xref: /netbsd-src/sys/arch/arm/arm32/pmap.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: pmap.c,v 1.421 2020/08/12 18:30:46 skrll Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40  * Copyright (c) 2001 Richard Earnshaw
41  * Copyright (c) 2001-2002 Christopher Gilbert
42  * All rights reserved.
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. The name of the company nor the name of the author may be used to
50  *   endorse or promote products derived from this software without specific
51  *    prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  */
65 
66 /*-
67  * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
68  * All rights reserved.
69  *
70  * This code is derived from software contributed to The NetBSD Foundation
71  * by Charles M. Hannum.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  *
82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92  * POSSIBILITY OF SUCH DAMAGE.
93  */
94 
95 /*
96  * Copyright (c) 1994-1998 Mark Brinicombe.
97  * Copyright (c) 1994 Brini.
98  * All rights reserved.
99  *
100  * This code is derived from software written for Brini by Mark Brinicombe
101  *
102  * Redistribution and use in source and binary forms, with or without
103  * modification, are permitted provided that the following conditions
104  * are met:
105  * 1. Redistributions of source code must retain the above copyright
106  *    notice, this list of conditions and the following disclaimer.
107  * 2. Redistributions in binary form must reproduce the above copyright
108  *    notice, this list of conditions and the following disclaimer in the
109  *    documentation and/or other materials provided with the distribution.
110  * 3. All advertising materials mentioning features or use of this software
111  *    must display the following acknowledgement:
112  *	This product includes software developed by Mark Brinicombe.
113  * 4. The name of the author may not be used to endorse or promote products
114  *    derived from this software without specific prior written permission.
115  *
116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125  *
126  * RiscBSD kernel project
127  *
128  * pmap.c
129  *
130  * Machine dependent vm stuff
131  *
132  * Created      : 20/09/94
133  */
134 
135 /*
136  * armv6 and VIPT cache support by 3am Software Foundry,
137  * Copyright (c) 2007 Microsoft
138  */
139 
140 /*
141  * Performance improvements, UVM changes, overhauls and part-rewrites
142  * were contributed by Neil A. Carson <neil@causality.com>.
143  */
144 
145 /*
146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148  * Systems, Inc.
149  *
150  * There are still a few things outstanding at this time:
151  *
152  *   - There are some unresolved issues for MP systems:
153  *
154  *     o The L1 metadata needs a lock, or more specifically, some places
155  *       need to acquire an exclusive lock when modifying L1 translation
156  *       table entries.
157  *
158  *     o When one cpu modifies an L1 entry, and that L1 table is also
159  *       being used by another cpu, then the latter will need to be told
160  *       that a tlb invalidation may be necessary. (But only if the old
161  *       domain number in the L1 entry being over-written is currently
162  *       the active domain on that cpu). I guess there are lots more tlb
163  *       shootdown issues too...
164  *
165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
166  *       then MP systems will lose big-time because of the MMU domain hack.
167  *       The only way this can be solved (apart from moving the vector
168  *       page to 0xffff0000) is to reserve the first 1MB of user address
169  *       space for kernel use only. This would require re-linking all
170  *       applications so that the text section starts above this 1MB
171  *       boundary.
172  *
173  *     o Tracking which VM space is resident in the cache/tlb has not yet
174  *       been implemented for MP systems.
175  *
176  *     o Finally, there is a pathological condition where two cpus running
177  *       two separate processes (not lwps) which happen to share an L1
178  *       can get into a fight over one or more L1 entries. This will result
179  *       in a significant slow-down if both processes are in tight loops.
180  */
181 
182 /* Include header files */
183 
184 #include "opt_arm_debug.h"
185 #include "opt_cpuoptions.h"
186 #include "opt_ddb.h"
187 #include "opt_lockdebug.h"
188 #include "opt_multiprocessor.h"
189 
190 #ifdef MULTIPROCESSOR
191 #define _INTR_PRIVATE
192 #endif
193 
194 #include <sys/cdefs.h>
195 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.421 2020/08/12 18:30:46 skrll Exp $");
196 
197 #include <sys/param.h>
198 #include <sys/types.h>
199 
200 #include <sys/asan.h>
201 #include <sys/atomic.h>
202 #include <sys/bus.h>
203 #include <sys/cpu.h>
204 #include <sys/intr.h>
205 #include <sys/kernel.h>
206 #include <sys/kernhist.h>
207 #include <sys/kmem.h>
208 #include <sys/pool.h>
209 #include <sys/proc.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212 
213 #include <uvm/uvm.h>
214 #include <uvm/pmap/pmap_pvt.h>
215 
216 #include <arm/locore.h>
217 
218 #ifdef DDB
219 #include <arm/db_machdep.h>
220 #endif
221 
222 #ifdef VERBOSE_INIT_ARM
223 #define VPRINTF(...)	printf(__VA_ARGS__)
224 #else
225 #define VPRINTF(...)	__nothing
226 #endif
227 
228 /*
229  * pmap_kernel() points here
230  */
231 static struct pmap	kernel_pmap_store = {
232 #ifndef ARM_MMU_EXTENDED
233 	.pm_activated = true,
234 	.pm_domain = PMAP_DOMAIN_KERNEL,
235 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
236 #endif
237 };
238 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
239 #undef pmap_kernel
240 #define pmap_kernel()	(&kernel_pmap_store)
241 #ifdef PMAP_NEED_ALLOC_POOLPAGE
242 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
243 #endif
244 
245 /*
246  * Pool and cache that pmap structures are allocated from.
247  * We use a cache to avoid clearing the pm_l2[] array (1KB)
248  * in pmap_create().
249  */
250 static struct pool_cache pmap_cache;
251 
252 /*
253  * Pool of PV structures
254  */
255 static struct pool pmap_pv_pool;
256 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
257 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
258 static struct pool_allocator pmap_bootstrap_pv_allocator = {
259 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
260 };
261 
262 /*
263  * Pool and cache of l2_dtable structures.
264  * We use a cache to avoid clearing the structures when they're
265  * allocated. (196 bytes)
266  */
267 static struct pool_cache pmap_l2dtable_cache;
268 static vaddr_t pmap_kernel_l2dtable_kva;
269 
270 /*
271  * Pool and cache of L2 page descriptors.
272  * We use a cache to avoid clearing the descriptor table
273  * when they're allocated. (1KB)
274  */
275 static struct pool_cache pmap_l2ptp_cache;
276 static vaddr_t pmap_kernel_l2ptp_kva;
277 static paddr_t pmap_kernel_l2ptp_phys;
278 
279 #ifdef PMAPCOUNTERS
280 #define	PMAP_EVCNT_INITIALIZER(name) \
281 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
282 
283 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
284 static struct evcnt pmap_ev_vac_clean_one =
285    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
286 static struct evcnt pmap_ev_vac_flush_one =
287    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
288 static struct evcnt pmap_ev_vac_flush_lots =
289    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
290 static struct evcnt pmap_ev_vac_flush_lots2 =
291    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
292 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
293 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
294 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
295 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
296 
297 static struct evcnt pmap_ev_vac_color_new =
298    PMAP_EVCNT_INITIALIZER("new page color");
299 static struct evcnt pmap_ev_vac_color_reuse =
300    PMAP_EVCNT_INITIALIZER("ok first page color");
301 static struct evcnt pmap_ev_vac_color_ok =
302    PMAP_EVCNT_INITIALIZER("ok page color");
303 static struct evcnt pmap_ev_vac_color_blind =
304    PMAP_EVCNT_INITIALIZER("blind page color");
305 static struct evcnt pmap_ev_vac_color_change =
306    PMAP_EVCNT_INITIALIZER("change page color");
307 static struct evcnt pmap_ev_vac_color_erase =
308    PMAP_EVCNT_INITIALIZER("erase page color");
309 static struct evcnt pmap_ev_vac_color_none =
310    PMAP_EVCNT_INITIALIZER("no page color");
311 static struct evcnt pmap_ev_vac_color_restore =
312    PMAP_EVCNT_INITIALIZER("restore page color");
313 
314 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
315 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
316 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
317 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
318 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
322 #endif
323 
324 static struct evcnt pmap_ev_mappings =
325    PMAP_EVCNT_INITIALIZER("pages mapped");
326 static struct evcnt pmap_ev_unmappings =
327    PMAP_EVCNT_INITIALIZER("pages unmapped");
328 static struct evcnt pmap_ev_remappings =
329    PMAP_EVCNT_INITIALIZER("pages remapped");
330 
331 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
332 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
333 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
334 
335 static struct evcnt pmap_ev_kernel_mappings =
336    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
337 static struct evcnt pmap_ev_kernel_unmappings =
338    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
339 static struct evcnt pmap_ev_kernel_remappings =
340    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
341 
342 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
343 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
344 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
345 
346 static struct evcnt pmap_ev_kenter_mappings =
347    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
348 static struct evcnt pmap_ev_kenter_unmappings =
349    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
350 static struct evcnt pmap_ev_kenter_remappings =
351    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
352 static struct evcnt pmap_ev_pt_mappings =
353    PMAP_EVCNT_INITIALIZER("page table pages mapped");
354 
355 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
359 
360 static struct evcnt pmap_ev_fixup_mod =
361    PMAP_EVCNT_INITIALIZER("page modification emulations");
362 static struct evcnt pmap_ev_fixup_ref =
363    PMAP_EVCNT_INITIALIZER("page reference emulations");
364 static struct evcnt pmap_ev_fixup_exec =
365    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
366 static struct evcnt pmap_ev_fixup_pdes =
367    PMAP_EVCNT_INITIALIZER("pdes fixed up");
368 #ifndef ARM_MMU_EXTENDED
369 static struct evcnt pmap_ev_fixup_ptesync =
370    PMAP_EVCNT_INITIALIZER("ptesync fixed");
371 #endif
372 
373 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
374 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
375 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
376 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
377 #ifndef ARM_MMU_EXTENDED
378 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
379 #endif
380 
381 #ifdef PMAP_CACHE_VIPT
382 static struct evcnt pmap_ev_exec_mappings =
383    PMAP_EVCNT_INITIALIZER("exec pages mapped");
384 static struct evcnt pmap_ev_exec_cached =
385    PMAP_EVCNT_INITIALIZER("exec pages cached");
386 
387 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
389 
390 static struct evcnt pmap_ev_exec_synced =
391    PMAP_EVCNT_INITIALIZER("exec pages synced");
392 static struct evcnt pmap_ev_exec_synced_map =
393    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
394 static struct evcnt pmap_ev_exec_synced_unmap =
395    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
396 static struct evcnt pmap_ev_exec_synced_remap =
397    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
398 static struct evcnt pmap_ev_exec_synced_clearbit =
399    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
400 #ifndef ARM_MMU_EXTENDED
401 static struct evcnt pmap_ev_exec_synced_kremove =
402    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
403 #endif
404 
405 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
406 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
407 #ifndef ARM_MMU_EXTENDED
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
412 #endif
413 
414 static struct evcnt pmap_ev_exec_discarded_unmap =
415    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
416 static struct evcnt pmap_ev_exec_discarded_zero =
417    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
418 static struct evcnt pmap_ev_exec_discarded_copy =
419    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
420 static struct evcnt pmap_ev_exec_discarded_page_protect =
421    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
422 static struct evcnt pmap_ev_exec_discarded_clearbit =
423    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
424 static struct evcnt pmap_ev_exec_discarded_kremove =
425    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
426 #ifdef ARM_MMU_EXTENDED
427 static struct evcnt pmap_ev_exec_discarded_modfixup =
428    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
429 #endif
430 
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #ifdef ARM_MMU_EXTENDED
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
439 #endif
440 #endif /* PMAP_CACHE_VIPT */
441 
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445 
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449 
450 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define	PMAPCOUNT(x)	((void)0)
453 #endif
454 
455 #ifdef ARM_MMU_EXTENDED
456 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
457 void pmap_md_pdetab_deactivate(pmap_t pm);
458 #endif
459 
460 /*
461  * pmap copy/zero page, and mem(5) hook point
462  */
463 static pt_entry_t *csrc_pte, *cdst_pte;
464 static vaddr_t csrcp, cdstp;
465 #ifdef MULTIPROCESSOR
466 static size_t cnptes;
467 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
468 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
469 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
470 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
471 #else
472 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
473 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
474 #define	cpu_csrcp(o)	(csrcp + (o))
475 #define	cpu_cdstp(o)	(cdstp + (o))
476 #endif
477 vaddr_t memhook;			/* used by mem.c & others */
478 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
479 kmutex_t pmap_lock __cacheline_aligned;
480 kmutex_t kpm_lock __cacheline_aligned;
481 extern void *msgbufaddr;
482 int pmap_kmpages;
483 /*
484  * Flag to indicate if pmap_init() has done its thing
485  */
486 bool pmap_initialized;
487 
488 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
489 /*
490  * Virtual end of direct-mapped memory
491  */
492 vaddr_t pmap_directlimit;
493 #endif
494 
495 /*
496  * Misc. locking data structures
497  */
498 
499 static inline void
500 pmap_acquire_pmap_lock(pmap_t pm)
501 {
502 #if defined(MULTIPROCESSOR) && defined(DDB)
503 	if (__predict_false(db_onproc != NULL))
504 		return;
505 #endif
506 
507 	mutex_enter(&pm->pm_lock);
508 }
509 
510 static inline void
511 pmap_release_pmap_lock(pmap_t pm)
512 {
513 #if defined(MULTIPROCESSOR) && defined(DDB)
514 	if (__predict_false(db_onproc != NULL))
515 		return;
516 #endif
517 	mutex_exit(&pm->pm_lock);
518 }
519 
520 static inline void
521 pmap_acquire_page_lock(struct vm_page_md *md)
522 {
523 	mutex_enter(&pmap_lock);
524 }
525 
526 static inline void
527 pmap_release_page_lock(struct vm_page_md *md)
528 {
529 	mutex_exit(&pmap_lock);
530 }
531 
532 #ifdef DIAGNOSTIC
533 static inline int
534 pmap_page_locked_p(struct vm_page_md *md)
535 {
536 	return mutex_owned(&pmap_lock);
537 }
538 #endif
539 
540 
541 /*
542  * Metadata for L1 translation tables.
543  */
544 #ifndef ARM_MMU_EXTENDED
545 struct l1_ttable {
546 	/* Entry on the L1 Table list */
547 	SLIST_ENTRY(l1_ttable) l1_link;
548 
549 	/* Entry on the L1 Least Recently Used list */
550 	TAILQ_ENTRY(l1_ttable) l1_lru;
551 
552 	/* Track how many domains are allocated from this L1 */
553 	volatile u_int l1_domain_use_count;
554 
555 	/*
556 	 * A free-list of domain numbers for this L1.
557 	 * We avoid using ffs() and a bitmap to track domains since ffs()
558 	 * is slow on ARM.
559 	 */
560 	uint8_t l1_domain_first;
561 	uint8_t l1_domain_free[PMAP_DOMAINS];
562 
563 	/* Physical address of this L1 page table */
564 	paddr_t l1_physaddr;
565 
566 	/* KVA of this L1 page table */
567 	pd_entry_t *l1_kva;
568 };
569 
570 /*
571  * L1 Page Tables are tracked using a Least Recently Used list.
572  *  - New L1s are allocated from the HEAD.
573  *  - Freed L1s are added to the TAIL.
574  *  - Recently accessed L1s (where an 'access' is some change to one of
575  *    the userland pmaps which owns this L1) are moved to the TAIL.
576  */
577 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
578 static kmutex_t l1_lru_lock __cacheline_aligned;
579 
580 /*
581  * A list of all L1 tables
582  */
583 static SLIST_HEAD(, l1_ttable) l1_list;
584 #endif /* ARM_MMU_EXTENDED */
585 
586 /*
587  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
588  *
589  * This is normally 16MB worth L2 page descriptors for any given pmap.
590  * Reference counts are maintained for L2 descriptors so they can be
591  * freed when empty.
592  */
593 struct l2_bucket {
594 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
595 	paddr_t l2b_pa;			/* Physical address of same */
596 	u_short l2b_l1slot;		/* This L2 table's L1 index */
597 	u_short l2b_occupancy;		/* How many active descriptors */
598 };
599 
600 struct l2_dtable {
601 	/* The number of L2 page descriptors allocated to this l2_dtable */
602 	u_int l2_occupancy;
603 
604 	/* List of L2 page descriptors */
605 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
606 };
607 
608 /*
609  * Given an L1 table index, calculate the corresponding l2_dtable index
610  * and bucket index within the l2_dtable.
611  */
612 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
613 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
614 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
615 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
616 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
617 
618 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
619 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
620 
621 /*
622  * Given a virtual address, this macro returns the
623  * virtual address required to drop into the next L2 bucket.
624  */
625 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
626 
627 /*
628  * L2 allocation.
629  */
630 #define	pmap_alloc_l2_dtable()		\
631 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
632 #define	pmap_free_l2_dtable(l2)		\
633 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
634 #define pmap_alloc_l2_ptp(pap)		\
635 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
636 	    PR_NOWAIT, (pap)))
637 
638 /*
639  * We try to map the page tables write-through, if possible.  However, not
640  * all CPUs have a write-through cache mode, so on those we have to sync
641  * the cache when we frob page tables.
642  *
643  * We try to evaluate this at compile time, if possible.  However, it's
644  * not always possible to do that, hence this run-time var.
645  */
646 int	pmap_needs_pte_sync;
647 
648 /*
649  * Real definition of pv_entry.
650  */
651 struct pv_entry {
652 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
653 	pmap_t		pv_pmap;        /* pmap where mapping lies */
654 	vaddr_t		pv_va;          /* virtual address for mapping */
655 	u_int		pv_flags;       /* flags */
656 };
657 
658 /*
659  * Macros to determine if a mapping might be resident in the
660  * instruction/data cache and/or TLB
661  */
662 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
663 /*
664  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
665  * there are no explicit accesses, so there may be always be TLB entries to
666  * flush.  If we used ASIDs then this would not be a problem.
