xref: /netbsd-src/sys/arch/arm/at91/at91emac.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$Id: at91emac.c,v 1.6 2009/10/23 06:53:13 snj Exp $	*/
2 /*	$NetBSD: at91emac.c,v 1.6 2009/10/23 06:53:13 snj Exp $	*/
3 
4 /*
5  * Copyright (c) 2007 Embedtronics Oy
6  * All rights reserved.
7  *
8  * Based on arch/arm/ep93xx/epe.c
9  *
10  * Copyright (c) 2004 Jesse Off
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.6 2009/10/23 06:53:13 snj Exp $");
37 
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/ioctl.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/device.h>
47 #include <uvm/uvm_extern.h>
48 
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51 
52 #include <arm/cpufunc.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #include "bpfilter.h"
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #include <net/bpfdesc.h>
80 #endif
81 
82 #ifdef IPKDB_AT91	// @@@
83 #include <ipkdb/ipkdb.h>
84 #endif
85 
86 #include <arm/at91/at91var.h>
87 #include <arm/at91/at91emacreg.h>
88 #include <arm/at91/at91emacvar.h>
89 
90 #define DEFAULT_MDCDIV	32
91 
92 #ifndef EMAC_FAST
93 #define EMAC_FAST
94 #endif
95 
96 #ifndef EMAC_FAST
97 #define EMAC_READ(x) \
98 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
99 #define EMAC_WRITE(x, y) \
100 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
101 #else
102 #define EMAC_READ(x) ETHREG(x)
103 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
104 #endif /* ! EMAC_FAST */
105 
106 static int	emac_match(device_t, cfdata_t, void *);
107 static void	emac_attach(device_t, device_t, void *);
108 static void	emac_init(struct emac_softc *);
109 static int      emac_intr(void* arg);
110 static int	emac_gctx(struct emac_softc *);
111 static int	emac_mediachange(struct ifnet *);
112 static void	emac_mediastatus(struct ifnet *, struct ifmediareq *);
113 int		emac_mii_readreg (device_t, int, int);
114 void		emac_mii_writereg (device_t, int, int, int);
115 void		emac_statchg (device_t );
116 void		emac_tick (void *);
117 static int	emac_ifioctl (struct ifnet *, u_long, void *);
118 static void	emac_ifstart (struct ifnet *);
119 static void	emac_ifwatchdog (struct ifnet *);
120 static int	emac_ifinit (struct ifnet *);
121 static void	emac_ifstop (struct ifnet *, int);
122 static void	emac_setaddr (struct ifnet *);
123 
124 CFATTACH_DECL(at91emac, sizeof(struct emac_softc),
125     emac_match, emac_attach, NULL, NULL);
126 
127 #ifdef	EMAC_DEBUG
128 int emac_debug = EMAC_DEBUG;
129 #define	DPRINTFN(n,fmt)	if (emac_debug >= (n)) printf fmt
130 #else
131 #define	DPRINTFN(n,fmt)
132 #endif
133 
134 static int
135 emac_match(device_t parent, cfdata_t match, void *aux)
136 {
137 	if (strcmp(match->cf_name, "at91emac") == 0)
138 		return 2;
139 	return 0;
140 }
141 
142 static void
143 emac_attach(device_t parent, device_t self, void *aux)
144 {
145 	struct emac_softc		*sc = device_private(self);
146 	struct at91bus_attach_args	*sa = aux;
147 	prop_data_t			enaddr;
148 	uint32_t			u;
149 
150 	printf("\n");
151 	sc->sc_dev = self;
152 	sc->sc_iot = sa->sa_iot;
153 	sc->sc_pid = sa->sa_pid;
154 	sc->sc_dmat = sa->sa_dmat;
155 
156 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
157 		panic("%s: Cannot map registers", device_xname(self));
158 
159 	/* enable peripheral clock */
160 	at91_peripheral_clock(sc->sc_pid, 1);
161 
162 	/* configure emac: */
163 	EMAC_WRITE(ETH_CTL, 0);			// disable everything
164 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
165 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
166 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
167 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
168 	//(void)EMAC_READ(ETH_ISR);
169 	u = EMAC_READ(ETH_TSR);
170 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
171 				  | ETH_TSR_IDLE | ETH_TSR_RLE
172 				  | ETH_TSR_COL|ETH_TSR_OVR)));
173 	u = EMAC_READ(ETH_RSR);
174 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
175 
176 	/* Fetch the Ethernet address from property if set. */
177 	enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
178 
179 	if (enaddr != NULL) {
180 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
181 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
182 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
183 		       ETHER_ADDR_LEN);
184 	} else {
185 		static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
