1 /* $Id: at91emac.c,v 1.5 2009/03/18 16:00:09 cegger Exp $ */ 2 /* $NetBSD: at91emac.c,v 1.5 2009/03/18 16:00:09 cegger Exp $ */ 3 4 /* 5 * Copyright (c) 2007 Embedtronics Oy 6 * All rights reserved. 7 * 8 * Based on arch/arm/ep93xx/epe.c 9 * 10 * Copyright (c) 2004 Jesse Off 11 * All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the NetBSD 24 * Foundation, Inc. and its contributors. 25 * 4. Neither the name of The NetBSD Foundation nor the names of its 26 * contributors may be used to endorse or promote products derived 27 * from this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 39 * POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 #include <sys/cdefs.h> 43 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.5 2009/03/18 16:00:09 cegger Exp $"); 44 45 #include <sys/types.h> 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/ioctl.h> 49 #include <sys/kernel.h> 50 #include <sys/proc.h> 51 #include <sys/malloc.h> 52 #include <sys/time.h> 53 #include <sys/device.h> 54 #include <uvm/uvm_extern.h> 55 56 #include <machine/bus.h> 57 #include <machine/intr.h> 58 59 #include <arm/cpufunc.h> 60 61 #include <net/if.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/if_media.h> 65 #include <net/if_ether.h> 66 67 #include <dev/mii/mii.h> 68 #include <dev/mii/miivar.h> 69 70 #ifdef INET 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #include <netinet/if_inarp.h> 76 #endif 77 78 #ifdef NS 79 #include <netns/ns.h> 80 #include <netns/ns_if.h> 81 #endif 82 83 #include "bpfilter.h" 84 #if NBPFILTER > 0 85 #include <net/bpf.h> 86 #include <net/bpfdesc.h> 87 #endif 88 89 #ifdef IPKDB_AT91 // @@@ 90 #include <ipkdb/ipkdb.h> 91 #endif 92 93 #include <arm/at91/at91var.h> 94 #include <arm/at91/at91emacreg.h> 95 #include <arm/at91/at91emacvar.h> 96 97 #define DEFAULT_MDCDIV 32 98 99 #ifndef EMAC_FAST 100 #define EMAC_FAST 101 #endif 102 103 #ifndef EMAC_FAST 104 #define EMAC_READ(x) \ 105 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x)) 106 #define EMAC_WRITE(x, y) \ 107 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y)) 108 #else 109 #define EMAC_READ(x) ETHREG(x) 110 #define EMAC_WRITE(x, y) ETHREG(x) = (y) 111 #endif /* ! EMAC_FAST */ 112 113 static int emac_match(device_t, cfdata_t, void *); 114 static void emac_attach(device_t, device_t, void *); 115 static void emac_init(struct emac_softc *); 116 static int emac_intr(void* arg); 117 static int emac_gctx(struct emac_softc *); 118 static int emac_mediachange(struct ifnet *); 119 static void emac_mediastatus(struct ifnet *, struct ifmediareq *); 120 int emac_mii_readreg (device_t, int, int); 121 void emac_mii_writereg (device_t, int, int, int); 122 void emac_statchg (device_t ); 123 void emac_tick (void *); 124 static int emac_ifioctl (struct ifnet *, u_long, void *); 125 static void emac_ifstart (struct ifnet *); 126 static void emac_ifwatchdog (struct ifnet *); 127 static int emac_ifinit (struct ifnet *); 128 static void emac_ifstop (struct ifnet *, int); 129 static void emac_setaddr (struct ifnet *); 130 131 CFATTACH_DECL(at91emac, sizeof(struct emac_softc), 132 emac_match, emac_attach, NULL, NULL); 133 134 #ifdef EMAC_DEBUG 135 int emac_debug = EMAC_DEBUG; 136 #define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt 137 #else 138 #define DPRINTFN(n,fmt) 139 #endif 140 141 static int 142 emac_match(device_t parent, cfdata_t match, void *aux) 143 { 144 if (strcmp(match->cf_name, "at91emac") == 0) 145 return 2; 146 return 0; 147 } 148 149 static void 150 emac_attach(device_t parent, device_t self, void *aux) 151 { 152 struct emac_softc *sc = device_private(self); 153 struct at91bus_attach_args *sa = aux; 154 prop_data_t enaddr; 155 uint32_t u; 156 157 printf("\n"); 158 sc->sc_dev = self; 159 sc->sc_iot = sa->sa_iot; 160 sc->sc_pid = sa->sa_pid; 161 sc->sc_dmat = sa->sa_dmat; 162 163 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh)) 164 panic("%s: Cannot map registers", device_xname(self)); 165 166 /* enable peripheral clock */ 167 at91_peripheral_clock(sc->sc_pid, 1); 168 169 /* configure emac: */ 170 EMAC_WRITE(ETH_CTL, 0); // disable everything 171 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 172 EMAC_WRITE(ETH_RBQP, 0); // clear receive 173 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 174 EMAC_WRITE(ETH_TCR, 0); // send nothing 175 //(void)EMAC_READ(ETH_ISR); 176 u = EMAC_READ(ETH_TSR); 177 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 178 | ETH_TSR_IDLE | ETH_TSR_RLE 179 | ETH_TSR_COL|ETH_TSR_OVR))); 180 u = EMAC_READ(ETH_RSR); 181 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 182 183 /* Fetch the Ethernet address from property if set. */ 184 enaddr = prop_dictionary_get(device_properties(self), "mac-addr"); 185 186 if (enaddr != NULL) { 187 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); 188 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); 189 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr), 190 ETHER_ADDR_LEN); 191 } else { 192 static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 193 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 194 }; 195 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); 196 } 197 198 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc); 199 emac_init(sc); 200 } 201 202 static int 203 emac_gctx(struct emac_softc *sc) 204 { 205 struct ifnet * ifp = &sc->sc_ec.ec_if; 206 u_int32_t tsr; 207 208 tsr = EMAC_READ(ETH_TSR); 209 if (!(tsr & ETH_TSR_BNQ)) { 210 // no space left 211 return 0; 212 } 213 214 // free sent frames 215 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) { 216 int i = sc->txqi % TX_QLEN; 217 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0, 218 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); 219 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap); 220 m_freem(sc->txq[i].m); 221 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc)); 222 sc->txq[i].m = NULL; 223 sc->txqi = (i + 1) % TX_QLEN; 224 sc->txqc--; 225 } 226 227 // mark we're free 228 if (ifp->if_flags & IFF_OACTIVE) { 229 ifp->if_flags &= ~IFF_OACTIVE; 230 /* Disable transmit-buffer-free interrupt */ 231 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ 232 } 233 234 return 1; 235 } 236 237 static int 238 emac_intr(void *arg) 239 { 240 struct emac_softc *sc = (struct emac_softc *)arg; 241 struct ifnet * ifp = &sc->sc_ec.ec_if; 242 u_int32_t imr, isr, rsr, ctl; 243 int bi; 244 245 imr = ~EMAC_READ(ETH_IMR); 246 if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) { 247 // interrupt not enabled, can't be us 248 return 0; 249 } 250 251 isr = EMAC_READ(ETH_ISR) & imr; 252 rsr = EMAC_READ(ETH_RSR); // get receive status register 253 254 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr)); 255 256 if (isr & ETH_ISR_RBNA) { // out of receive buffers 257 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt 258 ctl = EMAC_READ(ETH_CTL); // get current control register value 259 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver 260 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit 261 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver 262 ifp->if_ierrors++; 263 ifp->if_ipackets++; 264 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); 265 } 266 if (isr & ETH_ISR_ROVR) { 267 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt 268 ifp->if_ierrors++; 269 ifp->if_ipackets++; 270 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); 271 } 272 273 if (isr & ETH_ISR_RCOM) { // packet has been received! 