667  */
668 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
669 #define	PV_BEEN_REFD(f)   (true)
670 #else
671 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
672 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
673 #endif
674 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
675 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
676 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
677 
678 /*
679  * Local prototypes
680  */
681 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
682 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
683 			    pt_entry_t **);
684 static bool		pmap_is_current(pmap_t) __unused;
685 static bool		pmap_is_cached(pmap_t);
686 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
687 			    pmap_t, vaddr_t, u_int);
688 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
689 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
690 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
691 			    u_int, u_int);
692 
693 static void		pmap_pinit(pmap_t);
694 static int		pmap_pmap_ctor(void *, void *, int);
695 
696 static void		pmap_alloc_l1(pmap_t);
697 static void		pmap_free_l1(pmap_t);
698 #ifndef ARM_MMU_EXTENDED
699 static void		pmap_use_l1(pmap_t);
700 #endif
701 
702 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
703 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
704 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
705 static int		pmap_l2ptp_ctor(void *, void *, int);
706 static int		pmap_l2dtable_ctor(void *, void *, int);
707 
708 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
709 #ifdef PMAP_CACHE_VIVT
710 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
711 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
712 #endif
713 
714 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
715 #ifdef PMAP_CACHE_VIVT
716 static bool		pmap_clean_page(struct vm_page_md *, bool);
717 #endif
718 #ifdef PMAP_CACHE_VIPT
719 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
720 enum pmap_flush_op {
721 	PMAP_FLUSH_PRIMARY,
722 	PMAP_FLUSH_SECONDARY,
723 	PMAP_CLEAN_PRIMARY
724 };
725 #ifndef ARM_MMU_EXTENDED
726 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
727 #endif
728 #endif
729 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
730 static void		pmap_pv_remove(paddr_t);
731 
732 #ifndef ARM_MMU_EXTENDED
733 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
734 #endif
735 static vaddr_t		kernel_pt_lookup(paddr_t);
736 
737 #ifdef ARM_MMU_EXTENDED
738 static struct pool_cache pmap_l1tt_cache;
739 
740 static int		pmap_l1tt_ctor(void *, void *, int);
741 static void *		pmap_l1tt_alloc(struct pool *, int);
742 static void		pmap_l1tt_free(struct pool *, void *);
743 
744 static struct pool_allocator pmap_l1tt_allocator = {
745 	.pa_alloc = pmap_l1tt_alloc,
746 	.pa_free = pmap_l1tt_free,
747 	.pa_pagesz = L1TT_SIZE,
748 };
749 #endif
750 
751 /*
752  * Misc variables
753  */
754 vaddr_t virtual_avail;
755 vaddr_t virtual_end;
756 vaddr_t pmap_curmaxkvaddr;
757 
758 paddr_t avail_start;
759 paddr_t avail_end;
760 
761 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
762 pv_addr_t kernelpages;
763 pv_addr_t kernel_l1pt;
764 pv_addr_t systempage;
765 
766 #ifdef PMAP_CACHE_VIPT
767 #define PMAP_VALIDATE_MD_PAGE(md)	\
768 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
769 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
770 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
771 #endif /* PMAP_CACHE_VIPT */
772 /*
773  * A bunch of routines to conditionally flush the caches/TLB depending
774  * on whether the specified pmap actually needs to be flushed at any
775  * given time.
776  */
777 static inline void
778 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
779 {
780 #ifdef ARM_MMU_EXTENDED
781 	pmap_tlb_invalidate_addr(pm, va);
782 #else
783 	if (pm->pm_cstate.cs_tlb_id != 0) {
784 		if (PV_BEEN_EXECD(flags)) {
785 			cpu_tlb_flushID_SE(va);
786 		} else if (PV_BEEN_REFD(flags)) {
787 			cpu_tlb_flushD_SE(va);
788 		}
789 	}
790 #endif /* ARM_MMU_EXTENDED */
791 }
792 
793 #ifndef ARM_MMU_EXTENDED
794 static inline void
795 pmap_tlb_flushID(pmap_t pm)
796 {
797 	if (pm->pm_cstate.cs_tlb_id) {
798 		cpu_tlb_flushID();
799 #if ARM_MMU_V7 == 0
800 		/*
801 		 * Speculative loads by Cortex cores can cause TLB entries to
802 		 * be filled even if there are no explicit accesses, so there
803 		 * may be always be TLB entries to flush.  If we used ASIDs
804 		 * then it would not be a problem.
805 		 * This is not true for other CPUs.
806 		 */
807 		pm->pm_cstate.cs_tlb = 0;
808 #endif /* ARM_MMU_V7 */
809 	}
810 }
811 
812 static inline void
813 pmap_tlb_flushD(pmap_t pm)
814 {
815 	if (pm->pm_cstate.cs_tlb_d) {
816 		cpu_tlb_flushD();
817 #if ARM_MMU_V7 == 0
818 		/*
819 		 * Speculative loads by Cortex cores can cause TLB entries to
820 		 * be filled even if there are no explicit accesses, so there
821 		 * may be always be TLB entries to flush.  If we used ASIDs
822 		 * then it would not be a problem.
823 		 * This is not true for other CPUs.
824 		 */
825 		pm->pm_cstate.cs_tlb_d = 0;
826 #endif /* ARM_MMU_V7 */
827 	}
828 }
829 #endif /* ARM_MMU_EXTENDED */
830 
831 #ifdef PMAP_CACHE_VIVT
832 static inline void
833 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
834 {
835 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
836 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
837 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
838 		if (do_inv) {
839 			if (flags & PVF_WRITE)
840 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
841 			else
842 				cpu_dcache_inv_range(va, PAGE_SIZE);
843 		} else if (flags & PVF_WRITE) {
844 			cpu_dcache_wb_range(va, PAGE_SIZE);
845 		}
846 	}
847 }
848 
849 static inline void
850 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
851 {
852 	if (PV_BEEN_EXECD(flags)) {
853 		if (pm->pm_cstate.cs_cache_id) {
854 			cpu_idcache_wbinv_all();
855 			pm->pm_cstate.cs_cache = 0;
856 		}
857 	} else if (pm->pm_cstate.cs_cache_d) {
858 		cpu_dcache_wbinv_all();
859 		pm->pm_cstate.cs_cache_d = 0;
860 	}
861 }
862 #endif /* PMAP_CACHE_VIVT */
863 
864 static inline uint8_t
865 pmap_domain(pmap_t pm)
866 {
867 #ifdef ARM_MMU_EXTENDED
868 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
869 #else
870 	return pm->pm_domain;
871 #endif
872 }
873 
874 static inline pd_entry_t *
875 pmap_l1_kva(pmap_t pm)
876 {
877 #ifdef ARM_MMU_EXTENDED
878 	return pm->pm_l1;
879 #else
880 	return pm->pm_l1->l1_kva;
881 #endif
882 }
883 
884 static inline bool
885 pmap_is_current(pmap_t pm)
886 {
887 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
888 		return true;
889 
890 	return false;
891 }
892 
893 static inline bool
894 pmap_is_cached(pmap_t pm)
895 {
896 #ifdef ARM_MMU_EXTENDED
897 	if (pm == pmap_kernel())
898 		return true;
899 #ifdef MULTIPROCESSOR
900 	// Is this pmap active on any CPU?
901 	if (!kcpuset_iszero(pm->pm_active))
902 		return true;
903 #else
904 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
905 	// Is this pmap active?
906 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
907 		return true;
908 #endif
909 #else
910 	struct cpu_info * const ci = curcpu();
911 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
912 	    || ci->ci_pmap_lastuser == pm)
913 		return true;
914 #endif /* ARM_MMU_EXTENDED */
915 
916 	return false;
917 }
918 
919 /*
920  * PTE_SYNC_CURRENT:
921  *
922  *     Make sure the pte is written out to RAM.
923  *     We need to do this for one of two cases:
924  *       - We're dealing with the kernel pmap
925  *       - There is no pmap active in the cache/tlb.
926  *       - The specified pmap is 'active' in the cache/tlb.
927  */
928 
929 #ifdef PMAP_INCLUDE_PTE_SYNC
930 static inline void
931 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
932 {
933 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
934 		PTE_SYNC(ptep);
935 	arm_dsb();
936 }
937 
938 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
939 #else
940 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
941 #endif
942 
943 /*
944  * main pv_entry manipulation functions:
945  *   pmap_enter_pv: enter a mapping onto a vm_page list
946  *   pmap_remove_pv: remove a mapping from a vm_page list
947  *
948  * NOTE: pmap_enter_pv expects to lock the pvh itself
949  *       pmap_remove_pv expects the caller to lock the pvh before calling
950  */
951 
952 /*
953  * pmap_enter_pv: enter a mapping onto a vm_page lst
954  *
955  * => caller should hold the proper lock on pmap_main_lock
956  * => caller should have pmap locked
957  * => we will gain the lock on the vm_page and allocate the new pv_entry
958  * => caller should adjust ptp's wire_count before calling
959  * => caller should not adjust pmap's wire_count
960  */
961 static void
962 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
963     vaddr_t va, u_int flags)
964 {
965 	UVMHIST_FUNC(__func__);
966 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
967 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
968 	UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
969 	    (uintptr_t)pv, flags, 0, 0);
970 
971 	struct pv_entry **pvp;
972 
973 	pv->pv_pmap = pm;
974 	pv->pv_va = va;
975 	pv->pv_flags = flags;
976 
977 	pvp = &SLIST_FIRST(&md->pvh_list);
978 #ifdef PMAP_CACHE_VIPT
979 	/*
980 	 * Insert unmanaged entries, writeable first, at the head of
981 	 * the pv list.
982 	 */
983 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
984 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
985 			pvp = &SLIST_NEXT(*pvp, pv_link);
986 	}
987 	if (!PV_IS_WRITE_P(flags)) {
988 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
989 			pvp = &SLIST_NEXT(*pvp, pv_link);
990 	}
991 #endif
992 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
993 	*pvp = pv;				/* ... locked list */
994 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
995 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
996 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
997 		md->pvh_attrs |= PVF_KMOD;
998 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
999 		md->pvh_attrs |= PVF_DIRTY;
1000 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1001 #endif
1002 	if (pm == pmap_kernel()) {
1003 		PMAPCOUNT(kernel_mappings);
1004 		if (flags & PVF_WRITE)
1005 			md->krw_mappings++;
1006 		else
1007 			md->kro_mappings++;
1008 	} else {
1009 		if (flags & PVF_WRITE)
1010 			md->urw_mappings++;
1011 		else
1012 			md->uro_mappings++;
1013 	}
1014 
1015 #ifdef PMAP_CACHE_VIPT
1016 #ifndef ARM_MMU_EXTENDED
1017 	/*
1018 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
1019 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
1020 	 */
1021 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
1022 		md->pvh_attrs |= PVF_WRITE;
1023 	}
1024 #endif
1025 	/*
1026 	 * If this is an exec mapping and its the first exec mapping
1027 	 * for this page, make sure to sync the I-cache.
1028 	 */
1029 	if (PV_IS_EXEC_P(flags)) {
1030 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
1031 			pmap_syncicache_page(md, pa);
1032 			PMAPCOUNT(exec_synced_map);
1033 		}
1034 		PMAPCOUNT(exec_mappings);
1035 	}
1036 #endif
1037 
1038 	PMAPCOUNT(mappings);
1039 
1040 	if (pv->pv_flags & PVF_WIRED)
1041 		++pm->pm_stats.wired_count;
1042 }
1043 
1044 /*
1045  *
1046  * pmap_find_pv: Find a pv entry
1047  *
1048  * => caller should hold lock on vm_page
1049  */
1050 static inline struct pv_entry *
1051 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
1052 {
1053 	struct pv_entry *pv;
1054 
1055 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1056 		if (pm == pv->pv_pmap && va == pv->pv_va)
1057 			break;
1058 	}
1059 
1060 	return pv;
1061 }
1062 
1063 /*
1064  * pmap_remove_pv: try to remove a mapping from a pv_list
1065  *
1066  * => caller should hold proper lock on pmap_main_lock
1067  * => pmap should be locked
1068  * => caller should hold lock on vm_page [so that attrs can be adjusted]
1069  * => caller should adjust ptp's wire_count and free PTP if needed
1070  * => caller should NOT adjust pmap's wire_count
1071  * => we return the removed pv
1072  */
1073 static struct pv_entry *
1074 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1075 {
1076 	UVMHIST_FUNC(__func__);
1077 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1078 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1079 
1080 	struct pv_entry *pv, **prevptr;
1081 
1082 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
1083 	pv = *prevptr;
1084 
1085 	while (pv) {
1086 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
1087 			UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
1088 			    (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
1089 			if (pv->pv_flags & PVF_WIRED) {
1090 				--pm->pm_stats.wired_count;
1091 			}
1092 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
1093 			if (pm == pmap_kernel()) {
1094 				PMAPCOUNT(kernel_unmappings);
1095 				if (pv->pv_flags & PVF_WRITE)
1096 					md->krw_mappings--;
1097 				else
1098 					md->kro_mappings--;
1099 			} else {
1100 				if (pv->pv_flags & PVF_WRITE)
1101 					md->urw_mappings--;
1102 				else
1103 					md->uro_mappings--;
1104 			}
1105 
1106 			PMAPCOUNT(unmappings);
1107 #ifdef PMAP_CACHE_VIPT
1108 			/*
1109 			 * If this page has had an exec mapping, then if
1110 			 * this was the last mapping, discard the contents,
1111 			 * otherwise sync the i-cache for this page.
1112 			 */
1113 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
1114 				if (SLIST_EMPTY(&md->pvh_list)) {
1115 					md->pvh_attrs &= ~PVF_EXEC;
1116 					PMAPCOUNT(exec_discarded_unmap);
1117 				} else if (pv->pv_flags & PVF_WRITE) {
1118 					pmap_syncicache_page(md, pa);
1119 					PMAPCOUNT(exec_synced_unmap);
1120 				}
1121 			}
1122 #endif /* PMAP_CACHE_VIPT */
1123 			break;
1124 		}
1125 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
1126 		pv = *prevptr;				/* advance */
1127 	}
1128 
1129 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1130 	/*
1131 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
1132 	 * clear the KMOD attribute from the page.
1133 	 */
1134 	if (SLIST_FIRST(&md->pvh_list) == NULL
1135 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1136 		md->pvh_attrs &= ~PVF_KMOD;
1137 
1138 	/*
1139 	 * If this was a writeable page and there are no more writeable
1140 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1141 	 * the contents to memory.
1142 	 */
1143 	if (arm_cache_prefer_mask != 0) {
1144 		if (md->krw_mappings + md->urw_mappings == 0)
1145 			md->pvh_attrs &= ~PVF_WRITE;
1146 		PMAP_VALIDATE_MD_PAGE(md);
1147 	}
1148 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1149 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1150 
1151 	/* return removed pv */
1152 	return pv;
1153 }
1154 
1155 /*
1156  *
1157  * pmap_modify_pv: Update pv flags
1158  *
1159  * => caller should hold lock on vm_page [so that attrs can be adjusted]
1160  * => caller should NOT adjust pmap's wire_count
1161  * => caller must call pmap_vac_me_harder() if writable status of a page
1162  *    may have changed.
1163  * => we return the old flags
1164  *
1165  * Modify a physical-virtual mapping in the pv table
1166  */
1167 static u_int
1168 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1169     u_int clr_mask, u_int set_mask)
1170 {
1171 	struct pv_entry *npv;
1172 	u_int flags, oflags;
1173 	UVMHIST_FUNC(__func__);
1174 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
1175 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
1176 	UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
1177 
1178 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
1179 	KASSERT(!PV_IS_KENTRY_P(set_mask));
1180 
1181 	if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
1182 		UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
1183 		return 0;
1184 	}
1185 
1186 	/*
1187 	 * There is at least one VA mapping this page.
1188 	 */
1189 
1190 	if (clr_mask & (PVF_REF | PVF_MOD)) {
1191 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1192 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
1193 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1194 			md->pvh_attrs |= PVF_DIRTY;
1195 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1196 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
1197 	}
1198 
1199 	oflags = npv->pv_flags;
1200 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1201 
1202 	if ((flags ^ oflags) & PVF_WIRED) {
1203 		if (flags & PVF_WIRED)
1204 			++pm->pm_stats.wired_count;
1205 		else
1206 			--pm->pm_stats.wired_count;
1207 	}
1208 
1209 	if ((flags ^ oflags) & PVF_WRITE) {
1210 		if (pm == pmap_kernel()) {
1211 			if (flags & PVF_WRITE) {
1212 				md->krw_mappings++;
1213 				md->kro_mappings--;
1214 			} else {
1215 				md->kro_mappings++;
1216 				md->krw_mappings--;
1217 			}
1218 		} else {
1219 			if (flags & PVF_WRITE) {
1220 				md->urw_mappings++;
1221 				md->uro_mappings--;
1222 			} else {
1223 				md->uro_mappings++;
1224 				md->urw_mappings--;
1225 			}
1226 		}
1227 	}
1228 #ifdef PMAP_CACHE_VIPT
1229 	if (arm_cache_prefer_mask != 0) {
1230 		if (md->urw_mappings + md->krw_mappings == 0) {
1231 			md->pvh_attrs &= ~PVF_WRITE;
1232 		} else {
1233 			md->pvh_attrs |= PVF_WRITE;
1234 		}
1235 	}
1236 	/*
1237 	 * We have two cases here: the first is from enter_pv (new exec
1238 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1239 	 * Since in latter, pmap_enter_pv won't do anything, we just have
1240 	 * to do what pmap_remove_pv would do.
1241 	 */
1242 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1243 	    || (PV_IS_EXEC_P(md->pvh_attrs)
1244 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1245 		pmap_syncicache_page(md, pa);
1246 		PMAPCOUNT(exec_synced_remap);
1247 	}
1248 #ifndef ARM_MMU_EXTENDED
1249 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1250 #endif /* !ARM_MMU_EXTENDED */
1251 #endif /* PMAP_CACHE_VIPT */
1252 
1253 	PMAPCOUNT(remappings);
1254 
1255 	UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
1256 
1257 	return oflags;
1258 }
1259 
1260 
1261 #if defined(ARM_MMU_EXTENDED)
1262 int
1263 pmap_maxproc_set(int nmaxproc)
1264 {
1265 	static const char pmap_l1ttpool_warnmsg[] =
1266 	    "WARNING: l1ttpool limit reached; increase kern.maxproc";
1267 
1268 	pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
1269 
1270 	/*
1271 	 * Set the hard limit on the pmap_l1tt_cache to the number
1272 	 * of processes the kernel is to support.  Log the limit
1273 	 * reached message max once a minute.
1274 	 */
1275 	pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
1276 	    pmap_l1ttpool_warnmsg, 60);
1277 
1278 	return 0;
1279 }
1280 
1281 #endif
1282 
1283 /*
1284  * Allocate an L1 translation table for the specified pmap.
1285  * This is called at pmap creation time.