186 		  0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
187 		};
188 		memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
189 	}
190 
191         at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
192 	emac_init(sc);
193 }
194 
195 static int
196 emac_gctx(struct emac_softc *sc)
197 {
198 	struct ifnet * ifp = &sc->sc_ec.ec_if;
199 	u_int32_t tsr;
200 
201 	tsr = EMAC_READ(ETH_TSR);
202 	if (!(tsr & ETH_TSR_BNQ)) {
203 		// no space left
204 		return 0;
205 	}
206 
207 	// free sent frames
208 	while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
209 		int i = sc->txqi % TX_QLEN;
210 		bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
211 				sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
212 		bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
213 		m_freem(sc->txq[i].m);
214 		DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
215 		sc->txq[i].m = NULL;
216 		sc->txqi = (i + 1) % TX_QLEN;
217 		sc->txqc--;
218 	}
219 
220 	// mark we're free
221 	if (ifp->if_flags & IFF_OACTIVE) {
222 		ifp->if_flags &= ~IFF_OACTIVE;
223 		/* Disable transmit-buffer-free interrupt */
224 		/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
225 	}
226 
227 	return 1;
228 }
229 
230 static int
231 emac_intr(void *arg)
232 {
233 	struct emac_softc *sc = (struct emac_softc *)arg;
234 	struct ifnet * ifp = &sc->sc_ec.ec_if;
235 	u_int32_t imr, isr, rsr, ctl;
236 	int bi;
237 
238 	imr = ~EMAC_READ(ETH_IMR);
239 	if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
240 		// interrupt not enabled, can't be us
241 		return 0;
242 	}
243 
244 	isr = EMAC_READ(ETH_ISR) & imr;
245 	rsr = EMAC_READ(ETH_RSR);		// get receive status register
246 
247 	DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
248 
249 	if (isr & ETH_ISR_RBNA) {		// out of receive buffers
250 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear interrupt
251 		ctl = EMAC_READ(ETH_CTL);		// get current control register value
252 		EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);	// disable receiver
253 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear BNA bit
254 		EMAC_WRITE(ETH_CTL, ctl |  ETH_CTL_RE);	// re-enable receiver
255 		ifp->if_ierrors++;
256 		ifp->if_ipackets++;
257 		DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
258 	}
259 	if (isr & ETH_ISR_ROVR) {
260 		EMAC_WRITE(ETH_RSR, ETH_RSR_OVR);	// clear interrupt
261 		ifp->if_ierrors++;
262 		ifp->if_ipackets++;
263 		DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
264 	}
265 
266 	if (isr & ETH_ISR_RCOM) {			// packet has been received!
267 		uint32_t nfo;
268 		// @@@ if memory is NOT coherent, then we're in trouble @@@@
269 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
270 //		printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
271 		DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
272 		while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
273 			int fl;
274 			struct mbuf *m;
275 
276 			nfo = sc->RDSC[bi].Info;
277 		  	fl = (nfo & ETH_RDSC_I_LEN) - 4;
278 			DPRINTFN(2,("## nfo=0x%08X\n", nfo));
279 
280 			MGETHDR(m, M_DONTWAIT, MT_DATA);
281 			if (m != NULL) MCLGET(m, M_DONTWAIT);
282 			if (m != NULL && (m->m_flags & M_EXT)) {
283 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
284 						MCLBYTES, BUS_DMASYNC_POSTREAD);
285 				bus_dmamap_unload(sc->sc_dmat,
286 					sc->rxq[bi].m_dmamap);
287 				sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
288 				sc->rxq[bi].m->m_pkthdr.len =
289 					sc->rxq[bi].m->m_len = fl;
290 #if NBPFILTER > 0
291 				if (ifp->if_bpf)
292 					bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
293 #endif /* NBPFILTER > 0 */
294 				DPRINTFN(2,("received %u bytes packet\n", fl));
295                                 (*ifp->if_input)(ifp, sc->rxq[bi].m);
296 				if (mtod(m, intptr_t) & 3) {
297 					m_adj(m, mtod(m, intptr_t) & 3);
298 				}
299 				sc->rxq[bi].m = m;
300 				bus_dmamap_load(sc->sc_dmat,
301 					sc->rxq[bi].m_dmamap,
302 					m->m_ext.ext_buf, MCLBYTES,
303 					NULL, BUS_DMA_NOWAIT);
304 				bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
305 						MCLBYTES, BUS_DMASYNC_PREREAD);
306 				sc->RDSC[bi].Info = 0;
307 				sc->RDSC[bi].Addr =
308 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
309 					| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
310 			} else {
311 				/* Drop packets until we can get replacement
312 				 * empty mbufs for the RXDQ.