274 uint32_t nfo; 275 // @@@ if memory is NOT coherent, then we're in trouble @@@@ 276 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); 277 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr); 278 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info)); 279 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { 280 int fl; 281 struct mbuf *m; 282 283 nfo = sc->RDSC[bi].Info; 284 fl = (nfo & ETH_RDSC_I_LEN) - 4; 285 DPRINTFN(2,("## nfo=0x%08X\n", nfo)); 286 287 MGETHDR(m, M_DONTWAIT, MT_DATA); 288 if (m != NULL) MCLGET(m, M_DONTWAIT); 289 if (m != NULL && (m->m_flags & M_EXT)) { 290 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 291 MCLBYTES, BUS_DMASYNC_POSTREAD); 292 bus_dmamap_unload(sc->sc_dmat, 293 sc->rxq[bi].m_dmamap); 294 sc->rxq[bi].m->m_pkthdr.rcvif = ifp; 295 sc->rxq[bi].m->m_pkthdr.len = 296 sc->rxq[bi].m->m_len = fl; 297 #if NBPFILTER > 0 298 if (ifp->if_bpf) 299 bpf_mtap(ifp->if_bpf, sc->rxq[bi].m); 300 #endif /* NBPFILTER > 0 */ 301 DPRINTFN(2,("received %u bytes packet\n", fl)); 302 (*ifp->if_input)(ifp, sc->rxq[bi].m); 303 if (mtod(m, intptr_t) & 3) { 304 m_adj(m, mtod(m, intptr_t) & 3); 305 } 306 sc->rxq[bi].m = m; 307 bus_dmamap_load(sc->sc_dmat, 308 sc->rxq[bi].m_dmamap, 309 m->m_ext.ext_buf, MCLBYTES, 310 NULL, BUS_DMA_NOWAIT); 311 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 312 MCLBYTES, BUS_DMASYNC_PREREAD); 313 sc->RDSC[bi].Info = 0; 314 sc->RDSC[bi].Addr = 315 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr 316 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 317 } else { 318 /* Drop packets until we can get replacement 319 * empty mbufs for the RXDQ. 320 */ 321 if (m != NULL) { 322 m_freem(m); 323 } 324 ifp->if_ierrors++; 325 } 326 sc->rxqi++; 327 } 328 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 329 } 330 331 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { 332 emac_ifstart(ifp); 333 } 334 #if 0 // reloop 335 irq = EMAC_READ(IntStsC); 336 if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0) 337 goto begin; 338 #endif 339 340 return (1); 341 } 342 343 344 static void 345 emac_init(struct emac_softc *sc) 346 { 347 bus_dma_segment_t segs; 348 void *addr; 349 int rsegs, err, i; 350 struct ifnet * ifp = &sc->sc_ec.ec_if; 351 uint32_t u; 352 #if 0 353 int mdcdiv = DEFAULT_MDCDIV; 354 #endif 355 356 callout_init(&sc->emac_tick_ch, 0); 357 358 // ok... 359 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 360 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 361 EMAC_WRITE(ETH_RBQP, 0); // clear receive 362 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 363 EMAC_WRITE(ETH_TCR, 0); // send nothing 364 // (void)EMAC_READ(ETH_ISR); 365 u = EMAC_READ(ETH_TSR); 366 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 367 | ETH_TSR_IDLE | ETH_TSR_RLE 368 | ETH_TSR_COL|ETH_TSR_OVR))); 369 u = EMAC_READ(ETH_RSR); 370 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 371 372 /* configure EMAC */ 373 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 374 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); 375 #if 0 376 if (device_cfdata(&sc->sc_dev)->cf_flags) 377 mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags; 378 #endif 379 /* set ethernet address */ 380 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 381 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 382 | (sc->sc_enaddr[0])); 383 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 384 | (sc->sc_enaddr[4])); 385 EMAC_WRITE(ETH_SA2L, 0); 386 EMAC_WRITE(ETH_SA2H, 0); 387 EMAC_WRITE(ETH_SA3L, 0); 388 EMAC_WRITE(ETH_SA3H, 0); 389 EMAC_WRITE(ETH_SA4L, 0); 390 EMAC_WRITE(ETH_SA4H, 0); 391 392 /* Allocate a page of memory for receive queue descriptors */ 393 