1286  */
1287 static void
1288 pmap_alloc_l1(pmap_t pm)
1289 {
1290 #ifdef ARM_MMU_EXTENDED
1291 	vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
1292 	    &pm->pm_l1_pa);
1293 
1294 	pm->pm_l1 = (pd_entry_t *)va;
1295 	PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
1296 #else
1297 	struct l1_ttable *l1;
1298 	uint8_t domain;
1299 
1300 	/*
1301 	 * Remove the L1 at the head of the LRU list
1302 	 */
1303 	mutex_spin_enter(&l1_lru_lock);
1304 	l1 = TAILQ_FIRST(&l1_lru_list);
1305 	KDASSERT(l1 != NULL);
1306 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1307 
1308 	/*
1309 	 * Pick the first available domain number, and update
1310 	 * the link to the next number.
1311 	 */
1312 	domain = l1->l1_domain_first;
1313 	l1->l1_domain_first = l1->l1_domain_free[domain];
1314 
1315 	/*
1316 	 * If there are still free domain numbers in this L1,
1317 	 * put it back on the TAIL of the LRU list.
1318 	 */
1319 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1320 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1321 
1322 	mutex_spin_exit(&l1_lru_lock);
1323 
1324 	/*
1325 	 * Fix up the relevant bits in the pmap structure
1326 	 */
1327 	pm->pm_l1 = l1;
1328 	pm->pm_domain = domain + 1;
1329 #endif
1330 }
1331 
1332 /*
1333  * Free an L1 translation table.
1334  * This is called at pmap destruction time.
1335  */
1336 static void
1337 pmap_free_l1(pmap_t pm)
1338 {
1339 #ifdef ARM_MMU_EXTENDED
1340 	pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
1341 
1342 	pm->pm_l1 = NULL;
1343 	pm->pm_l1_pa = 0;
1344 #else
1345 	struct l1_ttable *l1 = pm->pm_l1;
1346 
1347 	mutex_spin_enter(&l1_lru_lock);
1348 
1349 	/*
1350 	 * If this L1 is currently on the LRU list, remove it.
1351 	 */
1352 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
1353 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1354 
1355 	/*
1356 	 * Free up the domain number which was allocated to the pmap
1357 	 */
1358 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
1359 	l1->l1_domain_first = pmap_domain(pm) - 1;
1360 	l1->l1_domain_use_count--;
1361 
1362 	/*
1363 	 * The L1 now must have at least 1 free domain, so add
1364 	 * it back to the LRU list. If the use count is zero,
1365 	 * put it at the head of the list, otherwise it goes
1366 	 * to the tail.
1367 	 */
1368 	if (l1->l1_domain_use_count == 0)
1369 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1370 	else
1371 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1372 
1373 	mutex_spin_exit(&l1_lru_lock);
1374 #endif /* ARM_MMU_EXTENDED */
1375 }
1376 
1377 #ifndef ARM_MMU_EXTENDED
1378 static inline void
1379 pmap_use_l1(pmap_t pm)
1380 {
1381 	struct l1_ttable *l1;
1382 
1383 	/*
1384 	 * Do nothing if we're in interrupt context.
1385 	 * Access to an L1 by the kernel pmap must not affect
1386 	 * the LRU list.
1387 	 */
1388 	if (cpu_intr_p() || pm == pmap_kernel())
1389 		return;
1390 
1391 	l1 = pm->pm_l1;
1392 
1393 	/*
1394 	 * If the L1 is not currently on the LRU list, just return
1395 	 */
1396 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
1397 		return;
1398 
1399 	mutex_spin_enter(&l1_lru_lock);
1400 
1401 	/*
1402 	 * Check the use count again, now that we've acquired the lock
1403 	 */
1404 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1405 		mutex_spin_exit(&l1_lru_lock);
1406 		return;
1407 	}
1408 
1409 	/*
1410 	 * Move the L1 to the back of the LRU list
1411 	 */
1412 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1413 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1414 
1415 	mutex_spin_exit(&l1_lru_lock);
1416 }
1417 #endif /* !ARM_MMU_EXTENDED */
1418 
1419 /*
1420  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1421  *
1422  * Free an L2 descriptor table.
1423  */
1424 static inline void
1425 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1426 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1427 #else
1428 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1429 #endif
1430 {
1431 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1432 	/*
1433 	 * Note: With a write-back cache, we may need to sync this
1434 	 * L2 table before re-using it.
1435 	 * This is because it may have belonged to a non-current
1436 	 * pmap, in which case the cache syncs would have been
1437 	 * skipped for the pages that were being unmapped. If the
1438 	 * L2 table were then to be immediately re-allocated to
1439 	 * the *current* pmap, it may well contain stale mappings
1440 	 * which have not yet been cleared by a cache write-back
1441 	 * and so would still be visible to the mmu.
1442 	 */
1443 	if (need_sync)
1444 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1445 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
1446 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1447 }
1448 
1449 /*
1450  * Returns a pointer to the L2 bucket associated with the specified pmap
1451  * and VA, or NULL if no L2 bucket exists for the address.
1452  */
1453 static inline struct l2_bucket *
1454 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1455 {
1456 	const size_t l1slot = l1pte_index(va);
1457 	struct l2_dtable *l2;
1458 	struct l2_bucket *l2b;
1459 
1460 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
1461 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
1462 		return NULL;
1463 
1464 	return l2b;
1465 }
1466 
1467 /*
1468  * Returns a pointer to the L2 bucket associated with the specified pmap
1469  * and VA.
1470  *
1471  * If no L2 bucket exists, perform the necessary allocations to put an L2
1472  * bucket/page table in place.
1473  *
1474  * Note that if a new L2 bucket/page was allocated, the caller *must*
1475  * increment the bucket occupancy counter appropriately *before*
1476  * releasing the pmap's lock to ensure no other thread or cpu deallocates
1477  * the bucket/page in the meantime.
1478  */
1479 static struct l2_bucket *
1480 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1481 {
1482 	const size_t l1slot = l1pte_index(va);
1483 	struct l2_dtable *l2;
1484 
1485 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
1486 		/*
1487 		 * No mapping at this address, as there is
1488 		 * no entry in the L1 table.
1489 		 * Need to allocate a new l2_dtable.
1490 		 */
1491 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1492 			return NULL;
1493 
1494 		/*
1495 		 * Link it into the parent pmap
1496 		 */
1497 		pm->pm_l2[L2_IDX(l1slot)] = l2;
1498 	}
1499 
1500 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
1501 
1502 	/*
1503 	 * Fetch pointer to the L2 page table associated with the address.
1504 	 */
1505 	if (l2b->l2b_kva == NULL) {
1506 		pt_entry_t *ptep;
1507 
1508 		/*
1509 		 * No L2 page table has been allocated. Chances are, this
1510 		 * is because we just allocated the l2_dtable, above.
1511 		 */
1512 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
1513 			/*
1514 			 * Oops, no more L2 page tables available at this
1515 			 * time. We may need to deallocate the l2_dtable
1516 			 * if we allocated a new one above.
1517 			 */
1518 			if (l2->l2_occupancy == 0) {
1519 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
1520 				pmap_free_l2_dtable(l2);
1521 			}
1522 			return NULL;
1523 		}
1524 
1525 		l2->l2_occupancy++;
1526 		l2b->l2b_kva = ptep;
1527 		l2b->l2b_l1slot = l1slot;
1528 
1529 #ifdef ARM_MMU_EXTENDED
1530 		/*
1531 		 * We know there will be a mapping here, so simply
1532 		 * enter this PTP into the L1 now.
1533 		 */
1534 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1535 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
1536 		    | L1_C_DOM(pmap_domain(pm));
1537 		KASSERT(*pdep == 0);
1538 		l1pte_setone(pdep, npde);
1539 		PDE_SYNC(pdep);
1540 #endif
1541 	}
1542 
1543 	return l2b;
1544 }
1545 
1546 /*
1547  * One or more mappings in the specified L2 descriptor table have just been
1548  * invalidated.
1549  *
1550  * Garbage collect the metadata and descriptor table itself if necessary.
1551  *
1552  * The pmap lock must be acquired when this is called (not necessary
1553  * for the kernel pmap).
1554  */
1555 static void
1556 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1557 {
1558 	KDASSERT(count <= l2b->l2b_occupancy);
1559 
1560 	/*
1561 	 * Update the bucket's reference count according to how many
1562 	 * PTEs the caller has just invalidated.
1563 	 */
1564 	l2b->l2b_occupancy -= count;
1565 
1566 	/*
1567 	 * Note:
1568 	 *
1569 	 * Level 2 page tables allocated to the kernel pmap are never freed
1570 	 * as that would require checking all Level 1 page tables and
1571 	 * removing any references to the Level 2 page table. See also the
1572 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1573 	 *
1574 	 * We make do with just invalidating the mapping in the L2 table.
1575 	 *
1576 	 * This isn't really a big deal in practice and, in fact, leads
1577 	 * to a performance win over time as we don't need to continually
1578 	 * alloc/free.
1579 	 */
1580 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1581 		return;
1582 
1583 	/*
1584 	 * There are no more valid mappings in this level 2 page table.
1585 	 * Go ahead and NULL-out the pointer in the bucket, then
1586 	 * free the page table.
1587 	 */
1588 	const size_t l1slot = l2b->l2b_l1slot;
1589 	pt_entry_t * const ptep = l2b->l2b_kva;
1590 	l2b->l2b_kva = NULL;
1591 
1592 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
1593 	pd_entry_t pde __diagused = *pdep;
1594 
1595 #ifdef ARM_MMU_EXTENDED
1596 	/*
1597 	 * Invalidate the L1 slot.
1598 	 */
1599 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
1600 #else
1601 	/*
1602 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
1603 	 */
1604 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
1605 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
1606 #endif
1607 		l1pte_setone(pdep, 0);
1608 		PDE_SYNC(pdep);
1609 #ifndef ARM_MMU_EXTENDED
1610 	}
1611 #endif
1612 
1613 	/*
1614 	 * Release the L2 descriptor table back to the pool cache.
1615 	 */
1616 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
1617 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
1618 #else
1619 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
1620 #endif
1621 
1622 	/*
1623 	 * Update the reference count in the associated l2_dtable
1624 	 */
1625 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
1626 	if (--l2->l2_occupancy > 0)
1627 		return;
1628 
1629 	/*
1630 	 * There are no more valid mappings in any of the Level 1
1631 	 * slots managed by this l2_dtable. Go ahead and NULL-out
1632 	 * the pointer in the parent pmap and free the l2_dtable.
1633 	 */
1634 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
1635 	pmap_free_l2_dtable(l2);
1636 }
1637 
1638 #if defined(ARM_MMU_EXTENDED)
1639 /*
1640  * Pool cache constructors for L1 translation tables
1641  */
1642 
1643 static int
1644 pmap_l1tt_ctor(void *arg, void *v, int flags)
1645 {
1646 #ifndef PMAP_INCLUDE_PTE_SYNC
1647 #error not supported
1648 #endif
1649 
1650 	memset(v, 0, L1TT_SIZE);
1651 	PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
1652 	return 0;
1653 }
1654 #endif
1655 
1656 /*
1657  * Pool cache constructors for L2 descriptor tables, metadata and pmap
1658  * structures.
1659  */
1660 static int
1661 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1662 {
1663 #ifndef PMAP_INCLUDE_PTE_SYNC
1664 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
1665 
1666 	/*
1667 	 * The mappings for these page tables were initially made using
1668 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1669 	 * mode will not be right for page table mappings. To avoid
1670 	 * polluting the pmap_kenter_pa() code with a special case for
1671 	 * page tables, we simply fix up the cache-mode here if it's not
1672 	 * correct.
1673 	 */
1674 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
1675 		const struct l2_bucket * const l2b =
1676 		    pmap_get_l2_bucket(pmap_kernel(), va);
1677 		KASSERTMSG(l2b != NULL, "%#lx", va);
1678 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
1679 		const pt_entry_t opte = *ptep;
1680 
1681 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1682 			/*
1683 			 * Page tables must have the cache-mode set correctly.
1684 			 */
1685 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1686 			    | pte_l2_s_cache_mode_pt;
1687 			l2pte_set(ptep, npte, opte);
1688 			PTE_SYNC(ptep);
1689 			cpu_tlb_flushD_SE(va);
1690 			cpu_cpwait();
1691 		}
1692 	}
1693 #endif
1694 
1695 	memset(v, 0, L2_TABLE_SIZE_REAL);
1696 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1697 	return 0;
1698 }
1699 
1700 static int
1701 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1702 {
1703 
1704 	memset(v, 0, sizeof(struct l2_dtable));
1705 	return 0;
1706 }
1707 
1708 static int
1709 pmap_pmap_ctor(void *arg, void *v, int flags)
1710 {
1711 
1712 	memset(v, 0, sizeof(struct pmap));
1713 	return 0;
1714 }
1715 
1716 static void
1717 pmap_pinit(pmap_t pm)
1718 {
1719 #ifndef ARM_HAS_VBAR
1720 	struct l2_bucket *l2b;
1721 
1722 	if (vector_page < KERNEL_BASE) {
1723 		/*
1724 		 * Map the vector page.
1725 		 */
1726 		pmap_enter(pm, vector_page, systempage.pv_pa,
1727 		    VM_PROT_READ | VM_PROT_EXECUTE,
1728 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
1729 		pmap_update(pm);
1730 
1731 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
1732 		l2b = pmap_get_l2_bucket(pm, vector_page);
1733 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
1734 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
1735 		    L1_C_DOM(pmap_domain(pm));
1736 	} else
1737 		pm->pm_pl1vec = NULL;
1738 #endif
1739 }
1740 
1741 #ifdef PMAP_CACHE_VIVT
1742 /*
1743  * Since we have a virtually indexed cache, we may need to inhibit caching if
1744  * there is more than one mapping and at least one of them is writable.
1745  * Since we purge the cache on every context switch, we only need to check for
1746  * other mappings within the same pmap, or kernel_pmap.
1747  * This function is also called when a page is unmapped, to possibly reenable
1748  * caching on any remaining mappings.
1749  *
1750  * The code implements the following logic, where:
1751  *
1752  * KW = # of kernel read/write pages
1753  * KR = # of kernel read only pages
1754  * UW = # of user read/write pages
1755  * UR = # of user read only pages
1756  *
1757  * KC = kernel mapping is cacheable
1758  * UC = user mapping is cacheable
1759  *
1760  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1761  *             +---------------------------------------------
1762  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1763  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1764  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1765  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1766  */
1767 
1768 static const int pmap_vac_flags[4][4] = {
1769 	{-1,		0,		0,		PVF_KNC},
1770 	{0,		0,		PVF_NC,		PVF_NC},
1771 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1772 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1773 };
1774 
1775 static inline int
1776 pmap_get_vac_flags(const struct vm_page_md *md)
1777 {
1778 	int kidx, uidx;
1779 
1780 	kidx = 0;
1781 	if (md->kro_mappings || md->krw_mappings > 1)
1782 		kidx |= 1;
1783 	if (md->krw_mappings)
1784 		kidx |= 2;
1785 
1786 	uidx = 0;
1787 	if (md->uro_mappings || md->urw_mappings > 1)
1788 		uidx |= 1;
1789 	if (md->urw_mappings)
1790 		uidx |= 2;
1791 
1792 	return pmap_vac_flags[uidx][kidx];
1793 }
1794 
1795 static inline void
1796 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1797 {
1798 	int nattr;
1799 
1800 	nattr = pmap_get_vac_flags(md);
1801 
1802 	if (nattr < 0) {
1803 		md->pvh_attrs &= ~PVF_NC;
1804 		return;
1805 	}
1806 
1807 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1808 		return;
1809 
1810 	if (pm == pmap_kernel())
1811 		pmap_vac_me_kpmap(md, pa, pm, va);
1812 	else
1813 		pmap_vac_me_user(md, pa, pm, va);
1814 
1815 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1816 }
1817 
1818 static void
1819 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1820 {
1821 	u_int u_cacheable, u_entries;
1822 	struct pv_entry *pv;
1823 	pmap_t last_pmap = pm;
1824 
1825 	/*
1826 	 * Pass one, see if there are both kernel and user pmaps for
1827 	 * this page.  Calculate whether there are user-writable or
1828 	 * kernel-writable pages.
1829 	 */
1830 	u_cacheable = 0;
1831 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1832 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1833 			u_cacheable++;
1834 	}
1835 
1836 	u_entries = md->urw_mappings + md->uro_mappings;
1837 
1838 	/*
1839 	 * We know we have just been updating a kernel entry, so if
1840 	 * all user pages are already cacheable, then there is nothing
1841 	 * further to do.
1842 	 */
1843 	if (md->k_mappings == 0 && u_cacheable == u_entries)
1844 		return;
1845 
1846 	if (u_entries) {
1847 		/*
1848 		 * Scan over the list again, for each entry, if it
1849 		 * might not be set correctly, call pmap_vac_me_user
1850 		 * to recalculate the settings.
1851 		 */
1852 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1853 			/*
1854 			 * We know kernel mappings will get set
1855 			 * correctly in other calls.  We also know
1856 			 * that if the pmap is the same as last_pmap
1857 			 * then we've just handled this entry.
1858 			 */
1859 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1860 				continue;
1861 
1862 			/*
1863 			 * If there are kernel entries and this page
1864 			 * is writable but non-cacheable, then we can
1865 			 * skip this entry also.
1866 			 */
1867 			if (md->k_mappings &&
1868 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1869 			    (PVF_NC | PVF_WRITE))
1870 				continue;
1871 
1872 			/*
1873 			 * Similarly if there are no kernel-writable
1874 			 * entries and the page is already
1875 			 * read-only/cacheable.
1876 			 */
1877 			if (md->krw_mappings == 0 &&
1878 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1879 				continue;
1880 
1881 			/*
1882 			 * For some of the remaining cases, we know
1883 			 * that we must recalculate, but for others we
1884 			 * can't tell if they are correct or not, so
1885 			 * we recalculate anyway.
1886 			 */
1887 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1888 		}
1889 
1890 		if (md->k_mappings == 0)
1891 			return;
1892 	}
1893 
1894 	pmap_vac_me_user(md, pa, pm, va);
1895 }
1896 
1897 static void
1898 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1899 {
1900 	pmap_t kpmap = pmap_kernel();
1901 	struct pv_entry *pv, *npv = NULL;
1902 	u_int entries = 0;
1903 	u_int writable = 0;
1904 	u_int cacheable_entries = 0;
1905 	u_int kern_cacheable = 0;
1906 	u_int other_writable = 0;
1907 
1908 	/*
1909 	 * Count mappings and writable mappings in this pmap.
1910 	 * Include kernel mappings as part of our own.
1911 	 * Keep a pointer to the first one.