313 				 */
314 				if (m != NULL) {
315 					m_freem(m);
316 				}
317 				ifp->if_ierrors++;
318 			}
319 			sc->rxqi++;
320 		}
321 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
322 	}
323 
324 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
325 		emac_ifstart(ifp);
326 	}
327 #if 0 // reloop
328 	irq = EMAC_READ(IntStsC);
329 	if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
330 		goto begin;
331 #endif
332 
333 	return (1);
334 }
335 
336 
337 static void
338 emac_init(struct emac_softc *sc)
339 {
340 	bus_dma_segment_t segs;
341 	void *addr;
342 	int rsegs, err, i;
343 	struct ifnet * ifp = &sc->sc_ec.ec_if;
344 	uint32_t u;
345 #if 0
346 	int mdcdiv = DEFAULT_MDCDIV;
347 #endif
348 
349 	callout_init(&sc->emac_tick_ch, 0);
350 
351 	// ok...
352 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
353 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
354 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
355 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
356 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
357 //	(void)EMAC_READ(ETH_ISR);
358 	u = EMAC_READ(ETH_TSR);
359 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
360 				  | ETH_TSR_IDLE | ETH_TSR_RLE
361 				  | ETH_TSR_COL|ETH_TSR_OVR)));
362 	u = EMAC_READ(ETH_RSR);
363 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
364 
365 	/* configure EMAC */
366 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
367 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
368 #if 0
369 	if (device_cfdata(&sc->sc_dev)->cf_flags)
370 		mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
371 #endif
372 	/* set ethernet address */
373 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
374 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
375 		   | (sc->sc_enaddr[0]));
376 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
377 		   | (sc->sc_enaddr[4]));
378 	EMAC_WRITE(ETH_SA2L, 0);
379 	EMAC_WRITE(ETH_SA2H, 0);
380 	EMAC_WRITE(ETH_SA3L, 0);
381 	EMAC_WRITE(ETH_SA3H, 0);
382 	EMAC_WRITE(ETH_SA4L, 0);
383 	EMAC_WRITE(ETH_SA4H, 0);
384 
385 	/* Allocate a page of memory for receive queue descriptors */
386 	sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
387 	sc->rbqlen *= PAGE_SIZE;
388 	DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
389 
390 	err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
391 		MAX(16384, PAGE_SIZE),	// see EMAC errata why forced to 16384 byte boundary
392 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
393 	if (err == 0) {
394 		DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
395 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
396 			&sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
397 	}
398 	if (err == 0) {
399 		DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
400 		err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
401 			sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
402 			&sc->rbqpage_dmamap);
403 	}
404 	if (err == 0) {
405 		DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
406 		err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
407 			sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
408 	}
409 	if (err != 0) {
410 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
411 	}
412 	sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
413 
414 	memset(sc->rbqpage, 0, sc->rbqlen);
415 
416 	/* Set up pointers to start of each queue in kernel addr space.
417 	 * Each descriptor queue or status queue entry uses 2 words
418 	 */
419 	sc->RDSC = (void*)sc->rbqpage;
420 
421 	/* Populate the RXQ with mbufs */
422 	sc->rxqi = 0;
423 	for(i = 0; i < RX_QLEN; i++) {
424 		struct mbuf *m;
425 
426 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
427 			BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
428 		if (err) {
429 			panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
430 		}
431 		MGETHDR(m, M_WAIT, MT_DATA);
432 		MCLGET(m, M_WAIT);
433 		sc->rxq[i].m = m;
434 		if (mtod(m, intptr_t) & 3) {
435 			m_adj(m, mtod(m, intptr_t) & 3);
436 		}
437 		err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
438 			m->m_ext.ext_buf, MCLBYTES, NULL,
439 			BUS_DMA_WAITOK);
440 		if (err) {
441 			panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
442 		}
443 		sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
444 			| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
445 		sc->RDSC[i].Info = 0;
446 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
447 			MCLBYTES, BUS_DMASYNC_PREREAD);
448 	}
449 
450 	/* prepare transmit queue */
451 	for (i = 0; i < TX_QLEN; i++) {
452 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
453 					(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
454 					&sc->txq[i].m_dmamap);
455 		if (err)
456 			panic("ARGH #1");
457 		sc->txq[i].m = NULL;
458 	}
459 
460 	/* Program each queue's start addr, cur addr, and len registers
461 	 * with the physical addresses.