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; 394 sc->rbqlen *= PAGE_SIZE; 395 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); 396 397 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, 398 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary 399 &segs, 1, &rsegs, BUS_DMA_WAITOK); 400 if (err == 0) { 401 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 402 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, 403 &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT)); 404 } 405 if (err == 0) { 406 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 407 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, 408 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 409 &sc->rbqpage_dmamap); 410 } 411 if (err == 0) { 412 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 413 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, 414 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); 415 } 416 if (err != 0) { 417 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 418 } 419 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; 420 421 memset(sc->rbqpage, 0, sc->rbqlen); 422 423 /* Set up pointers to start of each queue in kernel addr space. 424 * Each descriptor queue or status queue entry uses 2 words 425 */ 426 sc->RDSC = (void*)sc->rbqpage; 427 428 /* Populate the RXQ with mbufs */ 429 sc->rxqi = 0; 430 for(i = 0; i < RX_QLEN; i++) { 431 struct mbuf *m; 432 433 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE, 434 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); 435 if (err) { 436 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err); 437 } 438 MGETHDR(m, M_WAIT, MT_DATA); 439 MCLGET(m, M_WAIT); 440 sc->rxq[i].m = m; 441 if (mtod(m, intptr_t) & 3) { 442 m_adj(m, mtod(m, intptr_t) & 3); 443 } 444 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, 445 m->m_ext.ext_buf, MCLBYTES, NULL, 446 BUS_DMA_WAITOK); 447 if (err) { 448 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err); 449 } 450 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr 451 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 452 sc->RDSC[i].Info = 0; 453 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, 454 MCLBYTES, BUS_DMASYNC_PREREAD); 455 } 456 457 /* prepare transmit queue */ 458 for (i = 0; i < TX_QLEN; i++) { 459 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 460 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), 461 &sc->txq[i].m_dmamap); 462 if (err) 463 panic("ARGH #1"); 464 sc->txq[i].m = NULL; 465 } 466 467 /* Program each queue's start addr, cur addr, and len registers 468 * with the physical addresses. 469 */ 470 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, 471 BUS_DMASYNC_PREREAD); 472 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr; 473 EMAC_WRITE(ETH_RBQP, (u_int32_t)addr); 474 475 /* Divide HCLK by 32 for MDC clock */ 476 sc->sc_mii.mii_ifp = ifp; 477 sc->sc_mii.mii_readreg = emac_mii_readreg; 478 sc->sc_mii.mii_writereg = emac_mii_writereg; 479 sc->sc_mii.mii_statchg = emac_statchg; 480 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange, 481 emac_mediastatus); 482 mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 483 MII_OFFSET_ANY, 0); 484 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 485 486 // enable / disable interrupts 487 488 #if 0 489 // enable / disable interrupts 490 EMAC_WRITE(ETH_IDR, -1); 491 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 492 | ETH_ISR_RBNA | ETH_ISR_ROVR); 493 // (void)EMAC_READ(ETH_ISR); // why 494 495 // enable transmitter / receiver 496 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 497 | ETH_CTL_CSR | ETH_CTL_MPE); 498 #endif 499 /* 500 * We can support 802.1Q VLAN-sized frames. 