN) { 695 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); 696 } 697 #endif 698 699 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 700 sc->txq[bi].m_dmamap->dm_mapsize, 701 BUS_DMASYNC_PREWRITE); 702 703 EMAC_WRITE(ETH_TAR, segs->ds_addr); 704 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len); 705 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 706 goto start; 707 stop: 708 709 splx(s); 710 return; 711 } 712 713 static void 714 emac_ifwatchdog(struct ifnet *ifp) 715 { 716 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 717 718 if ((ifp->if_flags & IFF_RUNNING) == 0) 719 return; 720 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n", 721 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG)); 722 } 723 724 static int 725 emac_ifinit(struct ifnet *ifp) 726 { 727 struct emac_softc *sc = ifp->if_softc; 728 int s = splnet(); 729 730 callout_stop(&sc->emac_tick_ch); 731 732 // enable interrupts 733 EMAC_WRITE(ETH_IDR, -1); 734 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 735 | ETH_ISR_RBNA | ETH_ISR_ROVR); 736 737 // enable transmitter / receiver 738 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 739 | ETH_CTL_CSR | ETH_CTL_MPE); 740 741 mii_mediachg(&sc->sc_mii); 742 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 743 ifp->if_flags |= IFF_RUNNING; 744 splx(s); 745 return 0; 746 } 747 748 static void 749 emac_ifstop(struct ifnet *ifp, int disable) 750 { 751 // u_int32_t u; 752 struct emac_softc *sc = ifp->if_softc; 753 754 #if 0 755 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 756 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 757 // EMAC_WRITE(ETH_RBQP, 0); // clear receive 758 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 759 EMAC_WRITE(ETH_TCR, 0); // send nothing 760 // (void)EMAC_READ(ETH_ISR); 761 u = EMAC_READ(ETH_TSR); 762 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 763 | ETH_TSR_IDLE | ETH_TSR_RLE 764 | ETH_TSR_COL|ETH_TSR_OVR))); 765 u = EMAC_READ(ETH_RSR); 766 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 767 #endif 768 callout_stop(&sc->emac_tick_ch); 769 770 /* Down the MII. */ 771 mii_down(&sc->sc_mii); 772 773 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 774 ifp->if_timer = 0; 775 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; 776 } 777 778 static void 779 emac_setaddr(struct ifnet *ifp) 780 { 781 struct emac_softc *sc = ifp->if_softc; 782 struct ethercom *ac = &sc->sc_ec; 783 struct ether_multi *enm; 784 struct ether_multistep step; 785 u_int8_t ias[3][ETHER_ADDR_LEN]; 786 u_int32_t h, nma = 0, hashes[2] = { 0, 0 }; 787 u_int32_t ctl = EMAC_READ(ETH_CTL); 788 u_int32_t cfg = EMAC_READ(ETH_CFG); 789 790 /* disable receiver temporarily */ 791 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 792 793 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); 794 795 if (ifp->if_flags & IFF_PROMISC) { 796 cfg |= ETH_CFG_CAF; 797 } else { 798 cfg &= ~ETH_CFG_CAF; 799 } 800 801 // ETH_CFG_BIG? 802 803 ifp->if_flags &= ~IFF_ALLMULTI; 804 805 ETHER_FIRST_MULTI(step, ac, enm); 806 while (enm != NULL) { 807 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 808 /* 809 * We must listen to a range of multicast addresses. 810 * For now, just accept all multicasts, rather than 811 * trying to set only those filter bits needed to match 812 * the range. (At this time, the only use of address 813 * ranges is for IP multicast routing, for which the 814 * range is big enough to require all bits set.) 815 */ 816 cfg |= ETH_CFG_CAF; 817 hashes[0] = 0xffffffffUL; 818 hashes[1] = 0xffffffffUL; 819 ifp->if_flags |= IFF_ALLMULTI; 820 nma = 0; 821 break; 822 } 823 824 if (nma < 3) { 825 /* We can program 3 perfect address filters for mcast */ 826 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); 827 } else { 828 /* 829 * XXX: Datasheet is not very clear here, I'm not sure 830 * if I'm doing this right. --joff 831 */ 832 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 833 834 /* Just want the 6 most-significant bits. */ 835 h = h >> 26; 836 837 hashes[ h / 32 ] |= (1 << (h % 32)); 838 cfg |= ETH_CFG_MTI; 839 } 840 ETHER_NEXT_MULTI(step, enm); 841 nma++; 842 } 843 844 // program... 845 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 846 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], 847 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); 848 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 849 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 850 | (sc->sc_enaddr[0])); 851 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 852 | (sc->sc_enaddr[4])); 853 if (nma > 1) { 854 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 855 ias[0][0], ias[0][1], ias[0][2], 856 ias[0][3], ias[0][4], ias[0][5])); 857 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) 858 | (ias[0][2] << 16) | (ias[0][1] << 8) 859 | (ias[0][0])); 860 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) 861 | (ias[0][5])); 862 } 863 if (nma > 2) { 864 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 865 ias[1][0], ias[1][1], ias[1][2], 866 ias[1][3], ias[1][4], ias[1][5])); 867 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) 868 | (ias[1][2] << 16) | (ias[1][1] << 8) 869 | (ias[1][0])); 870 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) 871 | (ias[1][5])); 872 } 873 if (nma > 3) { 874 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 875 ias[2][0], ias[2][1], ias[2][2], 876 ias[2][3], ias[2][4], ias[2][5])); 877 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24) 878 | (ias[2][2] << 16) | (ias[2][1] << 8) 879 | (ias[2][0])); 880 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8) 881 | (ias[2][5])); 882 } 883 EMAC_WRITE(ETH_HSH, hashes[0]); 884 EMAC_WRITE(ETH_HSL, hashes[1]); 885 EMAC_WRITE(ETH_CFG, cfg); 886 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 887 } 888