1912 	 */
1913 	npv = NULL;
1914 	KASSERT(pmap_page_locked_p(md));
1915 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1916 		/* Count mappings in the same pmap */
1917 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1918 			if (entries++ == 0)
1919 				npv = pv;
1920 
1921 			/* Cacheable mappings */
1922 			if ((pv->pv_flags & PVF_NC) == 0) {
1923 				cacheable_entries++;
1924 				if (kpmap == pv->pv_pmap)
1925 					kern_cacheable++;
1926 			}
1927 
1928 			/* Writable mappings */
1929 			if (pv->pv_flags & PVF_WRITE)
1930 				++writable;
1931 		} else if (pv->pv_flags & PVF_WRITE)
1932 			other_writable = 1;
1933 	}
1934 
1935 	/*
1936 	 * Enable or disable caching as necessary.
1937 	 * Note: the first entry might be part of the kernel pmap,
1938 	 * so we can't assume this is indicative of the state of the
1939 	 * other (maybe non-kpmap) entries.
1940 	 */
1941 	if ((entries > 1 && writable) ||
1942 	    (entries > 0 && pm == kpmap && other_writable)) {
1943 		if (cacheable_entries == 0) {
1944 			return;
1945 		}
1946 
1947 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1948 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1949 			    (pv->pv_flags & PVF_NC))
1950 				continue;
1951 
1952 			pv->pv_flags |= PVF_NC;
1953 
1954 			struct l2_bucket * const l2b
1955 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1956 			KASSERTMSG(l2b != NULL, "%#lx", va);
1957 			pt_entry_t * const ptep
1958 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1959 			const pt_entry_t opte = *ptep;
1960 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
1961 
1962 			if ((va != pv->pv_va || pm != pv->pv_pmap)
1963 			    && l2pte_valid_p(opte)) {
1964 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
1965 				    true, pv->pv_flags);
1966 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1967 				    pv->pv_flags);
1968 			}
1969 
1970 			l2pte_set(ptep, npte, opte);
1971 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1972 		}
1973 		cpu_cpwait();
1974 	} else if (entries > cacheable_entries) {
1975 		/*
1976 		 * Turn cacheing back on for some pages.  If it is a kernel
1977 		 * page, only do so if there are no other writable pages.
1978 		 */
1979 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1980 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1981 			    (kpmap != pv->pv_pmap || other_writable)))
1982 				continue;
1983 
1984 			pv->pv_flags &= ~PVF_NC;
1985 
1986 			struct l2_bucket * const l2b
1987 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1988 			KASSERTMSG(l2b != NULL, "%#lx", va);
1989 			pt_entry_t * const ptep
1990 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1991 			const pt_entry_t opte = *ptep;
1992 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
1993 			    | pte_l2_s_cache_mode;
1994 
1995 			if (l2pte_valid_p(opte)) {
1996 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
1997 				    pv->pv_flags);
1998 			}
1999 
2000 			l2pte_set(ptep, npte, opte);
2001 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2002 		}
2003 	}
2004 }
2005 #endif
2006 
2007 #ifdef PMAP_CACHE_VIPT
2008 static void
2009 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
2010 {
2011 
2012 #ifndef ARM_MMU_EXTENDED
2013 	struct pv_entry *pv;
2014 	vaddr_t tst_mask;
2015 	bool bad_alias;
2016 	const u_int
2017 	    rw_mappings = md->urw_mappings + md->krw_mappings,
2018 	    ro_mappings = md->uro_mappings + md->kro_mappings;
2019 
2020 	/* do we need to do anything? */
2021 	if (arm_cache_prefer_mask == 0)
2022 		return;
2023 
2024 	UVMHIST_FUNC(__func__);
2025 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
2026 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
2027 
2028 	KASSERT(!va || pm);
2029 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2030 
2031 	/* Already a conflict? */
2032 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
2033 		/* just an add, things are already non-cached */
2034 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
2035 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2036 		bad_alias = false;
2037 		if (va) {
2038 			PMAPCOUNT(vac_color_none);
2039 			bad_alias = true;
2040 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 			goto fixup;
2042 		}
2043 		pv = SLIST_FIRST(&md->pvh_list);
2044 		/* the list can't be empty because it would be cachable */
2045 		if (md->pvh_attrs & PVF_KMPAGE) {
2046 			tst_mask = md->pvh_attrs;
2047 		} else {
2048 			KASSERT(pv);
2049 			tst_mask = pv->pv_va;
2050 			pv = SLIST_NEXT(pv, pv_link);
2051 		}
2052 		/*
2053 		 * Only check for a bad alias if we have writable mappings.
2054 		 */
2055 		tst_mask &= arm_cache_prefer_mask;
2056 		if (rw_mappings > 0) {
2057 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
2058 				/* if there's a bad alias, stop checking. */
2059 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
2060 					bad_alias = true;
2061 			}
2062 			md->pvh_attrs |= PVF_WRITE;
2063 			if (!bad_alias)
2064 				md->pvh_attrs |= PVF_DIRTY;
2065 		} else {
2066 			/*
2067 			 * We have only read-only mappings.  Let's see if there
2068 			 * are multiple colors in use or if we mapped a KMPAGE.
2069 			 * If the latter, we have a bad alias.  If the former,
2070 			 * we need to remember that.
2071 			 */
2072 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
2073 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
2074 					if (md->pvh_attrs & PVF_KMPAGE)
2075 						bad_alias = true;
2076 					break;
2077 				}
2078 			}
2079 			md->pvh_attrs &= ~PVF_WRITE;
2080 			/*
2081 			 * No KMPAGE and we exited early, so we must have
2082 			 * multiple color mappings.
2083 			 */
2084 			if (!bad_alias && pv != NULL)
2085 				md->pvh_attrs |= PVF_MULTCLR;
2086 		}
2087 
2088 		/* If no conflicting colors, set everything back to cached */
2089 		if (!bad_alias) {
2090 #ifdef DEBUG
2091 			if ((md->pvh_attrs & PVF_WRITE)
2092 			    || ro_mappings < 2) {
2093 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2094 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2095 			}
2096 #endif
2097 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
2098 			md->pvh_attrs |= tst_mask | PVF_COLORED;
2099 			/*
2100 			 * Restore DIRTY bit if page is modified
2101 			 */
2102 			if (md->pvh_attrs & PVF_DMOD)
2103 				md->pvh_attrs |= PVF_DIRTY;
2104 			PMAPCOUNT(vac_color_restore);
2105 		} else {
2106 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2107 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2108 		}
2109 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2110 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2111 	} else if (!va) {
2112 		KASSERT(pmap_is_page_colored_p(md));
2113 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
2114 		    || (md->pvh_attrs & PVF_DIRTY));
2115 		if (rw_mappings == 0) {
2116 			md->pvh_attrs &= ~PVF_WRITE;
2117 			if (ro_mappings == 1
2118 			    && (md->pvh_attrs & PVF_MULTCLR)) {
2119 				/*
2120 				 * If this is the last readonly mapping
2121 				 * but it doesn't match the current color
2122 				 * for the page, change the current color
2123 				 * to match this last readonly mapping.
2124 				 */
2125 				pv = SLIST_FIRST(&md->pvh_list);
2126 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
2127 				    & arm_cache_prefer_mask;
2128 				if (tst_mask) {
2129 					md->pvh_attrs ^= tst_mask;
2130 					PMAPCOUNT(vac_color_change);
2131 				}
2132 			}
2133 		}
2134 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2135 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2136 		return;
2137 	} else if (!pmap_is_page_colored_p(md)) {
2138 		/* not colored so we just use its color */
2139 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
2140 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2141 		PMAPCOUNT(vac_color_new);
2142 		md->pvh_attrs &= PAGE_SIZE - 1;
2143 		md->pvh_attrs |= PVF_COLORED
2144 		    | (va & arm_cache_prefer_mask)
2145 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
2146 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2147 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2148 		return;
2149 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2150 		bad_alias = false;
2151 		if (rw_mappings > 0) {
2152 			/*
2153 			 * We now have writeable mappings and if we have
2154 			 * readonly mappings in more than once color, we have
2155 			 * an aliasing problem.  Regardless mark the page as
2156 			 * writeable.
2157 			 */
2158 			if (md->pvh_attrs & PVF_MULTCLR) {
2159 				if (ro_mappings < 2) {
2160 					/*
2161 					 * If we only have less than two
2162 					 * read-only mappings, just flush the
2163 					 * non-primary colors from the cache.
2164 					 */
2165 					pmap_flush_page(md, pa,
2166 					    PMAP_FLUSH_SECONDARY);
2167 				} else {
2168 					bad_alias = true;
2169 				}
2170 			}
2171 			md->pvh_attrs |= PVF_WRITE;
2172 		}
2173 		/* If no conflicting colors, set everything back to cached */
2174 		if (!bad_alias) {
2175 #ifdef DEBUG
2176 			if (rw_mappings > 0
2177 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
2178 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2179 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2180 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2181 			}
2182 #endif
2183 			if (SLIST_EMPTY(&md->pvh_list))
2184 				PMAPCOUNT(vac_color_reuse);
2185 			else
2186 				PMAPCOUNT(vac_color_ok);
2187 
2188 			/* matching color, just return */
2189 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2190 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2191 			return;
2192 		}
2193 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2194 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2195 
2196 		/* color conflict.  evict from cache. */
2197 
2198 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2199 		md->pvh_attrs &= ~PVF_COLORED;
2200 		md->pvh_attrs |= PVF_NC;
2201 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2202 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2203 		PMAPCOUNT(vac_color_erase);
2204 	} else if (rw_mappings == 0
2205 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2206 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2207 
2208 		/*
2209 		 * If the page has dirty cache lines, clean it.
2210 		 */
2211 		if (md->pvh_attrs & PVF_DIRTY)
2212 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2213 
2214 		/*
2215 		 * If this is the first remapping (we know that there are no
2216 		 * writeable mappings), then this is a simple color change.
2217 		 * Otherwise this is a seconary r/o mapping, which means
2218 		 * we don't have to do anything.
2219 		 */
2220 		if (ro_mappings == 1) {
2221 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2222 			md->pvh_attrs &= PAGE_SIZE - 1;
2223 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
2224 			PMAPCOUNT(vac_color_change);
2225 		} else {
2226 			PMAPCOUNT(vac_color_blind);
2227 		}
2228 		md->pvh_attrs |= PVF_MULTCLR;
2229 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2230 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2231 		return;
2232 	} else {
2233 		if (rw_mappings > 0)
2234 			md->pvh_attrs |= PVF_WRITE;
2235 
2236 		/* color conflict.  evict from cache. */
2237 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2238 
2239 		/* the list can't be empty because this was a enter/modify */
2240 		pv = SLIST_FIRST(&md->pvh_list);
2241 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2242 			KASSERT(pv);
2243 			/*
2244 			 * If there's only one mapped page, change color to the
2245 			 * page's new color and return.  Restore the DIRTY bit
2246 			 * that was erased by pmap_flush_page.
2247 			 */
2248 			if (SLIST_NEXT(pv, pv_link) == NULL) {
2249 				md->pvh_attrs &= PAGE_SIZE - 1;
2250 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
2251 				if (md->pvh_attrs & PVF_DMOD)
2252 					md->pvh_attrs |= PVF_DIRTY;
2253 				PMAPCOUNT(vac_color_change);
2254 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2255 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2256 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2257 				return;
2258 			}
2259 		}
2260 		bad_alias = true;
2261 		md->pvh_attrs &= ~PVF_COLORED;
2262 		md->pvh_attrs |= PVF_NC;
2263 		PMAPCOUNT(vac_color_erase);
2264 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2265 	}
2266 
2267   fixup:
2268 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2269 
2270 	/*
2271 	 * Turn cacheing on/off for all pages.
2272 	 */
2273 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2274 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
2275 		    pv->pv_va);
2276 		KASSERTMSG(l2b != NULL, "%#lx", va);
2277 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2278 		const pt_entry_t opte = *ptep;
2279 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
2280 		if (bad_alias) {
2281 			pv->pv_flags |= PVF_NC;
2282 		} else {
2283 			pv->pv_flags &= ~PVF_NC;
2284 			npte |= pte_l2_s_cache_mode;
2285 		}
2286 
2287 		if (opte == npte)	/* only update is there's a change */
2288 			continue;
2289 
2290 		if (l2pte_valid_p(opte)) {
2291 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
2292 		}
2293 
2294 		l2pte_set(ptep, npte, opte);
2295 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2296 	}
2297 #endif /* !ARM_MMU_EXTENDED */
2298 }
2299 #endif	/* PMAP_CACHE_VIPT */
2300 
2301 
2302 /*
2303  * Modify pte bits for all ptes corresponding to the given physical address.
2304  * We use `maskbits' rather than `clearbits' because we're always passing
2305  * constants and the latter would require an extra inversion at run-time.
2306  */
2307 static void
2308 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2309 {
2310 	struct pv_entry *pv;
2311 #ifdef PMAP_CACHE_VIPT
2312 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2313 	bool need_syncicache = false;
2314 #ifdef ARM_MMU_EXTENDED
2315 	const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0;
2316 #else
2317 	const u_int execbits = 0;
2318 	bool need_vac_me_harder = false;
2319 #endif
2320 #else
2321 	const u_int execbits = 0;
2322 #endif
2323 
2324 	UVMHIST_FUNC(__func__);
2325 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
2326 	    (uintptr_t)md, pa, maskbits, 0);
2327 
2328 #ifdef PMAP_CACHE_VIPT
2329 	/*
2330 	 * If we might want to sync the I-cache and we've modified it,
2331 	 * then we know we definitely need to sync or discard it.
2332 	 */
2333 	if (want_syncicache) {
2334 		if (md->pvh_attrs & PVF_MOD) {
2335 			need_syncicache = true;
2336 		}
2337 	}
2338 #endif
2339 	KASSERT(pmap_page_locked_p(md));
2340 
2341 	/*
2342 	 * Clear saved attributes (modify, reference)
2343 	 */
2344 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2345 
2346 	if (SLIST_EMPTY(&md->pvh_list)) {
2347 #if defined(PMAP_CACHE_VIPT)
2348 		if (need_syncicache) {
2349 			/*
2350 			 * No one has it mapped, so just discard it.  The next
2351 			 * exec remapping will cause it to be synced.
2352 			 */
2353 			md->pvh_attrs &= ~PVF_EXEC;
2354 			PMAPCOUNT(exec_discarded_clearbit);
2355 		}
2356 #endif
2357 		return;
2358 	}
2359 
2360 	/*
2361 	 * Loop over all current mappings setting/clearing as appropos
2362 	 */
2363 	for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
2364 		pmap_t pm = pv->pv_pmap;
2365 		const vaddr_t va = pv->pv_va;
2366 		const u_int oflags = pv->pv_flags;
2367 #ifndef ARM_MMU_EXTENDED
2368 		/*
2369 		 * Kernel entries are unmanaged and as such not to be changed.
2370 		 */
2371 		if (PV_IS_KENTRY_P(oflags)) {
2372 			pv = SLIST_NEXT(pv, pv_link);
2373 			continue;
2374 		}
2375 #endif
2376 
2377 		/*
2378 		 * Try to get a hold on the pmap's lock.  We must do this
2379 		 * while still holding the page locked, to know that the
2380 		 * page is still associated with the pmap and the mapping is
2381 		 * in place.  If a hold can't be had, unlock and wait for
2382 		 * the pmap's lock to become available and retry.  The pmap
2383 		 * must be ref'd over this dance to stop it disappearing
2384 		 * behind us.
2385 		 */
2386 		if (!mutex_tryenter(&pm->pm_lock)) {
2387 			pmap_reference(pm);
2388 			pmap_release_page_lock(md);
2389 			pmap_acquire_pmap_lock(pm);
2390 			/* nothing, just wait for it */
2391 			pmap_release_pmap_lock(pm);
2392 			pmap_destroy(pm);
2393 			/* Restart from the beginning. */
2394 			pmap_acquire_page_lock(md);
2395 			pv = SLIST_FIRST(&md->pvh_list);
2396 			continue;
2397 		}
2398 		pv->pv_flags &= ~maskbits;
2399 
2400 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
2401 		KASSERTMSG(l2b != NULL, "%#lx", va);
2402 
2403 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
2404 		const pt_entry_t opte = *ptep;
2405 		pt_entry_t npte = opte | execbits;
2406 
2407 #ifdef ARM_MMU_EXTENDED
2408 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
2409 #endif
2410 
2411 		UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
2412 		    (uintptr_t)pv, (uintptr_t)pm, va, oflags);
2413 
2414 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
2415 #ifdef PMAP_CACHE_VIVT
2416 			if ((oflags & PVF_NC)) {
2417 				/*
2418 				 * Entry is not cacheable:
2419 				 *
2420 				 * Don't turn caching on again if this is a
2421 				 * modified emulation. This would be
2422 				 * inconsitent with the settings created by
2423 				 * pmap_vac_me_harder(). Otherwise, it's safe
2424 				 * to re-enable cacheing.
2425 				 *
2426 				 * There's no need to call pmap_vac_me_harder()
2427 				 * here: all pages are losing their write
2428 				 * permission.
2429 				 */
2430 				if (maskbits & PVF_WRITE) {
2431 					npte |= pte_l2_s_cache_mode;
2432 					pv->pv_flags &= ~PVF_NC;
2433 				}
2434 			} else if (l2pte_writable_p(opte)) {
2435 				/*
2436 				 * Entry is writable/cacheable: check if pmap
2437 				 * is current if it is flush it, otherwise it
2438 				 * won't be in the cache
2439 				 */
2440 				pmap_cache_wbinv_page(pm, va,
2441 				    (maskbits & PVF_REF) != 0,
2442 				    oflags|PVF_WRITE);
2443 			}
2444 #endif
2445 
2446 			/* make the pte read only */
2447 			npte = l2pte_set_readonly(npte);
2448 
2449 			if ((maskbits & oflags & PVF_WRITE)) {
2450 				/*
2451 				 * Keep alias accounting up to date
2452 				 */
2453 				if (pm == pmap_kernel()) {
2454 					md->krw_mappings--;
2455 					md->kro_mappings++;
2456 				} else {
2457 					md->urw_mappings--;
2458 					md->uro_mappings++;
2459 				}
2460 #ifdef PMAP_CACHE_VIPT
2461 				if (arm_cache_prefer_mask != 0) {
2462 					if (md->urw_mappings + md->krw_mappings == 0) {
2463 						md->pvh_attrs &= ~PVF_WRITE;
2464 					} else {
2465 						PMAP_VALIDATE_MD_PAGE(md);
2466 					}
2467 				}
2468 				if (want_syncicache)
2469 					need_syncicache = true;
2470 #ifndef ARM_MMU_EXTENDED
2471 				need_vac_me_harder = true;
2472 #endif
2473 #endif /* PMAP_CACHE_VIPT */
2474 			}
2475 		}
2476 
2477 		if (maskbits & PVF_REF) {
2478 			if (true
2479 #ifndef ARM_MMU_EXTENDED
2480 			    && (oflags & PVF_NC) == 0
2481 #endif
2482 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
2483 			    && l2pte_valid_p(npte)) {
2484 #ifdef PMAP_CACHE_VIVT
2485 				/*
2486 				 * Check npte here; we may have already
2487 				 * done the wbinv above, and the validity
2488 				 * of the PTE is the same for opte and
2489 				 * npte.