462 	 */
463 	bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
464 			 BUS_DMASYNC_PREREAD);
465 	addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
466 	EMAC_WRITE(ETH_RBQP, (u_int32_t)addr);
467 
468 	/* Divide HCLK by 32 for MDC clock */
469 	sc->sc_mii.mii_ifp = ifp;
470 	sc->sc_mii.mii_readreg = emac_mii_readreg;
471 	sc->sc_mii.mii_writereg = emac_mii_writereg;
472 	sc->sc_mii.mii_statchg = emac_statchg;
473 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
474 		emac_mediastatus);
475 	mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
476 		MII_OFFSET_ANY, 0);
477 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 
479 	// enable / disable interrupts
480 
481 #if 0
482 	// enable / disable interrupts
483 	EMAC_WRITE(ETH_IDR, -1);
484 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
485 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
486 //	(void)EMAC_READ(ETH_ISR); // why
487 
488 	// enable transmitter / receiver
489 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
490 		   | ETH_CTL_CSR | ETH_CTL_MPE);
491 #endif
492 	/*
493 	 * We can support 802.1Q VLAN-sized frames.
494 	 */
495 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
496 
497         strcpy(ifp->if_xname, device_xname(sc->sc_dev));
498         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
499         ifp->if_ioctl = emac_ifioctl;
500         ifp->if_start = emac_ifstart;
501         ifp->if_watchdog = emac_ifwatchdog;
502         ifp->if_init = emac_ifinit;
503         ifp->if_stop = emac_ifstop;
504         ifp->if_timer = 0;
505 	ifp->if_softc = sc;
506         IFQ_SET_READY(&ifp->if_snd);
507         if_attach(ifp);
508         ether_ifattach(ifp, (sc)->sc_enaddr);
509 }
510 
511 static int
512 emac_mediachange(struct ifnet *ifp)
513 {
514 	if (ifp->if_flags & IFF_UP)
515 		emac_ifinit(ifp);
516 	return (0);
517 }
518 
519 static void
520 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
521 {
522 	struct emac_softc *sc = ifp->if_softc;
523 
524 	mii_pollstat(&sc->sc_mii);
525 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
526 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
527 }
528 
529 
530 int
531 emac_mii_readreg(device_t self, int phy, int reg)
532 {
533 	struct emac_softc *sc;
534 
535 	sc = (struct emac_softc *)self;
536 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
537 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
538 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
539 			     | ETH_MAN_CODE_IEEE802_3));
540 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
541 	return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
542 }
543 
544 void
545 emac_mii_writereg(device_t self, int phy, int reg, int val)
546 {
547 	struct emac_softc *sc;
548 	sc = (struct emac_softc *)self;
549 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
550 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
551 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
552 			     | ETH_MAN_CODE_IEEE802_3
553 			     | (val & ETH_MAN_DATA)));
554 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
555 }
556 
557 
558 void
559 emac_statchg(device_t self)
560 {
561         struct emac_softc *sc = (struct emac_softc *)self;
562         u_int32_t reg;
563 
564         /*
565          * We must keep the MAC and the PHY in sync as
566          * to the status of full-duplex!