501 */ 502 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 503 504 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 505 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST; 506 ifp->if_ioctl = emac_ifioctl; 507 ifp->if_start = emac_ifstart; 508 ifp->if_watchdog = emac_ifwatchdog; 509 ifp->if_init = emac_ifinit; 510 ifp->if_stop = emac_ifstop; 511 ifp->if_timer = 0; 512 ifp->if_softc = sc; 513 IFQ_SET_READY(&ifp->if_snd); 514 if_attach(ifp); 515 ether_ifattach(ifp, (sc)->sc_enaddr); 516 } 517 518 static int 519 emac_mediachange(struct ifnet *ifp) 520 { 521 if (ifp->if_flags & IFF_UP) 522 emac_ifinit(ifp); 523 return (0); 524 } 525 526 static void 527 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 528 { 529 struct emac_softc *sc = ifp->if_softc; 530 531 mii_pollstat(&sc->sc_mii); 532 ifmr->ifm_active = sc->sc_mii.mii_media_active; 533 ifmr->ifm_status = sc->sc_mii.mii_media_status; 534 } 535 536 537 int 538 emac_mii_readreg(device_t self, int phy, int reg) 539 { 540 struct emac_softc *sc; 541 542 sc = (struct emac_softc *)self; 543 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD 544 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 545 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 546 | ETH_MAN_CODE_IEEE802_3)); 547 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; 548 return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA); 549 } 550 551 void 552 emac_mii_writereg(device_t self, int phy, int reg, int val) 553 { 554 struct emac_softc *sc; 555 sc = (struct emac_softc *)self; 556 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR 557 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 558 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 559 | ETH_MAN_CODE_IEEE802_3 560 | (val & ETH_MAN_DATA))); 561 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; 562 } 563 564 565 void 566 emac_statchg(device_t self) 567 { 568 struct emac_softc *sc = (struct emac_softc *)self; 569 u_int32_t reg; 570 571 /* 572 * We must keep the MAC and the PHY in sync as 573 * to the status of full-duplex! 574 */ 575 reg = EMAC_READ(ETH_CFG); 576 if (sc->sc_mii.mii_media_active & IFM_FDX) 577 reg |= ETH_CFG_FD; 578 else 579 reg &= ~ETH_CFG_FD; 580 EMAC_WRITE(ETH_CFG, reg); 581 } 582 583 void 584 emac_tick(void *arg) 585 { 586 struct emac_softc* sc = (struct emac_softc *)arg; 587 struct ifnet * ifp = &sc->sc_ec.ec_if; 588 int s; 589 u_int32_t misses; 590 591 ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL); 592 /* These misses are ok, they will happen if the RAM/CPU can't keep up */ 593 misses = EMAC_READ(ETH_DRFC); 594 if (misses > 0) 595 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses); 596 597 s = splnet(); 598 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { 599 emac_ifstart(ifp); 600 } 601 splx(s); 602 603 mii_tick(&sc->sc_mii); 604 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 605 } 606 607 608 static int 609 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 610 { 611 struct emac_softc *sc = ifp->if_softc; 612 struct ifreq *ifr = (struct ifreq *)data; 613 int s, error; 614 615 s = splnet(); 616 switch(cmd) { 617 case SIOCSIFMEDIA: 618 case SIOCGIFMEDIA: 619 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 620 break; 621 default: 622 error = ether_ioctl(ifp, cmd, data); 623 if (error == ENETRESET) { 624 if (ifp->if_flags & IFF_RUNNING) 625 emac_setaddr(ifp); 626 error = 0; 627 } 628 } 629 splx(s); 630 return error; 631 } 632 633 static void 634 emac_ifstart(struct ifnet *ifp) 635 { 636 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 637 struct mbuf *m; 638 bus_dma_segment_t *segs; 639 int s, bi, err, nsegs; 640 641 s = splnet(); 642 start: 643 if (emac_gctx(sc) == 0) { 644 /* Enable transmit-buffer-free interrupt */ 645 