2490 				 */
2491 				pmap_cache_wbinv_page(pm, va, true, oflags);
2492 #endif
2493 			}
2494 
2495 			/*
2496 			 * Make the PTE invalid so that we will take a
2497 			 * page fault the next time the mapping is
2498 			 * referenced.
2499 			 */
2500 			npte &= ~L2_TYPE_MASK;
2501 			npte |= L2_TYPE_INV;
2502 		}
2503 
2504 		if (npte != opte) {
2505 			l2pte_reset(ptep);
2506 			PTE_SYNC(ptep);
2507 
2508 			/* Flush the TLB entry if a current pmap. */
2509 			pmap_tlb_flush_SE(pm, va, oflags);
2510 
2511 			l2pte_set(ptep, npte, 0);
2512 			PTE_SYNC(ptep);
2513 		}
2514 
2515 		pmap_release_pmap_lock(pm);
2516 
2517 		UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
2518 		    (uintptr_t)pm, va, opte, npte);
2519 
2520 		/* Move to next entry. */
2521 		pv = SLIST_NEXT(pv, pv_link);
2522 	}
2523 
2524 #if defined(PMAP_CACHE_VIPT)
2525 	/*
2526 	 * If we need to sync the I-cache and we haven't done it yet, do it.
2527 	 */
2528 	if (need_syncicache) {
2529 		pmap_syncicache_page(md, pa);
2530 		PMAPCOUNT(exec_synced_clearbit);
2531 	}
2532 #ifndef ARM_MMU_EXTENDED
2533 	/*
2534 	 * If we are changing this to read-only, we need to call vac_me_harder
2535 	 * so we can change all the read-only pages to cacheable.  We pretend
2536 	 * this as a page deletion.
2537 	 */
2538 	if (need_vac_me_harder) {
2539 		if (md->pvh_attrs & PVF_NC)
2540 			pmap_vac_me_harder(md, pa, NULL, 0);
2541 	}
2542 #endif /* !ARM_MMU_EXTENDED */
2543 #endif /* PMAP_CACHE_VIPT */
2544 }
2545 
2546 /*
2547  * pmap_clean_page()
2548  *
2549  * This is a local function used to work out the best strategy to clean
2550  * a single page referenced by its entry in the PV table. It's used by
2551  * pmap_copy_page, pmap_zero_page and maybe some others later on.
2552  *
2553  * Its policy is effectively:
2554  *  o If there are no mappings, we don't bother doing anything with the cache.
2555  *  o If there is one mapping, we clean just that page.
2556  *  o If there are multiple mappings, we clean the entire cache.
2557  *
2558  * So that some functions can be further optimised, it returns 0 if it didn't
2559  * clean the entire cache, or 1 if it did.
2560  *
2561  * XXX One bug in this routine is that if the pv_entry has a single page
2562  * mapped at 0x00000000 a whole cache clean will be performed rather than
2563  * just the 1 page. Since this should not occur in everyday use and if it does
2564  * it will just result in not the most efficient clean for the page.
2565  */
2566 #ifdef PMAP_CACHE_VIVT
2567 static bool
2568 pmap_clean_page(struct vm_page_md *md, bool is_src)
2569 {
2570 	struct pv_entry *pv;
2571 	pmap_t pm_to_clean = NULL;
2572 	bool cache_needs_cleaning = false;
2573 	vaddr_t page_to_clean = 0;
2574 	u_int flags = 0;
2575 
2576 	/*
2577 	 * Since we flush the cache each time we change to a different
2578 	 * user vmspace, we only need to flush the page if it is in the
2579 	 * current pmap.
2580 	 */
2581 	KASSERT(pmap_page_locked_p(md));
2582 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2583 		if (pmap_is_current(pv->pv_pmap)) {
2584 			flags |= pv->pv_flags;
2585 			/*
2586 			 * The page is mapped non-cacheable in
2587 			 * this map.  No need to flush the cache.
2588 			 */
2589 			if (pv->pv_flags & PVF_NC) {
2590 #ifdef DIAGNOSTIC
2591 				KASSERT(!cache_needs_cleaning);
2592 #endif
2593 				break;
2594 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
2595 				continue;
2596 			if (cache_needs_cleaning) {
2597 				page_to_clean = 0;
2598 				break;
2599 			} else {
2600 				page_to_clean = pv->pv_va;
2601 				pm_to_clean = pv->pv_pmap;
2602 			}
2603 			cache_needs_cleaning = true;
2604 		}
2605 	}
2606 
2607 	if (page_to_clean) {
2608 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
2609 		    !is_src, flags | PVF_REF);
2610 	} else if (cache_needs_cleaning) {
2611 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2612 
2613 		pmap_cache_wbinv_all(pm, flags);
2614 		return true;
2615 	}
2616 	return false;
2617 }
2618 #endif
2619 
2620 #ifdef PMAP_CACHE_VIPT
2621 /*
2622  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
2623  * right cache alias to make sure we flush the right stuff.
2624  */
2625 void
2626 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2627 {
2628 	pmap_t kpm = pmap_kernel();
2629 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
2630 	    ? PAGE_SIZE
2631 	    : arm_pcache.icache_way_size;
2632 
2633 	UVMHIST_FUNC(__func__);
2634 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
2635 	    (uintptr_t)md, pa, md->pvh_attrs, 0);
2636 
2637 	/*
2638 	 * No need to clean the page if it's non-cached.
2639 	 */
2640 #ifndef ARM_MMU_EXTENDED
2641 	if (md->pvh_attrs & PVF_NC)
2642 		return;
2643 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2644 #endif
2645 
2646 	pt_entry_t * const ptep = cpu_cdst_pte(0);
2647 	const vaddr_t dstp = cpu_cdstp(0);
2648 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
2649 	if (way_size <= PAGE_SIZE) {
2650 		bool ok = false;
2651 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
2652 		if (ok) {
2653 			cpu_icache_sync_range(vdstp, way_size);
2654 			return;
2655 		}
2656 	}
2657 #endif
2658 
2659 	/*
2660 	 * We don't worry about the color of the exec page, we map the
2661 	 * same page to pages in the way and then do the icache_sync on
2662 	 * the entire way making sure we are cleaned.
2663 	 */
2664 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
2665 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
2666 
2667 	for (size_t i = 0, j = 0; i < way_size;
2668 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2669 		l2pte_reset(ptep + j);
2670 		PTE_SYNC(ptep + j);
2671 
2672 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2673 		/*
2674 		 * Set up a PTE with to flush these cache lines.
2675 		 */
2676 		l2pte_set(ptep + j, npte, 0);
2677 	}
2678 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
2679 
2680 	/*
2681 	 * Flush it.
2682 	 */
2683 	cpu_icache_sync_range(dstp, way_size);
2684 
2685 	for (size_t i = 0, j = 0; i < way_size;
2686 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
2687 		/*
2688 		 * Unmap the page(s).
2689 		 */
2690 		l2pte_reset(ptep + j);
2691 		PTE_SYNC(ptep + j);
2692 
2693 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
2694 	}
2695 
2696 	md->pvh_attrs |= PVF_EXEC;
2697 	PMAPCOUNT(exec_synced);
2698 }
2699 
2700 #ifndef ARM_MMU_EXTENDED
2701 void
2702 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2703 {
2704 	vsize_t va_offset, end_va;
2705 	bool wbinv_p;
2706 
2707 	if (arm_cache_prefer_mask == 0)
2708 		return;
2709 
2710 	UVMHIST_FUNC(__func__);
2711 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
2712 	    (uintptr_t)md, pa, op, 0);
2713 
2714 	switch (flush) {
2715 	case PMAP_FLUSH_PRIMARY:
2716 		if (md->pvh_attrs & PVF_MULTCLR) {
2717 			va_offset = 0;
2718 			end_va = arm_cache_prefer_mask;
2719 			md->pvh_attrs &= ~PVF_MULTCLR;
2720 			PMAPCOUNT(vac_flush_lots);
2721 		} else {
2722 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2723 			end_va = va_offset;
2724 			PMAPCOUNT(vac_flush_one);
2725 		}
2726 		/*
2727 		 * Mark that the page is no longer dirty.
2728 		 */
2729 		md->pvh_attrs &= ~PVF_DIRTY;
2730 		wbinv_p = true;
2731 		break;
2732 	case PMAP_FLUSH_SECONDARY:
2733 		va_offset = 0;
2734 		end_va = arm_cache_prefer_mask;
2735 		wbinv_p = true;
2736 		md->pvh_attrs &= ~PVF_MULTCLR;
2737 		PMAPCOUNT(vac_flush_lots);
2738 		break;
2739 	case PMAP_CLEAN_PRIMARY:
2740 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2741 		end_va = va_offset;
2742 		wbinv_p = false;
2743 		/*
2744 		 * Mark that the page is no longer dirty.
2745 		 */
2746 		if ((md->pvh_attrs & PVF_DMOD) == 0)
2747 			md->pvh_attrs &= ~PVF_DIRTY;
2748 		PMAPCOUNT(vac_clean_one);
2749 		break;
2750 	default:
2751 		return;
2752 	}
2753 
2754 	KASSERT(!(md->pvh_attrs & PVF_NC));
2755 
2756 	UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
2757 	    md->pvh_attrs, 0, 0);
2758 
2759 	const size_t scache_line_size = arm_scache.dcache_line_size;
2760 
2761 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2762 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
2763 		const vaddr_t dstp = cpu_cdstp(va_offset);
2764 		const pt_entry_t opte = *ptep;
2765 
2766 		if (flush == PMAP_FLUSH_SECONDARY
2767 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2768 			continue;
2769 
2770 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2771 		/*
2772 		 * Set up a PTE with the right coloring to flush
2773 		 * existing cache entries.
2774 		 */
2775 		const pt_entry_t npte = L2_S_PROTO
2776 		    | pa
2777 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2778 		    | pte_l2_s_cache_mode;
2779 		l2pte_set(ptep, npte, opte);
2780 		PTE_SYNC(ptep);
2781 
2782 		/*
2783 		 * Flush it.  Make sure to flush secondary cache too since
2784 		 * bus_dma will ignore uncached pages.
2785 		 */
2786 		if (scache_line_size != 0) {
2787 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
2788 			if (wbinv_p) {
2789 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
2790 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
2791 			} else {
2792 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
2793 			}
2794 		} else {
2795 			if (wbinv_p) {
2796 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
2797 			} else {
2798 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
2799 			}
2800 		}
2801 
2802 		/*
2803 		 * Restore the page table entry since we might have interrupted
2804 		 * pmap_zero_page or pmap_copy_page which was already using
2805 		 * this pte.
2806 		 */
2807 		if (opte) {
2808 			l2pte_set(ptep, opte, npte);
2809 		} else {
2810 			l2pte_reset(ptep);
2811 		}
2812 		PTE_SYNC(ptep);
2813 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
2814 	}
2815 }
2816 #endif /* ARM_MMU_EXTENDED */
2817 #endif /* PMAP_CACHE_VIPT */
2818 
2819 /*
2820  * Routine:	pmap_page_remove
2821  * Function:
2822  *		Removes this physical page from
2823  *		all physical maps in which it resides.
2824  *		Reflects back modify bits to the pager.
2825  */
2826 static void
2827 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2828 {
2829 	struct l2_bucket *l2b;
2830 	struct pv_entry *pv;
2831 	pt_entry_t *ptep;
2832 #ifndef ARM_MMU_EXTENDED
2833 	bool flush = false;
2834 #endif
2835 	u_int flags = 0;
2836 
2837 	UVMHIST_FUNC(__func__);
2838 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
2839 
2840 	pmap_acquire_page_lock(md);
2841 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
2842 	if (*pvp == NULL) {
2843 #ifdef PMAP_CACHE_VIPT
2844 		/*
2845 		 * We *know* the page contents are about to be replaced.
2846 		 * Discard the exec contents
2847 		 */
2848 		if (PV_IS_EXEC_P(md->pvh_attrs))
2849 			PMAPCOUNT(exec_discarded_page_protect);
2850 		md->pvh_attrs &= ~PVF_EXEC;
2851 		PMAP_VALIDATE_MD_PAGE(md);
2852 #endif
2853 		pmap_release_page_lock(md);
2854 		return;
2855 	}
2856 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
2857 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2858 #endif
2859 
2860 	/*
2861 	 * Clear alias counts
2862 	 */
2863 #ifdef PMAP_CACHE_VIVT
2864 	md->k_mappings = 0;
2865 #endif
2866 	md->urw_mappings = md->uro_mappings = 0;
2867 
2868 #ifdef PMAP_CACHE_VIVT
2869 	pmap_clean_page(md, false);
2870 #endif
2871 
2872 	for (pv = *pvp; pv != NULL;) {
2873 		pmap_t pm = pv->pv_pmap;
2874 #ifndef ARM_MMU_EXTENDED
2875 		if (flush == false && pmap_is_current(pm))
2876 			flush = true;
2877 #endif
2878 
2879 #ifdef PMAP_CACHE_VIPT
2880 		if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
2881 			/* If this was unmanaged mapping, it must be ignored. */
2882 			pvp = &SLIST_NEXT(pv, pv_link);
2883 			pv = *pvp;
2884 			continue;
2885 		}
2886 #endif
2887 
2888 		/*
2889 		 * Try to get a hold on the pmap's lock.  We must do this
2890 		 * while still holding the page locked, to know that the
2891 		 * page is still associated with the pmap and the mapping is
2892 		 * in place.  If a hold can't be had, unlock and wait for
2893 		 * the pmap's lock to become available and retry.  The pmap
2894 		 * must be ref'd over this dance to stop it disappearing
2895 		 * behind us.
2896 		 */
2897 		if (!mutex_tryenter(&pm->pm_lock)) {
2898 			pmap_reference(pm);
2899 			pmap_release_page_lock(md);
2900 			pmap_acquire_pmap_lock(pm);
2901 			/* nothing, just wait for it */
2902 			pmap_release_pmap_lock(pm);
2903 			pmap_destroy(pm);
2904 			/* Restart from the beginning. */
2905 			pmap_acquire_page_lock(md);
2906 			pvp = &SLIST_FIRST(&md->pvh_list);
2907 			pv = *pvp;
2908 			continue;
2909 		}
2910 
2911 		if (pm == pmap_kernel()) {
2912 #ifdef PMAP_CACHE_VIPT
2913 			if (pv->pv_flags & PVF_WRITE)
2914 				md->krw_mappings--;
2915 			else
2916 				md->kro_mappings--;
2917 #endif
2918 			PMAPCOUNT(kernel_unmappings);
2919 		}
2920 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
2921 		PMAPCOUNT(unmappings);
2922 
2923 		pmap_release_page_lock(md);
2924 
2925 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2926 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
2927 
2928 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2929 
2930 		/*
2931 		 * Update statistics
2932 		 */
2933 		--pm->pm_stats.resident_count;
2934 
2935 		/* Wired bit */
2936 		if (pv->pv_flags & PVF_WIRED)
2937 			--pm->pm_stats.wired_count;
2938 
2939 		flags |= pv->pv_flags;
2940 
2941 		/*
2942 		 * Invalidate the PTEs.
2943 		 */
2944 		l2pte_reset(ptep);
2945 		PTE_SYNC_CURRENT(pm, ptep);
2946 
2947 #ifdef ARM_MMU_EXTENDED
2948 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
2949 #endif
2950 
2951 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
2952 
2953 		pmap_release_pmap_lock(pm);
2954 
2955 		pool_put(&pmap_pv_pool, pv);
2956 		pmap_acquire_page_lock(md);
2957 
2958 		/*
2959 		 * Restart at the beginning of the list.
2960 		 */
2961 		pvp = &SLIST_FIRST(&md->pvh_list);
2962 		pv = *pvp;
2963 	}
2964 	/*
2965 	 * if we reach the end of the list and there are still mappings, they
2966 	 * might be able to be cached now.  And they must be kernel mappings.
2967 	 */
2968 	if (!SLIST_EMPTY(&md->pvh_list)) {
2969 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
2970 	}
2971 
2972 #ifdef PMAP_CACHE_VIPT
2973 	/*
2974 	 * Its EXEC cache is now gone.
2975 	 */
2976 	if (PV_IS_EXEC_P(md->pvh_attrs))
2977 		PMAPCOUNT(exec_discarded_page_protect);
2978 	md->pvh_attrs &= ~PVF_EXEC;
2979 	KASSERT(md->urw_mappings == 0);
2980 	KASSERT(md->uro_mappings == 0);
2981 #ifndef ARM_MMU_EXTENDED
2982 	if (arm_cache_prefer_mask != 0) {
2983 		if (md->krw_mappings == 0)
2984 			md->pvh_attrs &= ~PVF_WRITE;
2985 		PMAP_VALIDATE_MD_PAGE(md);
2986 	}
2987 #endif /* ARM_MMU_EXTENDED */
2988 #endif /* PMAP_CACHE_VIPT */
2989 	pmap_release_page_lock(md);
2990 
2991 #ifndef ARM_MMU_EXTENDED
2992 	if (flush) {
2993 		/*
2994 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2995 		 * would need a subsequent call to pmap_update() to ensure
2996 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
2997 		 * required to do that (see pmap(9)), so we can't modify
2998 		 * the current pmap's state.
2999 		 */
3000 		if (PV_BEEN_EXECD(flags))
3001 			cpu_tlb_flushID();
3002 		else
3003 			cpu_tlb_flushD();
3004 	}
3005 	cpu_cpwait();
3006 #endif /* ARM_MMU_EXTENDED */
3007 }
3008 
3009 /*
3010  * pmap_t pmap_create(void)
3011  *
3012  *      Create a new pmap structure from scratch.