567          */
568 	reg = EMAC_READ(ETH_CFG);
569         if (sc->sc_mii.mii_media_active & IFM_FDX)
570                 reg |= ETH_CFG_FD;
571         else
572                 reg &= ~ETH_CFG_FD;
573 	EMAC_WRITE(ETH_CFG, reg);
574 }
575 
576 void
577 emac_tick(void *arg)
578 {
579 	struct emac_softc* sc = (struct emac_softc *)arg;
580 	struct ifnet * ifp = &sc->sc_ec.ec_if;
581 	int s;
582 	u_int32_t misses;
583 
584 	ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
585 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
586 	misses = EMAC_READ(ETH_DRFC);
587 	if (misses > 0)
588 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
589 
590 	s = splnet();
591 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
592 		emac_ifstart(ifp);
593 	}
594 	splx(s);
595 
596 	mii_tick(&sc->sc_mii);
597 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
598 }
599 
600 
601 static int
602 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
603 {
604 	struct emac_softc *sc = ifp->if_softc;
605 	struct ifreq *ifr = (struct ifreq *)data;
606 	int s, error;
607 
608 	s = splnet();
609 	switch(cmd) {
610 	case SIOCSIFMEDIA:
611 	case SIOCGIFMEDIA:
612 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
613 		break;
614 	default:
615 		error = ether_ioctl(ifp, cmd, data);
616 		if (error == ENETRESET) {
617 			if (ifp->if_flags & IFF_RUNNING)
618 				emac_setaddr(ifp);
619 			error = 0;
620 		}
621 	}
622 	splx(s);
623 	return error;
624 }
625 
626 static void
627 emac_ifstart(struct ifnet *ifp)
628 {
629 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
630 	struct mbuf *m;
631 	bus_dma_segment_t *segs;
632 	int s, bi, err, nsegs;
633 
634 	s = splnet();
635 start:
636 	if (emac_gctx(sc) == 0) {
637 		/* Enable transmit-buffer-free interrupt */
638 		EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
639 		ifp->if_flags |= IFF_OACTIVE;
640 		ifp->if_timer = 10;
641 		splx(s);
642 		return;
643 	}
644 
645 	ifp->if_timer = 0;
646 
647 	IFQ_POLL(&ifp->if_snd, m);
648 	if (m == NULL) {
649 		splx(s);
650 		return;
651 	}
652 //more:
653 	bi = (sc->txqi + sc->txqc) % TX_QLEN;
654 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
655 		BUS_DMA_NOWAIT)) ||
656 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
657 		sc->txq[bi].m_dmamap->dm_nsegs > 1) {
658 		/* Copy entire mbuf chain to new single */
659 		struct mbuf *mn;
660 
661 		if (err == 0)
662 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
663 
664 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
665 		if (mn == NULL) goto stop;
666 		if (m->m_pkthdr.len > MHLEN) {
667 			MCLGET(mn, M_DONTWAIT);
668 			if ((mn->m_flags & M_EXT) == 0) {
669 				m_freem(mn);
670 				goto stop;
671 			}
672 		}
673 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
674 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
675 		IFQ_DEQUEUE(&ifp->if_snd, m);
676 		m_freem(m);
677 		m = mn;
678 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
679 			BUS_DMA_NOWAIT);
680 	} else {
681 		IFQ_DEQUEUE(&ifp->if_snd, m);
682 	}
683 
684 #if NBPFILTER > 0
685 	if (ifp->if_bpf)
686 		bpf_mtap(ifp->if_bpf, m);
687 #endif /* NBPFILTER > 0 */
688 
689 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
690 	segs = sc->txq[bi].m_dmamap->dm_segs;
691 	if (nsegs > 1) {
692 		panic("#### ARGH #2");
693 	}
694 
695 	sc->txq[bi].m = m;
696 	sc->txqc++;
697 
698 	DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
699 		       (unsigned)m->m_pkthdr.len));
700 #ifdef	DIAGNOSTIC
701 	if (sc->txqc > TX_QLEN) {
702 		panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
703 	}
704 #endif
705 
706 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
707 		sc->txq[bi].m_dmamap->dm_mapsize,
708 		BUS_DMASYNC_PREWRITE);
709 
710 	EMAC_WRITE(ETH_TAR, segs->ds_addr);
711 	EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
712 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
713 		goto start;
714 stop:
715 
716 	splx(s);
717 	return;
718 }
719 
720 static void
721 emac_ifwatchdog(struct ifnet *ifp)
722 {
723 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
724 
725 	if ((ifp->if_flags & IFF_RUNNING) == 0)
726 		return;
727        	printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
728 		device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
729 }
730 
731 static int
732 emac_ifinit(struct ifnet *ifp)
733 {
734 	struct emac_softc *sc = ifp->if_softc;
735 	int s = splnet();
736 
737 	callout_stop(&sc->emac_tick_ch);
738 
739 	// enable interrupts
740 	EMAC_WRITE(ETH_IDR, -1);
741 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
742 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
743 
744 	// enable transmitter / receiver
745 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
746 		   | ETH_CTL_CSR | ETH_CTL_MPE);
747 
748 	mii_mediachg(&sc->sc_mii);
749 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