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE); 646 ifp->if_flags |= IFF_OACTIVE; 647 ifp->if_timer = 10; 648 splx(s); 649 return; 650 } 651 652 ifp->if_timer = 0; 653 654 IFQ_POLL(&ifp->if_snd, m); 655 if (m == NULL) { 656 splx(s); 657 return; 658 } 659 //more: 660 bi = (sc->txqi + sc->txqc) % TX_QLEN; 661 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 662 BUS_DMA_NOWAIT)) || 663 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || 664 sc->txq[bi].m_dmamap->dm_nsegs > 1) { 665 /* Copy entire mbuf chain to new single */ 666 struct mbuf *mn; 667 668 if (err == 0) 669 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 670 671 MGETHDR(mn, M_DONTWAIT, MT_DATA); 672 if (mn == NULL) goto stop; 673 if (m->m_pkthdr.len > MHLEN) { 674 MCLGET(mn, M_DONTWAIT); 675 if ((mn->m_flags & M_EXT) == 0) { 676 m_freem(mn); 677 goto stop; 678 } 679 } 680 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); 681 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; 682 IFQ_DEQUEUE(&ifp->if_snd, m); 683 m_freem(m); 684 m = mn; 685 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 686 BUS_DMA_NOWAIT); 687 } else { 688 IFQ_DEQUEUE(&ifp->if_snd, m); 689 } 690 691 #if NBPFILTER > 0 692 if (ifp->if_bpf) 693 bpf_mtap(ifp->if_bpf, m); 694 #endif /* NBPFILTER > 0 */ 695 696 nsegs = sc->txq[bi].m_dmamap->dm_nsegs; 697 segs = sc->txq[bi].m_dmamap->dm_segs; 698 if (nsegs > 1) { 699 panic("#### ARGH #2"); 700 } 701 702 sc->txq[bi].m = m; 703 sc->txqc++; 704 705 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr, 706 (unsigned)m->m_pkthdr.len)); 707 #ifdef DIAGNOSTIC 708 if (sc->txqc > TX_QLEN) { 709 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); 710 } 711 #endif 712 713 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 714 sc->txq[bi].m_dmamap->dm_mapsize, 715 BUS_DMASYNC_PREWRITE); 716 717 EMAC_WRITE(ETH_TAR, segs->ds_addr); 718 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len); 719 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 720 goto start; 721 stop: 722 723 splx(s); 724 return; 725 } 726 727 static void 728 emac_ifwatchdog(struct ifnet *ifp) 729 { 730 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; 731 732 if ((ifp->if_flags & IFF_RUNNING) == 0) 733 return; 734 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n", 735 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG)); 736 } 737 738 static int 739 emac_ifinit(struct ifnet *ifp) 740 { 741 struct emac_softc *sc = ifp->if_softc; 742 int s = splnet(); 743 744 callout_stop(&sc->emac_tick_ch); 745 746 // enable interrupts 747 EMAC_WRITE(ETH_IDR, -1); 748 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 749 | ETH_ISR_RBNA | ETH_ISR_ROVR); 750 751 // enable transmitter / receiver 752 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 753 | ETH_CTL_CSR | ETH_CTL_MPE); 754 755 mii_mediachg(&sc->sc_mii); 756 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); 757 ifp->if_flags |= IFF_RUNNING; 758 splx(s); 759 return 0; 760 } 761 762 static void 763 emac_ifstop(struct ifnet *ifp, int disable) 764 { 765 // u_int32_t u; 766 struct emac_softc *sc = ifp->if_softc; 767 768 #if 0 769 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 770 EMAC_WRITE(ETH_IDR, -1); // disable interrupts 771 // EMAC_WRITE(ETH_RBQP, 0); // clear receive 772 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 773 EMAC_WRITE(ETH_TCR, 0); // send nothing 774 // (void)EMAC_READ(ETH_ISR); 775 u = EMAC_READ(ETH_TSR); 776 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 777 | ETH_TSR_IDLE | ETH_TSR_RLE 778 | ETH_TSR_COL|ETH_TSR_OVR))); 779 u = EMAC_READ(ETH_RSR); 780 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA))); 781 #endif 782 callout_stop(&sc->emac_tick_ch); 783 784 /* Down