3013  */
3014 pmap_t
3015 pmap_create(void)
3016 {
3017 	pmap_t pm;
3018 
3019 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
3020 
3021 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
3022 
3023 	pm->pm_refs = 1;
3024 	pm->pm_stats.wired_count = 0;
3025 	pm->pm_stats.resident_count = 1;
3026 #ifdef ARM_MMU_EXTENDED
3027 #ifdef MULTIPROCESSOR
3028 	kcpuset_create(&pm->pm_active, true);
3029 	kcpuset_create(&pm->pm_onproc, true);
3030 #endif
3031 #else
3032 	pm->pm_cstate.cs_all = 0;
3033 #endif
3034 	pmap_alloc_l1(pm);
3035 
3036 	/*
3037 	 * Note: The pool cache ensures that the pm_l2[] array is already
3038 	 * initialised to zero.
3039 	 */
3040 
3041 	pmap_pinit(pm);
3042 
3043 	return pm;
3044 }
3045 
3046 u_int
3047 arm32_mmap_flags(paddr_t pa)
3048 {
3049 	/*
3050 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
3051 	 * and we're using the upper bits in page numbers to pass flags around
3052 	 * so we might as well use the same bits
3053 	 */
3054 	return (u_int)pa & PMAP_MD_MASK;
3055 }
3056 /*
3057  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
3058  *      u_int flags)
3059  *
3060  *      Insert the given physical page (p) at
3061  *      the specified virtual address (v) in the
3062  *      target physical map with the protection requested.
3063  *
3064  *      NB:  This is the only routine which MAY NOT lazy-evaluate
3065  *      or lose information.  That is, this routine must actually
3066  *      insert this page into the given map NOW.
3067  */
3068 int
3069 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3070 {
3071 	struct l2_bucket *l2b;
3072 	struct vm_page *pg, *opg;
3073 	u_int nflags;
3074 	u_int oflags;
3075 	const bool kpm_p = (pm == pmap_kernel());
3076 #ifdef ARM_HAS_VBAR
3077 	const bool vector_page_p = false;
3078 #else
3079 	const bool vector_page_p = (va == vector_page);
3080 #endif
3081 	struct pmap_page *pp = pmap_pv_tracked(pa);
3082 	struct pv_entry *new_pv = NULL;
3083 	struct pv_entry *old_pv = NULL;
3084 	int error = 0;
3085 
3086 	UVMHIST_FUNC(__func__);
3087 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
3088 	    (uintptr_t)pm, va, pa, prot);
3089 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
3090 
3091 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
3092 	KDASSERT(((va | pa) & PGOFSET) == 0);
3093 
3094 	/*
3095 	 * Get a pointer to the page.  Later on in this function, we
3096 	 * test for a managed page by checking pg != NULL.
3097 	 */
3098 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
3099 	/*
3100 	 * if we may need a new pv entry allocate if now, as we can't do it
3101 	 * with the kernel_pmap locked
3102 	 */
3103 	if (pg || pp)
3104 		new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3105 
3106 	nflags = 0;
3107 	if (prot & VM_PROT_WRITE)
3108 		nflags |= PVF_WRITE;
3109 	if (prot & VM_PROT_EXECUTE)
3110 		nflags |= PVF_EXEC;
3111 	if (flags & PMAP_WIRED)
3112 		nflags |= PVF_WIRED;
3113 
3114 	pmap_acquire_pmap_lock(pm);
3115 
3116 	/*
3117 	 * Fetch the L2 bucket which maps this page, allocating one if
3118 	 * necessary for user pmaps.
3119 	 */
3120 	if (kpm_p) {
3121 		l2b = pmap_get_l2_bucket(pm, va);
3122 	} else {
3123 		l2b = pmap_alloc_l2_bucket(pm, va);
3124 	}
3125 	if (l2b == NULL) {
3126 		if (flags & PMAP_CANFAIL) {
3127 			pmap_release_pmap_lock(pm);
3128 			error = ENOMEM;
3129 			goto free_pv;
3130 		}
3131 		panic("pmap_enter: failed to allocate L2 bucket");
3132 	}
3133 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
3134 	const pt_entry_t opte = *ptep;
3135 	pt_entry_t npte = pa;
3136 	oflags = 0;
3137 
3138 	if (opte) {
3139 		/*
3140 		 * There is already a mapping at this address.
3141 		 * If the physical address is different, lookup the
3142 		 * vm_page.
3143 		 */
3144 		if (l2pte_pa(opte) != pa) {
3145 			KASSERT(!pmap_pv_tracked(pa));
3146 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3147 		} else
3148 			opg = pg;
3149 	} else
3150 		opg = NULL;
3151 
3152 	if (pg || pp) {
3153 		KASSERT((pg != NULL) != (pp != NULL));
3154 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
3155 		    PMAP_PAGE_TO_MD(pp);
3156 
3157 		/*
3158 		 * This is to be a managed mapping.
3159 		 */
3160 		pmap_acquire_page_lock(md);
3161 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
3162 			/*
3163 			 * - The access type indicates that we don't need
3164 			 *   to do referenced emulation.
3165 			 * OR
3166 			 * - The physical page has already been referenced
3167 			 *   so no need to re-do referenced emulation here.
3168 			 */
3169 			npte |= l2pte_set_readonly(L2_S_PROTO);
3170 
3171 			nflags |= PVF_REF;
3172 
3173 			if ((prot & VM_PROT_WRITE) != 0 &&
3174 			    ((flags & VM_PROT_WRITE) != 0 ||
3175 			     (md->pvh_attrs & PVF_MOD) != 0)) {
3176 				/*
3177 				 * This is a writable mapping, and the
3178 				 * page's mod state indicates it has
3179 				 * already been modified. Make it
3180 				 * writable from the outset.
3181 				 */
3182 				npte = l2pte_set_writable(npte);
3183 				nflags |= PVF_MOD;
3184 			}
3185 
3186 #ifdef ARM_MMU_EXTENDED
3187 			/*
3188 			 * If the page has been cleaned, then the pvh_attrs
3189 			 * will have PVF_EXEC set, so mark it execute so we
3190 			 * don't get an access fault when trying to execute
3191 			 * from it.
3192 			 */
3193 			if (md->pvh_attrs & nflags & PVF_EXEC) {
3194 				npte &= ~L2_XS_XN;
3195 			}
3196 #endif
3197 		} else {
3198 			/*
3199 			 * Need to do page referenced emulation.
3200 			 */
3201 			npte |= L2_TYPE_INV;
3202 		}
3203 
3204 		if (flags & ARM32_MMAP_WRITECOMBINE) {
3205 			npte |= pte_l2_s_wc_mode;
3206 		} else
3207 			npte |= pte_l2_s_cache_mode;
3208 
3209 		if (pg != NULL && pg == opg) {
3210 			/*
3211 			 * We're changing the attrs of an existing mapping.
3212 			 */
3213 			oflags = pmap_modify_pv(md, pa, pm, va,
3214 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3215 			    PVF_MOD | PVF_REF, nflags);
3216 
3217 #ifdef PMAP_CACHE_VIVT
3218 			/*
3219 			 * We may need to flush the cache if we're
3220 			 * doing rw-ro...
3221 			 */
3222 			if (pm->pm_cstate.cs_cache_d &&
3223 			    (oflags & PVF_NC) == 0 &&
3224 			    l2pte_writable_p(opte) &&
3225 			    (prot & VM_PROT_WRITE) == 0)
3226 				cpu_dcache_wb_range(va, PAGE_SIZE);
3227 #endif
3228 		} else {
3229 			struct pv_entry *pv;
3230 			/*
3231 			 * New mapping, or changing the backing page
3232 			 * of an existing mapping.
3233 			 */
3234 			if (opg) {
3235 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3236 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
3237 
3238 				/*
3239 				 * Replacing an existing mapping with a new one.
3240 				 * It is part of our managed memory so we
3241 				 * must remove it from the PV list
3242 				 */
3243 				pv = pmap_remove_pv(omd, opa, pm, va);
3244 				pmap_vac_me_harder(omd, opa, pm, 0);
3245 				oflags = pv->pv_flags;
3246 
3247 #ifdef PMAP_CACHE_VIVT
3248 				/*
3249 				 * If the old mapping was valid (ref/mod
3250 				 * emulation creates 'invalid' mappings
3251 				 * initially) then make sure to frob
3252 				 * the cache.
3253 				 */
3254 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3255 					pmap_cache_wbinv_page(pm, va, true,
3256 					    oflags);
3257 				}
3258 #endif
3259 			} else {
3260 				pv = new_pv;
3261 				new_pv = NULL;
3262 				if (pv == NULL) {
3263 					pmap_release_page_lock(md);
3264 					pmap_release_pmap_lock(pm);
3265 					if ((flags & PMAP_CANFAIL) == 0)
3266 						panic("pmap_enter: "
3267 						    "no pv entries");
3268 
3269 					pmap_free_l2_bucket(pm, l2b, 0);
3270 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
3271 					    0, 0, 0, 0);
3272 					return ENOMEM;
3273 				}
3274 			}
3275 
3276 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
3277 		}
3278 		pmap_release_page_lock(md);
3279 	} else {
3280 		/*
3281 		 * We're mapping an unmanaged page.
3282 		 * These are always readable, and possibly writable, from
3283 		 * the get go as we don't need to track ref/mod status.
3284 		 */
3285 		npte |= l2pte_set_readonly(L2_S_PROTO);
3286 		if (prot & VM_PROT_WRITE)
3287 			npte = l2pte_set_writable(npte);
3288 
3289 		/*
3290 		 * Make sure the vector table is mapped cacheable
3291 		 */
3292 		if ((vector_page_p && !kpm_p)
3293 		    || (flags & ARM32_MMAP_CACHEABLE)) {
3294 			npte |= pte_l2_s_cache_mode;
3295 #ifdef ARM_MMU_EXTENDED
3296 			npte &= ~L2_XS_XN;	/* and executable */
3297 #endif
3298 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
3299 			npte |= pte_l2_s_wc_mode;
3300 		}
3301 		if (opg) {
3302 			/*
3303 			 * Looks like there's an existing 'managed' mapping
3304 			 * at this address.
3305 			 */
3306 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3307 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
3308 
3309 			pmap_acquire_page_lock(omd);
3310 			old_pv = pmap_remove_pv(omd, opa, pm, va);
3311 			pmap_vac_me_harder(omd, opa, pm, 0);
3312 			oflags = old_pv->pv_flags;
3313 			pmap_release_page_lock(omd);
3314 
3315 #ifdef PMAP_CACHE_VIVT
3316 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
3317 				pmap_cache_wbinv_page(pm, va, true, oflags);
3318 			}
3319 #endif
3320 		}
3321 	}
3322 
3323 	/*
3324 	 * Make sure userland mappings get the right permissions
3325 	 */
3326 	if (!vector_page_p && !kpm_p) {
3327 		npte |= L2_S_PROT_U;
3328 #ifdef ARM_MMU_EXTENDED
3329 		npte |= L2_XS_nG;	/* user pages are not global */
3330 #endif
3331 	}
3332 
3333 	/*
3334 	 * Keep the stats up to date
3335 	 */
3336 	if (opte == 0) {
3337 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3338 		pm->pm_stats.resident_count++;
3339 	}
3340 
3341 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
3342 
3343 #if defined(ARM_MMU_EXTENDED)
3344 	/*
3345 	 * If exec protection was requested but the page hasn't been synced,
3346 	 * sync it now and allow execution from it.
3347 	 */
3348 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
3349 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3350 		npte &= ~L2_XS_XN;
3351 		pmap_syncicache_page(md, pa);
3352 		PMAPCOUNT(exec_synced_map);
3353 	}
3354 #endif
3355 	/*
3356 	 * If this is just a wiring change, the two PTEs will be
3357 	 * identical, so there's no need to update the page table.
3358 	 */
3359 	if (npte != opte) {
3360 		l2pte_reset(ptep);
3361 		PTE_SYNC(ptep);
3362 		if (l2pte_valid_p(opte)) {
3363 			pmap_tlb_flush_SE(pm, va, oflags);
3364 		}
3365 		l2pte_set(ptep, npte, 0);
3366 		PTE_SYNC(ptep);
3367 #ifndef ARM_MMU_EXTENDED
3368 		bool is_cached = pmap_is_cached(pm);
3369 		if (is_cached) {
3370 			/*
3371 			 * We only need to frob the cache/tlb if this pmap
3372 			 * is current
3373 			 */
3374 			if (!vector_page_p && l2pte_valid_p(npte)) {
3375 				/*
3376 				 * This mapping is likely to be accessed as
3377 				 * soon as we return to userland. Fix up the
3378 				 * L1 entry to avoid taking another
3379 				 * page/domain fault.
3380 				 */
3381 				pd_entry_t *pdep = pmap_l1_kva(pm)
3382 				     + l1pte_index(va);
3383 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
3384 				    | L1_C_DOM(pmap_domain(pm));
3385 				if (*pdep != pde) {
3386 					l1pte_setone(pdep, pde);
3387 					PDE_SYNC(pdep);
3388 				}
3389 			}
3390 		}
3391 
3392 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
3393 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
3394 
3395 		if (pg != NULL) {
3396 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3397 
3398 			pmap_acquire_page_lock(md);
3399 			pmap_vac_me_harder(md, pa, pm, va);
3400 			pmap_release_page_lock(md);
3401 		}
3402 #endif
3403 	}
3404 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3405 	if (pg) {
3406 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3407 
3408 		pmap_acquire_page_lock(md);
3409 #ifndef ARM_MMU_EXTENDED
3410 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3411 #endif
3412 		PMAP_VALIDATE_MD_PAGE(md);
3413 		pmap_release_page_lock(md);
3414 	}
3415 #endif
3416 
3417 	pmap_release_pmap_lock(pm);
3418 
3419 
3420 	if (old_pv)
3421 		pool_put(&pmap_pv_pool, old_pv);
3422 free_pv:
3423 	if (new_pv)
3424 		pool_put(&pmap_pv_pool, new_pv);
3425 	return error;
3426 }
3427 
3428 /*
3429  * pmap_remove()
3430  *
3431  * pmap_remove is responsible for nuking a number of mappings for a range
3432  * of virtual address space in the current pmap. To do this efficiently
3433  * is interesting, because in a number of cases a wide virtual address
3434  * range may be supplied that contains few actual mappings. So, the
3435  * optimisations are:
3436  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
3437  *  2. Build up a list of pages we've hit, up to a maximum, so we can
3438  *     maybe do just a partial cache clean. This path of execution is
3439  *     complicated by the fact that the cache must be flushed _before_
3440  *     the PTE is nuked, being a VAC :-)
3441  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
3442  *     all invalidations until pmap_update(), since pmap_remove_all() has
3443  *     already flushed the cache.
3444  *  4. Maybe later fast-case a single page, but I don't think this is
3445  *     going to make _that_ much difference overall.
3446  */
3447 
3448 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3449 
3450 void
3451 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3452 {
3453 	SLIST_HEAD(,pv_entry) opv_list;
3454 	struct pv_entry *pv, *npv;
3455 	UVMHIST_FUNC(__func__);
3456 	UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
3457 	    (uintptr_t)pm, sva, eva, 0);
3458 
3459 #ifdef PMAP_FAULTINFO
3460 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
3461 	curpcb->pcb_faultinfo.pfi_repeats = 0;
3462 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
3463 #endif
3464 
3465 	SLIST_INIT(&opv_list);
3466 	/*
3467 	 * we lock in the pmap => pv_head direction
3468 	 */
3469 	pmap_acquire_pmap_lock(pm);
3470 
3471 #ifndef ARM_MMU_EXTENDED
3472 	u_int cleanlist_idx, total, cnt;
3473 	struct {
3474 		vaddr_t va;
3475 		pt_entry_t *ptep;
3476 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3477 
3478 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3479 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3480 		if (pm->pm_cstate.cs_tlb == 0)
3481 			pm->pm_remove_all = true;
3482 	} else
3483 		cleanlist_idx = 0;
3484 	total = 0;
3485 #endif
3486 
3487 	while (sva < eva) {
3488 		/*
3489 		 * Do one L2 bucket's worth at a time.
3490 		 */
3491 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
3492 		if (next_bucket > eva)
3493 			next_bucket = eva;
3494 
3495 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
3496 		if (l2b == NULL) {
3497 			sva = next_bucket;
3498 			continue;
3499 		}
3500 
3501 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
3502 		u_int mappings = 0;
3503 
3504 		for (;sva < next_bucket;
3505 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
3506 			pt_entry_t opte = *ptep;
3507 
3508 			if (opte == 0) {
3509 				/* Nothing here, move along */
3510 				continue;
3511 			}
3512 
3513 			u_int flags = PVF_REF;
3514 			paddr_t pa = l2pte_pa(opte);
3515 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
3516 
3517 			/*
3518 			 * Update flags. In a number of circumstances,
3519 			 * we could cluster a lot of these and do a
3520 			 * number of sequential pages in one go.
3521 			 */
3522 			if (pg != NULL) {
3523 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3524 
3525 				pmap_acquire_page_lock(md);
3526 				pv = pmap_remove_pv(md, pa, pm, sva);
3527 				pmap_vac_me_harder(md, pa, pm, 0);
3528 				pmap_release_page_lock(md);
3529 				if (pv != NULL) {
3530 					if (pm->pm_remove_all == false) {
3531 						flags = pv->pv_flags;
3532 					}
3533 					SLIST_INSERT_HEAD(&opv_list,
3534 					    pv, pv_link);
3535 				}
3536 			}
3537 			mappings += PAGE_SIZE / L2_S_SIZE;
3538 
3539 			if (!l2pte_valid_p(opte)) {
3540 				/*
3541 				 * Ref/Mod emulation is still active for this
3542 				 * mapping, therefore it is has not yet been
3543 				 * accessed. No need to frob the cache/tlb.
3544 				 */
3545 				l2pte_reset(ptep);
3546 				PTE_SYNC_CURRENT(pm, ptep);
3547 				continue;
3548 			}
3549 
3550 #ifdef ARM_MMU_EXTENDED
3551 			l2pte_reset(ptep);
3552 			PTE_SYNC(ptep);
3553 			if (__predict_false(pm->pm_remove_all == false)) {
3554 				pmap_tlb_flush_SE(pm, sva, flags);
3555 			}
3556 #else
3557 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3558 				/* Add to the clean list. */
3559 				cleanlist[cleanlist_idx].ptep = ptep;
3560 				cleanlist[cleanlist_idx].va =
3561 				    sva | (flags & PVF_EXEC);
3562 				cleanlist_idx++;
3563 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3564 				/* Nuke everything if needed. */
3565 #ifdef PMAP_CACHE_VIVT
3566 				pmap_cache_wbinv_all(pm, PVF_EXEC);
3567 #endif
3568 				/*
3569 				 * Roll back the previous PTE list,
3570 				 * and zero out the current PTE.