750         ifp->if_flags |= IFF_RUNNING;
751 	splx(s);
752 	return 0;
753 }
754 
755 static void
756 emac_ifstop(struct ifnet *ifp, int disable)
757 {
758 //	u_int32_t u;
759 	struct emac_softc *sc = ifp->if_softc;
760 
761 #if 0
762 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
763 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
764 //	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
765 	EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
766 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
767 //	(void)EMAC_READ(ETH_ISR);
768 	u = EMAC_READ(ETH_TSR);
769 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
770 				  | ETH_TSR_IDLE | ETH_TSR_RLE
771 				  | ETH_TSR_COL|ETH_TSR_OVR)));
772 	u = EMAC_READ(ETH_RSR);
773 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
774 #endif
775 	callout_stop(&sc->emac_tick_ch);
776 
777 	/* Down the MII. */
778 	mii_down(&sc->sc_mii);
779 
780 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
781 	ifp->if_timer = 0;
782 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
783 }
784 
785 static void
786 emac_setaddr(struct ifnet *ifp)
787 {
788 	struct emac_softc *sc = ifp->if_softc;
789 	struct ethercom *ac = &sc->sc_ec;
790 	struct ether_multi *enm;
791 	struct ether_multistep step;
792 	u_int8_t ias[3][ETHER_ADDR_LEN];
793 	u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
794 	u_int32_t ctl = EMAC_READ(ETH_CTL);
795 	u_int32_t cfg = EMAC_READ(ETH_CFG);
796 
797 	/* disable receiver temporarily */
798 	EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
799 
800 	cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
801 
802 	if (ifp->if_flags & IFF_PROMISC) {
803 		cfg |=  ETH_CFG_CAF;
804 	} else {
805 		cfg &= ~ETH_CFG_CAF;
806 	}
807 
808 	// ETH_CFG_BIG?
809 
810 	ifp->if_flags &= ~IFF_ALLMULTI;
811 
812 	ETHER_FIRST_MULTI(step, ac, enm);
813 	while (enm != NULL) {
814 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
815 			/*
816 			 * We must listen to a range of multicast addresses.
817 			 * For now, just accept all multicasts, rather than
818 			 * trying to set only those filter bits needed to match
819 			 * the range.  (At this time, the only use of address
820 			 * ranges is for IP multicast routing, for which the
821 			 * range is big enough to require all bits set.)
822 			 */
823 			cfg |= ETH_CFG_CAF;
824 			hashes[0] = 0xffffffffUL;
825 			hashes[1] = 0xffffffffUL;
826 			ifp->if_flags |= IFF_ALLMULTI;
827 			nma = 0;
828 			break;
829 		}
830 
831 		if (nma < 3) {
832 			/* We can program 3 perfect address filters for mcast */
833 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
834 		} else {
835 			/*
836 			 * XXX: Datasheet is not very clear here, I'm not sure
837 			 * if I'm doing this right.  --joff
838 			 */
839 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
840 
841 			/* Just want the 6 most-significant bits. */
842 			h = h >> 26;
843 
844 			hashes[ h / 32 ] |=  (1 << (h % 32));
845 			cfg |= ETH_CFG_MTI;
846 		}
847 		ETHER_NEXT_MULTI(step, enm);
848 		nma++;
849 	}
850 
851 	// program...
852 	DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
853 		    sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
854 		    sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
855 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
856 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
857 		   | (sc->sc_enaddr[0]));
858 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
859 		   | (sc->sc_enaddr[4]));
860 	if (nma > 1) {
861 		DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
862 		       ias[0][0], ias[0][1], ias[0][2],
863 		       ias[0][3], ias[0][4], ias[0][5]));
864 		EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
865 			   | (ias[0][2] << 16) | (ias[0][1] << 8)
866 			   | (ias[0][0]));
867 		EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
868 			   | (ias[0][5]));
869 	}
870 	if (nma > 2) {
871 		DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
872 		       ias[1][0], ias[1][1], ias[1][2],
873 		       ias[1][3], ias[1][4], ias[1][5]));
874 		EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
875 			   | (ias[1][2] << 16) | (ias[1][1] << 8)
876 			   | (ias[1][0]));
877 		EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
878 			   | (ias[1][5]));
879 	}
880 	if (nma > 3) {
881 		DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
882 		       ias[2][0], ias[2][1], ias[2][2],
883 		       ias[2][3], ias[2][4], ias[2][5]));
884 		EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
885 			   | (ias[2][2] << 16) | (ias[2][1] << 8)
886 			   | (ias[2][0]));
887 		EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
888 			   | (ias[2][5]));
889 	}
890 	EMAC_WRITE(ETH_HSH, hashes[0]);
891 	EMAC_WRITE(ETH_HSL, hashes[1]);
892 	EMAC_WRITE(ETH_CFG, cfg);
893 	EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
894 }
895