the MII. */ 785 mii_down(&sc->sc_mii); 786 787 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 788 ifp->if_timer = 0; 789 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; 790 } 791 792 static void 793 emac_setaddr(struct ifnet *ifp) 794 { 795 struct emac_softc *sc = ifp->if_softc; 796 struct ethercom *ac = &sc->sc_ec; 797 struct ether_multi *enm; 798 struct ether_multistep step; 799 u_int8_t ias[3][ETHER_ADDR_LEN]; 800 u_int32_t h, nma = 0, hashes[2] = { 0, 0 }; 801 u_int32_t ctl = EMAC_READ(ETH_CTL); 802 u_int32_t cfg = EMAC_READ(ETH_CFG); 803 804 /* disable receiver temporarily */ 805 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 806 807 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); 808 809 if (ifp->if_flags & IFF_PROMISC) { 810 cfg |= ETH_CFG_CAF; 811 } else { 812 cfg &= ~ETH_CFG_CAF; 813 } 814 815 // ETH_CFG_BIG? 816 817 ifp->if_flags &= ~IFF_ALLMULTI; 818 819 ETHER_FIRST_MULTI(step, ac, enm); 820 while (enm != NULL) { 821 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 822 /* 823 * We must listen to a range of multicast addresses. 824 * For now, just accept all multicasts, rather than 825 * trying to set only those filter bits needed to match 826 * the range. (At this time, the only use of address 827 * ranges is for IP multicast routing, for which the 828 * range is big enough to require all bits set.) 829 */ 830 cfg |= ETH_CFG_CAF; 831 hashes[0] = 0xffffffffUL; 832 hashes[1] = 0xffffffffUL; 833 ifp->if_flags |= IFF_ALLMULTI; 834 nma = 0; 835 break; 836 } 837 838 if (nma < 3) { 839 /* We can program 3 perfect address filters for mcast */ 840 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); 841 } else { 842 /* 843 * XXX: Datasheet is not very clear here, I'm not sure 844 * if I'm doing this right. --joff 845 */ 846 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 847 848 /* Just want the 6 most-significant bits. */ 849 h = h >> 26; 850 851 hashes[ h / 32 ] |= (1 << (h % 32)); 852 cfg |= ETH_CFG_MTI; 853 } 854 ETHER_NEXT_MULTI(step, enm); 855 nma++; 856 } 857 858 // program... 859 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 860 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], 861 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); 862 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) 863 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 864 | (sc->sc_enaddr[0])); 865 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) 866 | (sc->sc_enaddr[4])); 867 if (nma > 1) { 868 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 869 ias[0][0], ias[0][1], ias[0][2], 870 ias[0][3], ias[0][4], ias[0][5])); 871 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) 872 | (ias[0][2] << 16) | (ias[0][1] << 8) 873 | (ias[0][0])); 874 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) 875 | (ias[0][5])); 876 } 877 if (nma > 2) { 878 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 879 ias[1][0], ias[1][1], ias[1][2], 880 ias[1][3], ias[1][4], ias[1][5])); 881 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) 882 | (ias[1][2] << 16) | (ias[1][1] << 8) 883 | (ias[1][0])); 884 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) 885 | (ias[1][5])); 886 } 887 if (nma > 3) { 888 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 889 ias[2][0], ias[2][1], ias[2][2], 890 ias[2][3], ias[2][4], ias[2][5])); 891 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24) 892 | (ias[2][2] << 16) | (ias[2][1] << 8) 893 | (ias[2][0])); 894 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8) 895 | (ias[2][5])); 896 } 897 EMAC_WRITE(ETH_HSH, hashes[0]); 898 EMAC_WRITE(ETH_HSL, hashes[1]); 899 EMAC_WRITE(ETH_CFG, cfg); 900 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 901 } 902