3571 				 */
3572 				for (cnt = 0;
3573 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3574 					l2pte_reset(cleanlist[cnt].ptep);
3575 					PTE_SYNC(cleanlist[cnt].ptep);
3576 				}
3577 				l2pte_reset(ptep);
3578 				PTE_SYNC(ptep);
3579 				cleanlist_idx++;
3580 				pm->pm_remove_all = true;
3581 			} else {
3582 				l2pte_reset(ptep);
3583 				PTE_SYNC(ptep);
3584 				if (pm->pm_remove_all == false) {
3585 					pmap_tlb_flush_SE(pm, sva, flags);
3586 				}
3587 			}
3588 #endif
3589 		}
3590 
3591 #ifndef ARM_MMU_EXTENDED
3592 		/*
3593 		 * Deal with any left overs
3594 		 */
3595 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3596 			total += cleanlist_idx;
3597 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3598 				l2pte_reset(cleanlist[cnt].ptep);
3599 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3600 				vaddr_t va = cleanlist[cnt].va;
3601 				if (pm->pm_cstate.cs_all != 0) {
3602 					vaddr_t clva = va & ~PAGE_MASK;
3603 					u_int flags = va & PVF_EXEC;
3604 #ifdef PMAP_CACHE_VIVT
3605 					pmap_cache_wbinv_page(pm, clva, true,
3606 					    PVF_REF | PVF_WRITE | flags);
3607 #endif
3608 					pmap_tlb_flush_SE(pm, clva,
3609 					    PVF_REF | flags);
3610 				}
3611 			}
3612 
3613 			/*
3614 			 * If it looks like we're removing a whole bunch
3615 			 * of mappings, it's faster to just write-back
3616 			 * the whole cache now and defer TLB flushes until
3617 			 * pmap_update() is called.
3618 			 */
3619 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3620 				cleanlist_idx = 0;
3621 			else {
3622 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3623 #ifdef PMAP_CACHE_VIVT
3624 				pmap_cache_wbinv_all(pm, PVF_EXEC);
3625 #endif
3626 				pm->pm_remove_all = true;
3627 			}
3628 		}
3629 #endif /* ARM_MMU_EXTENDED */
3630 
3631 		pmap_free_l2_bucket(pm, l2b, mappings);
3632 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
3633 	}
3634 
3635 	pmap_release_pmap_lock(pm);
3636 	SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
3637 		pool_put(&pmap_pv_pool, pv);
3638 	}
3639 }
3640 
3641 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3642 static struct pv_entry *
3643 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3644 {
3645 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3646 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
3647 	struct pv_entry *pv;
3648 
3649 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3650 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3651 	KASSERT(pmap_page_locked_p(md));
3652 
3653 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3654 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
3655 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
3656 
3657 	/*
3658 	 * We are removing a writeable mapping to a cached exec page, if
3659 	 * it's the last mapping then clear its execness otherwise sync
3660 	 * the page to the icache.
3661 	 */
3662 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3663 	    && (pv->pv_flags & PVF_WRITE) != 0) {
3664 		if (SLIST_EMPTY(&md->pvh_list)) {
3665 			md->pvh_attrs &= ~PVF_EXEC;
3666 			PMAPCOUNT(exec_discarded_kremove);
3667 		} else {
3668 			pmap_syncicache_page(md, pa);
3669 			PMAPCOUNT(exec_synced_kremove);
3670 		}
3671 	}
3672 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3673 
3674 	return pv;
3675 }
3676 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
3677 
3678 /*
3679  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3680  *
3681  * We assume there is already sufficient KVM space available
3682  * to do this, as we can't allocate L2 descriptor tables/metadata
3683  * from here.
3684  */
3685 void
3686 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3687 {
3688 #ifdef PMAP_CACHE_VIVT
3689 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3690 #endif
3691 #ifdef PMAP_CACHE_VIPT
3692 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3693 	struct vm_page *opg;
3694 #ifndef ARM_MMU_EXTENDED
3695 	struct pv_entry *pv = NULL;
3696 #endif
3697 #endif
3698 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
3699 
3700 	UVMHIST_FUNC(__func__);
3701 
3702 	if (pmap_initialized) {
3703 		UVMHIST_CALLARGS(maphist,
3704 		    "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
3705 		     flags);
3706 	}
3707 
3708 	pmap_t kpm = pmap_kernel();
3709 	pmap_acquire_pmap_lock(kpm);
3710 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3711 	const size_t l1slot __diagused = l1pte_index(va);
3712 	KASSERTMSG(l2b != NULL,
3713 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
3714 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
3715 	    kpm->pm_l2[L2_IDX(l1slot)]
3716 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
3717 		: NULL,
3718 	    kpm->pm_l2[L2_IDX(l1slot)]
3719 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
3720 		: NULL);
3721 	KASSERT(l2b->l2b_kva != NULL);
3722 
3723 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
3724 	const pt_entry_t opte = *ptep;
3725 
3726 	if (opte == 0) {
3727 		PMAPCOUNT(kenter_mappings);
3728 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
3729 	} else {
3730 		PMAPCOUNT(kenter_remappings);
3731 #ifdef PMAP_CACHE_VIPT
3732 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3733 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC)
3734 		struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg);
3735 #endif
3736 		if (opg && arm_cache_prefer_mask != 0) {
3737 			KASSERT(opg != pg);
3738 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3739 			KASSERT((flags & PMAP_KMPAGE) == 0);
3740 #ifndef ARM_MMU_EXTENDED
3741 			pmap_acquire_page_lock(omd);
3742 			pv = pmap_kremove_pg(opg, va);
3743 			pmap_release_page_lock(omd);
3744 #endif
3745 		}
3746 #endif
3747 		if (l2pte_valid_p(opte)) {
3748 			l2pte_reset(ptep);
3749 			PTE_SYNC(ptep);
3750 #ifdef PMAP_CACHE_VIVT
3751 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
3752 #endif
3753 			cpu_tlb_flushD_SE(va);
3754 			cpu_cpwait();
3755 		}
3756 	}
3757 	pmap_release_pmap_lock(kpm);
3758 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
3759 
3760 	if (flags & PMAP_PTE) {
3761 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
3762 		if (!(flags & PMAP_NOCACHE))
3763 			npte |= pte_l2_s_cache_mode_pt;
3764 	} else {
3765 		switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
3766 		case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
3767 			break;
3768 		case PMAP_NOCACHE:
3769 			npte |= pte_l2_s_nocache_mode;
3770 			break;
3771 		case PMAP_WRITE_COMBINE:
3772 			npte |= pte_l2_s_wc_mode;
3773 			break;
3774 		default:
3775 			npte |= pte_l2_s_cache_mode;
3776 			break;
3777 		}
3778 	}
3779 #ifdef ARM_MMU_EXTENDED
3780 	if (prot & VM_PROT_EXECUTE)
3781 		npte &= ~L2_XS_XN;
3782 #endif
3783 	l2pte_set(ptep, npte, 0);
3784 	PTE_SYNC(ptep);
3785 
3786 	if (pg) {
3787 		if (flags & PMAP_KMPAGE) {
3788 			KASSERT(md->urw_mappings == 0);
3789 			KASSERT(md->uro_mappings == 0);
3790 			KASSERT(md->krw_mappings == 0);
3791 			KASSERT(md->kro_mappings == 0);
3792 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3793 			KASSERT(pv == NULL);
3794 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3795 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
3796 			/* if there is a color conflict, evict from cache. */
3797 			if (pmap_is_page_colored_p(md)
3798 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3799 				PMAPCOUNT(vac_color_change);
3800 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3801 			} else if (md->pvh_attrs & PVF_MULTCLR) {
3802 				/*
3803 				 * If this page has multiple colors, expunge
3804 				 * them.
3805 				 */
3806 				PMAPCOUNT(vac_flush_lots2);
3807 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3808 			}
3809 			/*
3810 			 * Since this is a KMPAGE, there can be no contention
3811 			 * for this page so don't lock it.
3812 			 */
3813 			md->pvh_attrs &= PAGE_SIZE - 1;
3814 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
3815 			    | (va & arm_cache_prefer_mask);
3816 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
3817 			md->pvh_attrs |= PVF_KMPAGE;
3818 #endif
3819 			atomic_inc_32(&pmap_kmpages);
3820 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3821 		} else if (arm_cache_prefer_mask != 0) {
3822 			if (pv == NULL) {
3823 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3824 				KASSERT(pv != NULL);
3825 			}
3826 			pmap_acquire_page_lock(md);
3827 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3828 			    PVF_WIRED | PVF_KENTRY
3829 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3830 			if ((prot & VM_PROT_WRITE)
3831 			    && !(md->pvh_attrs & PVF_NC))
3832 				md->pvh_attrs |= PVF_DIRTY;
3833 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3834 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3835 			pmap_release_page_lock(md);
3836 #endif
3837 		}
3838 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3839 	} else {
3840 		if (pv != NULL)
3841 			pool_put(&pmap_pv_pool, pv);
3842 #endif
3843 	}
3844 	if (pmap_initialized) {
3845 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
3846 		    (uintptr_t)ptep, opte, npte, 0);
3847 	}
3848 
3849 }
3850 
3851 void
3852 pmap_kremove(vaddr_t va, vsize_t len)
3853 {
3854 #ifdef UVMHIST
3855 	u_int total_mappings = 0;
3856 #endif
3857 
3858 	PMAPCOUNT(kenter_unmappings);
3859 
3860 	UVMHIST_FUNC(__func__);
3861 	UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
3862 
3863 	const vaddr_t eva = va + len;
3864 	pmap_t kpm = pmap_kernel();
3865 
3866 	pmap_acquire_pmap_lock(kpm);
3867 
3868 	while (va < eva) {
3869 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
3870 		if (next_bucket > eva)
3871 			next_bucket = eva;
3872 
3873 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
3874 		KDASSERT(l2b != NULL);
3875 
3876 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
3877 		pt_entry_t *ptep = sptep;
3878 		u_int mappings = 0;
3879 
3880 		while (va < next_bucket) {
3881 			const pt_entry_t opte = *ptep;
3882 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3883 			if (opg != NULL) {
3884 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3885 
3886 				if (omd->pvh_attrs & PVF_KMPAGE) {
3887 					KASSERT(omd->urw_mappings == 0);
3888 					KASSERT(omd->uro_mappings == 0);
3889 					KASSERT(omd->krw_mappings == 0);
3890 					KASSERT(omd->kro_mappings == 0);
3891 					omd->pvh_attrs &= ~PVF_KMPAGE;
3892 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3893 					if (arm_cache_prefer_mask != 0) {
3894 						omd->pvh_attrs &= ~PVF_WRITE;
3895 					}
3896 #endif
3897 					atomic_dec_32(&pmap_kmpages);
3898 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
3899 				} else if (arm_cache_prefer_mask != 0) {
3900 					pmap_acquire_page_lock(omd);
3901 					pool_put(&pmap_pv_pool,
3902 					    pmap_kremove_pg(opg, va));
3903 					pmap_release_page_lock(omd);
3904 #endif
3905 				}
3906 			}
3907 			if (l2pte_valid_p(opte)) {
3908 				l2pte_reset(ptep);
3909 				PTE_SYNC(ptep);
3910 #ifdef PMAP_CACHE_VIVT
3911 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
3912 #endif
3913 				cpu_tlb_flushD_SE(va);
3914 
3915 				mappings += PAGE_SIZE / L2_S_SIZE;
3916 			}
3917 			va += PAGE_SIZE;
3918 			ptep += PAGE_SIZE / L2_S_SIZE;
3919 		}
3920 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
3921 		    mappings, l2b->l2b_occupancy);
3922 		l2b->l2b_occupancy -= mappings;
3923 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3924 #ifdef UVMHIST
3925 		total_mappings += mappings;
3926 #endif
3927 	}
3928 	pmap_release_pmap_lock(kpm);
3929 	cpu_cpwait();
3930 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
3931 	    total_mappings, 0, 0, 0);
3932 }
3933 
3934 bool
3935 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3936 {
3937 
3938 	return pmap_extract_coherency(pm, va, pap, NULL);
3939 }
3940 
3941 bool
3942 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
3943 {
3944 	struct l2_dtable *l2;
3945 	pd_entry_t *pdep, pde;
3946 	pt_entry_t *ptep, pte;
3947 	paddr_t pa;
3948 	u_int l1slot;
3949 	bool coherent;
3950 
3951 	pmap_acquire_pmap_lock(pm);
3952 
3953 	l1slot = l1pte_index(va);
3954 	pdep = pmap_l1_kva(pm) + l1slot;
3955 	pde = *pdep;
3956 
3957 	if (l1pte_section_p(pde)) {
3958 		/*
3959 		 * These should only happen for pmap_kernel()
3960 		 */
3961 		KDASSERT(pm == pmap_kernel());
3962 		pmap_release_pmap_lock(pm);
3963 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3964 		if (l1pte_supersection_p(pde)) {
3965 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3966 		} else
3967 #endif
3968 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3969 		coherent = (pde & L1_S_CACHE_MASK) == 0;
3970 	} else {
3971 		/*
3972 		 * Note that we can't rely on the validity of the L1
3973 		 * descriptor as an indication that a mapping exists.
3974 		 * We have to look it up in the L2 dtable.
3975 		 */
3976 		l2 = pm->pm_l2[L2_IDX(l1slot)];
3977 
3978 		if (l2 == NULL ||
3979 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
3980 			pmap_release_pmap_lock(pm);
3981 			return false;
3982 		}
3983 
3984 		pte = ptep[l2pte_index(va)];
3985 		pmap_release_pmap_lock(pm);
3986 
3987 		if (pte == 0)
3988 			return false;
3989 
3990 		switch (pte & L2_TYPE_MASK) {
3991 		case L2_TYPE_L:
3992 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3993 			coherent = (pte & L2_L_CACHE_MASK) == 0;
3994 			break;
3995 
3996 		default:
3997 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
3998 			coherent = (pte & L2_S_CACHE_MASK) == 0;
3999 			break;
4000 		}
4001 	}
4002 
4003 	if (pap != NULL)
4004 		*pap = pa;
4005 
4006 	if (coherentp != NULL)
4007 		*coherentp = (pm == pmap_kernel() && coherent);
4008 
4009 	return true;
4010 }
4011 
4012 /*
4013  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
4014  *	that map it
4015  */
4016 
4017 static void
4018 pmap_pv_remove(paddr_t pa)
4019 {
4020 	struct pmap_page *pp;
4021 
4022 	pp = pmap_pv_tracked(pa);
4023 	if (pp == NULL)
4024 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
4025 		    pa);
4026 
4027 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
4028 	pmap_page_remove(md, pa);
4029 }
4030 
4031 void
4032 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
4033 {
4034 
4035 	/* the only case is remove at the moment */
4036 	KASSERT(prot == VM_PROT_NONE);
4037 	pmap_pv_remove(pa);
4038 }
4039 
4040 void
4041 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
4042 {
4043 	struct l2_bucket *l2b;
4044 	vaddr_t next_bucket;
4045 
4046 	UVMHIST_FUNC(__func__);
4047 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
4048 	    (uintptr_t)pm, sva, eva, prot);
4049 
4050 	if ((prot & VM_PROT_READ) == 0) {
4051 		pmap_remove(pm, sva, eva);
4052 		return;
4053 	}
4054 
4055 	if (prot & VM_PROT_WRITE) {
4056 		/*
4057 		 * If this is a read->write transition, just ignore it and let
4058 		 * uvm_fault() take care of it later.
4059 		 */
4060 		return;
4061 	}
4062 
4063 	pmap_acquire_pmap_lock(pm);
4064 
4065 #ifndef ARM_MMU_EXTENDED
4066 	const bool flush = eva - sva >= PAGE_SIZE * 4;
4067 	u_int flags = 0;
4068 #endif
4069 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
4070 
4071 	while (sva < eva) {
4072 		next_bucket = L2_NEXT_BUCKET_VA(sva);
4073 		if (next_bucket > eva)
4074 			next_bucket = eva;
4075 
4076 		l2b = pmap_get_l2_bucket(pm, sva);
4077 		if (l2b == NULL) {
4078 			sva = next_bucket;
4079 			continue;
4080 		}
4081 
4082 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
4083 
4084 		while (sva < next_bucket) {
4085 			const pt_entry_t opte = *ptep;
4086 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
4087 				struct vm_page *pg;
4088 #ifndef ARM_MMU_EXTENDED
4089 				u_int f;
4090 #endif
4091 
4092 #ifdef PMAP_CACHE_VIVT
4093 				/*
4094 				 * OK, at this point, we know we're doing
4095 				 * write-protect operation.  If the pmap is
4096 				 * active, write-back the page.
4097 				 */
4098 				pmap_cache_wbinv_page(pm, sva, false,
4099 				    PVF_REF | PVF_WRITE);
4100 #endif
4101 
4102 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
4103 				pt_entry_t npte = l2pte_set_readonly(opte);
4104 				l2pte_reset(ptep);
4105 				PTE_SYNC(ptep);
4106 #ifdef ARM_MMU_EXTENDED
4107 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
4108 #endif
4109 				l2pte_set(ptep, npte, 0);
4110 				PTE_SYNC(ptep);
4111 
4112 				if (pg != NULL) {
4113 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4114 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
4115 
4116 					pmap_acquire_page_lock(md);
4117 #ifndef ARM_MMU_EXTENDED
4118 					f =
4119 #endif
4120 					    pmap_modify_pv(md, pa, pm, sva,
4121 					       clr_mask, 0);
4122 					pmap_vac_me_harder(md, pa, pm, sva);
4123 					pmap_release_page_lock(md);
4124 #ifndef ARM_MMU_EXTENDED
4125 				} else {
4126 					f = PVF_REF | PVF_EXEC;
4127 				}
4128 
4129 				if (flush) {
4130 					flags |= f;
4131 				} else {
4132 					pmap_tlb_flush_SE(pm, sva, f);
4133 #endif
4134 				}
4135 			}
4136 
4137 			sva += PAGE_SIZE;
4138 			ptep += PAGE_SIZE / L2_S_SIZE;
4139 		}
4140 	}
4141 
4142 #ifndef ARM_MMU_EXTENDED
4143 	if (flush) {
4144 		if (PV_BEEN_EXECD(flags)) {
4145 			pmap_tlb_flushID(pm);
4146 		} else if (PV_BEEN_REFD(flags)) {
4147 			pmap_tlb_flushD(pm);
4148 		}
4149 	}
4150 #endif
4151 
4152 	pmap_release_pmap_lock(pm);
4153 }
4154 
4155 void
4156 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
4157 {
4158 	struct l2_bucket *l2b;
4159 	pt_entry_t *ptep;
4160 	vaddr_t next_bucket;
4161 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
4162 
4163 	UVMHIST_FUNC(__func__);
4164 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
4165 	    (uintptr_t)pm, sva, eva, 0);
4166 
4167 	pmap_acquire_pmap_lock(pm);
4168 
4169 	while (sva < eva) {
4170 		next_bucket = L2_NEXT_BUCKET_VA(sva);
4171 		if (next_bucket > eva)
4172 			next_bucket = eva;
4173 
4174 		l2b = pmap_get_l2_bucket(pm, sva);
4175 		if (l2b == NULL) {
4176 			sva = next_bucket;
4177 			continue;
4178 		}
4179 
4180 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
4181 		     sva < next_bucket;
4182 		     sva += page_size,
4183 		     ptep += PAGE_SIZE / L2_S_SIZE,
4184 		     page_size = PAGE_SIZE) {
4185 			if (l2pte_valid_p(*ptep)) {
4186 				cpu_icache_sync_range(sva,
4187 				    uimin(page_size, eva - sva));
4188 			}
4189 		}
4190 	}
4191 
4192 	pmap_release_pmap_lock(pm);
4193 }
4194 
4195 void
4196 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4197 {
4198 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4199 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4200 
4201 	UVMHIST_FUNC(__func__);
4202 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
4203 	    (uintptr_t)md, pa, prot, 0);
4204 
4205 	switch(prot) {
4206 	case VM_PROT_READ|VM_PROT_WRITE:
4207 #if defined(ARM_MMU_EXTENDED)
4208 		pmap_acquire_page_lock(md);
4209 		pmap_clearbit(md, pa, PVF_EXEC);
4210 		pmap_release_page_lock(md);
4211 		break;
4212 #endif
4213 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
4214 		break;
4215 
4216 	case VM_PROT_READ:
4217 #if defined(ARM_MMU_EXTENDED)
4218 		pmap_acquire_page_lock(md);
4219 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
4220 		pmap_release_page_lock(md);
4221 		break;
4222 #endif
4223 	case VM_PROT_READ|VM_PROT_EXECUTE:
4224 		pmap_acquire_page_lock(md);
4225 		pmap_clearbit(md, pa, PVF_WRITE);
4226 		pmap_release_page_lock(md);
4227 		break;
4228 
4229 	default:
4230 		pmap_page_remove(md, pa);
4231 		break;
4232 	}
4233 }
4234 
4235 /*
4236  * pmap_clear_modify:
4237  *
4238  *	Clear the "modified" attribute for a page.
4239  */
4240 bool
4241 pmap_clear_modify(struct vm_page *pg)
4242 {
4243 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4244 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4245 	bool rv;
4246 
4247 	pmap_acquire_page_lock(md);
4248 
4249 	if (md->pvh_attrs & PVF_MOD) {
4250 		rv = true;
4251 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4252 		/*
4253 		 * If we are going to clear the modified bit and there are
4254 		 * no other modified bits set, flush the page to memory and
4255 		 * mark it clean.
4256 		 */
4257 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
4258 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
4259 #endif
4260 		pmap_clearbit(md, pa, PVF_MOD);
4261 	} else {
4262 		rv = false;
4263 	}
4264 	pmap_release_page_lock(md);
4265 
4266 	return rv;
4267 }
4268 
4269 /*
4270  * pmap_clear_reference:
4271  *
4272  *	Clear the "referenced" attribute for a page.
4273  */
4274 bool
4275 pmap_clear_reference(struct vm_page *pg)
4276 {
4277 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4278 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
4279 	bool rv;
4280 
4281 	pmap_acquire_page_lock(md);
4282 
4283 	if (md->pvh_attrs & PVF_REF) {
4284 		rv = true;
4285 		pmap_clearbit(md, pa, PVF_REF);
4286 	} else {
4287 		rv = false;
4288 	}
4289 	pmap_release_page_lock(md);
4290 
4291 	return rv;
4292 }
4293 
4294 /*
4295  * pmap_is_modified:
4296  *
4297  *	Test if a page has the "modified" attribute.
4298  */
4299 /* See <arm/arm32/pmap.h> */
4300 
4301 /*
4302  * pmap_is_referenced:
4303  *
4304  *	Test if a page has the "referenced" attribute.
4305  */
4306 /* See <arm/arm32/pmap.h> */
4307 
4308 #if defined(ARM_MMU_EXTENDED) && 0
4309 int
4310 pmap_prefetchabt_fixup(void *v)
4311 {
4312 	struct trapframe * const tf = v;
4313 	vaddr_t va = trunc_page(tf->tf_pc);
4314 	int rv = ABORT_FIXUP_FAILED;
4315 
4316 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
4317 		return rv;
4318 
4319 	kpreempt_disable();
4320 	pmap_t pm = curcpu()->ci_pmap_cur;
4321 	const size_t l1slot = l1pte_index(va);
4322 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
4323 	if (l2 == NULL)
4324 		goto out;
4325 
4326 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4327 	if (l2b->l2b_kva == NULL)
4328 		goto out;
4329 
4330 	/*
4331 	 * Check the PTE itself.
4332 	 */
4333 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4334 	const pt_entry_t opte = *ptep;
4335 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
4336 		goto out;
4337 
4338 	paddr_t pa = l2pte_pa(opte);
4339 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4340 	KASSERT(pg != NULL);
4341 
4342 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4343 
4344 	pmap_acquire_page_lock(md);
4345 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4346 	KASSERT(pv != NULL);
4347 
4348 	if (PV_IS_EXEC_P(pv->pv_flags)) {
4349 		l2pte_reset(ptep);
4350 		PTE_SYNC(ptep);
4351 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4352 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
4353 			pmap_syncicache_page(md, pa);
4354 		}
4355 		rv = ABORT_FIXUP_RETURN;
4356 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4357 		PTE_SYNC(ptep);
4358 	}
4359 	pmap_release_page_lock(md);
4360 
4361   out:
4362 	kpreempt_enable();
4363 	return rv;
4364 }
4365 #endif
4366 
4367 int
4368 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
4369 {
4370 	struct l2_dtable *l2;
4371 	struct l2_bucket *l2b;
4372 	paddr_t pa;
4373 	const size_t l1slot = l1pte_index(va);
4374 	int rv = 0;
4375 
4376 	UVMHIST_FUNC(__func__);
4377 	UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
4378 	    (uintptr_t)pm, va, ftype, user);
4379 
4380 	va = trunc_page(va);
4381 
4382 	KASSERT(!user || (pm != pmap_kernel()));
4383 
4384 #ifdef ARM_MMU_EXTENDED
4385 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
4386 	    (uintptr_t)cpu_tlb_info(curcpu()),
4387 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
4388 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
4389 #endif
4390 
4391 	pmap_acquire_pmap_lock(pm);
4392 
4393 	/*
4394 	 * If there is no l2_dtable for this address, then the process
4395 	 * has no business accessing it.
4396 	 *
4397 	 * Note: This will catch userland processes trying to access
4398 	 * kernel addresses.
4399 	 */
4400 	l2 = pm->pm_l2[L2_IDX(l1slot)];
4401 	if (l2 == NULL) {
4402 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
4403 		goto out;
4404 	}
4405 
4406 	/*
4407 	 * Likewise if there is no L2 descriptor table
4408 	 */
4409 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
4410 	if (l2b->l2b_kva == NULL) {
4411 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
4412 		    l1slot, 0, 0, 0);
4413 		goto out;
4414 	}
4415 
4416 	/*
4417 	 * Check the PTE itself.
4418 	 */
4419 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
4420 	pt_entry_t const opte = *ptep;
4421 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
4422 		UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)",
4423 		    l1slot, 0, 0, 0);
4424 		goto out;
4425 	}
4426 
4427 #ifndef ARM_HAS_VBAR
4428 	/*
4429 	 * Catch a userland access to the vector page mapped at 0x0
4430 	 */
4431 	if (user && (opte & L2_S_PROT_U) == 0) {
4432 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
4433 		goto out;
4434 	}
4435 #endif
4436 
4437 	pa = l2pte_pa(opte);
4438 
4439 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
4440 		/*
4441 		 * This looks like a good candidate for "page modified"
4442 		 * emulation...
4443 		 */
4444 		struct pv_entry *pv;
4445 		struct vm_page *pg;
4446 
4447 		/* Extract the physical address of the page */
4448 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4449 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
4450 			goto out;
4451 		}
4452 
4453 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4454 
4455 		/* Get the current flags for this page. */
4456 		pmap_acquire_page_lock(md);
4457 		pv = pmap_find_pv(md, pm, va);
4458 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4459 			pmap_release_page_lock(md);
4460 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
4461 			goto out;
4462 		}
4463 
4464 		/*
4465 		 * Do the flags say this page is writable? If not then it
4466 		 * is a genuine write fault. If yes then the write fault is
4467 		 * our fault as we did not reflect the write access in the
4468 		 * PTE. Now we know a write has occurred we can correct this
4469 		 * and also set the modified bit
4470 		 */
4471 		if ((pv->pv_flags & PVF_WRITE) == 0) {
4472 			pmap_release_page_lock(md);
4473 			goto out;
4474 		}
4475 
4476 		md->pvh_attrs |= PVF_REF | PVF_MOD;
4477 		pv->pv_flags |= PVF_REF | PVF_MOD;
4478 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
4479 		/*
4480 		 * If there are cacheable mappings for this page, mark it dirty.
4481 		 */
4482 		if ((md->pvh_attrs & PVF_NC) == 0)
4483 			md->pvh_attrs |= PVF_DIRTY;
4484 #endif
4485 #ifdef ARM_MMU_EXTENDED
4486 		if (md->pvh_attrs & PVF_EXEC) {
4487 			md->pvh_attrs &= ~PVF_EXEC;
4488 			PMAPCOUNT(exec_discarded_modfixup);
4489 		}
4490 #endif
4491 		pmap_release_page_lock(md);
4492 
4493 		/*
4494 		 * Re-enable write permissions for the page.  No need to call
4495 		 * pmap_vac_me_harder(), since this is just a
4496 		 * modified-emulation fault, and the PVF_WRITE bit isn't
4497 		 * changing. We've already set the cacheable bits based on
4498 		 * the assumption that we can write to this page.
4499 		 */
4500 		const pt_entry_t npte =
4501 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
4502 #ifdef ARM_MMU_EXTENDED
4503 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
4504 #endif
4505 		    | 0;
4506 		l2pte_reset(ptep);
4507 		PTE_SYNC(ptep);
4508 		pmap_tlb_flush_SE(pm, va,
4509 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4510 		l2pte_set(ptep, npte, 0);
4511 		PTE_SYNC(ptep);
4512 		PMAPCOUNT(fixup_mod);
4513 		rv = 1;
4514 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
4515 		    "from %#jx to %#jx)", opte, npte, 0, 0);
4516 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
4517 		/*
4518 		 * This looks like a good candidate for "page referenced"
4519 		 * emulation.
4520 		 */
4521 		struct vm_page *pg;
4522 
4523 		/* Extract the physical address of the page */
4524 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
4525 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
4526 			goto out;
4527 		}
4528 
4529 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4530 
4531 		/* Get the current flags for this page. */
4532 		pmap_acquire_page_lock(md);
4533 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
4534 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
4535 			pmap_release_page_lock(md);
4536 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
4537 			goto out;
4538 		}
4539 
4540 		md->pvh_attrs |= PVF_REF;
4541 		pv->pv_flags |= PVF_REF;
4542 
4543 		pt_entry_t npte =
4544 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
4545 #ifdef ARM_MMU_EXTENDED
4546 		if (pm != pmap_kernel()) {
4547 			npte |= L2_XS_nG;
4548 		}
4549 		/*
4550 		 * If we got called from prefetch abort, then ftype will have
4551 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
4552 		 * the PTE.
4553 		 */
4554 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
4555 			/*
4556 			 * Is this a mapping of an executable page?
4557 			 */
4558 			if ((pv->pv_flags & PVF_EXEC) == 0) {
4559 				pmap_release_page_lock(md);
4560 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
4561 				    0, 0, 0, 0);
4562 				goto out;
4563 			}
4564 			/*
4565 			 * If we haven't synced the page, do so now.
4566 			 */
4567 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
4568 				UVMHIST_LOG(maphist, " ref emul: syncicache "
4569 				    "page #%#jx", pa, 0, 0, 0);
4570 				pmap_syncicache_page(md, pa);
4571 				PMAPCOUNT(fixup_exec);
4572 			}
4573 			npte &= ~L2_XS_XN;
4574 		}
4575 #endif /* ARM_MMU_EXTENDED */
4576 		pmap_release_page_lock(md);
4577 		l2pte_reset(ptep);
4578 		PTE_SYNC(ptep);
4579 		pmap_tlb_flush_SE(pm, va,
4580 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4581 		l2pte_set(ptep, npte, 0);
4582 		PTE_SYNC(ptep);
4583 		PMAPCOUNT(fixup_ref);
4584 		rv = 1;
4585 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
4586 		    "%#jx to %#jx)", opte, npte, 0, 0);
4587 #ifdef ARM_MMU_EXTENDED
4588 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
4589 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
4590 		if (pg == NULL) {
4591 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
4592 			goto out;
4593 		}
4594 
4595 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
4596 
4597 		/* Get the current flags for this page. */
4598 		pmap_acquire_page_lock(md);
4599 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
4600 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
4601 			pmap_release_page_lock(md);
4602 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
4603 			goto out;
4604 		}
4605 
4606 		/*
4607 		 * If we haven't synced the page, do so now.
4608 		 */
4609 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
4610 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
4611 			    pa, 0, 0, 0);
4612 			pmap_syncicache_page(md, pa);
4613 		}
4614 		pmap_release_page_lock(md);
4615 		/*
4616 		 * Turn off no-execute.
4617 		 */
4618 		KASSERT(opte & L2_XS_nG);
4619 		l2pte_reset(ptep);
4620 		PTE_SYNC(ptep);
4621 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
4622 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
4623 		PTE_SYNC(ptep);
4624 		rv = 1;
4625 		PMAPCOUNT(fixup_exec);
4626 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
4627 		    opte, opte & ~L2_XS_XN, 0, 0);
4628 #endif
4629 	}
4630 
4631 #ifndef ARM_MMU_EXTENDED
4632 	/*
4633 	 * We know there is a valid mapping here, so simply
4634 	 * fix up the L1 if necessary.
4635 	 */
4636 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
4637 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
4638 	if (*pdep != pde) {
4639 		l1pte_setone(pdep, pde);
4640 		PDE_SYNC(pdep);
4641 		rv = 1;
4642 		PMAPCOUNT(fixup_pdes);
4643 	}
4644 #endif
4645 
4646 #ifdef CPU_SA110
4647 	/*
4648 	 * There are bugs in the rev K SA110.  This is a check for one
4649 	 * of them.
4650 	 */
4651 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4652 	    curcpu()->ci_arm_cpurev < 3) {
4653 		/* Always current pmap */
4654 		if (l2pte_valid_p(opte)) {
4655 			extern int kernel_debug;
4656 			if (kernel_debug & 1) {
4657 				struct proc *p = curlwp->l_proc;
4658 				printf("prefetch_abort: page is already "
4659 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
4660 				printf("prefetch_abort: pc=%08lx proc=%p "
4661 				    "process=%s\n", va, p, p->p_comm);
4662 				printf("prefetch_abort: far=%08x fs=%x\n",
4663 				    cpu_faultaddress(), cpu_faultstatus());
4664 			}
4665 #ifdef DDB
4666 			if (kernel_debug & 2)
4667 				Debugger();
4668 #endif
4669 			rv = 1;
4670 		}
4671 	}
4672 #endif /* CPU_SA110 */
4673 
4674 #ifndef ARM_MMU_EXTENDED
4675 	/*
4676 	 * If 'rv == 0' at this point, it generally indicates that there is a
4677 	 * stale TLB entry for the faulting address.  That might be due to a
4678 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
4679 	 */
4680 	if (rv == 0
4681 	    && pm->pm_l1->l1_domain_use_count == 1
4682 	    && pmap_needs_pte_sync == 0) {
4683 		pmap_needs_pte_sync = 1;
4684 		PTE_SYNC(ptep);
4685 		PMAPCOUNT(fixup_ptesync);
4686 		rv = 1;
4687 	}
4688 #endif
4689 
4690 #ifndef MULTIPROCESSOR
4691 #if defined(DEBUG) || 1
4692 	/*
4693 	 * If 'rv == 0' at this point, it generally indicates that there is a
4694 	 * stale TLB entry for the faulting address. This happens when two or
4695 	 * more processes are sharing an L1. Since we don't flush the TLB on
4696 	 * a context switch between such processes, we can take domain faults
4697 	 * for mappings which exist at the same VA in both processes. EVEN IF
4698 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4699 	 * example.
4700 	 *
4701 	 * This is extremely likely to happen if pmap_enter() updated the L1
4702 	 * entry for a recently entered mapping. In this case, the TLB is
4703 	 * flushed for the new mapping, but there may still be TLB entries for
4704 	 * other mappings belonging to other processes in the 1MB range
4705 	 * covered by the L1 entry.
4706 	 *
4707 	 * Since 'rv == 0', we know that the L1 already contains the correct
4708 	 * value, so the fault must be due to a stale TLB entry.
4709 	 *
4710 	 * Since we always need to flush the TLB anyway in the case where we
4711 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4712 	 * stale TLB entries dynamically.
4713 	 *
4714 	 * However, the above condition can ONLY happen if the current L1 is
4715 	 * being shared. If it happens when the L1 is unshared, it indicates
4716 	 * that other parts of the pmap are not doing their job WRT managing
4717 	 * the TLB.
4718 	 */
4719 	if (rv == 0
4720 #ifndef ARM_MMU_EXTENDED
4721 	    && pm->pm_l1->l1_domain_use_count == 1
4722 #endif
4723 	    && true) {
4724 #ifdef DEBUG
4725 		extern int last_fault_code;
4726 #else
4727 		int last_fault_code = ftype & VM_PROT_EXECUTE
4728 		    ? armreg_ifsr_read()
4729 		    : armreg_dfsr_read();
4730 #endif
4731 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4732 		    pm, va, ftype);
4733 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
4734 		    l2, l2b, ptep, opte);
4735 
4736 #ifndef ARM_MMU_EXTENDED
4737 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
4738 		    pdep, pde, last_fault_code);
4739 #else
4740 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
4741 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
4742 		   armreg_ttbcr_read());
4743 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
4744 		    last_fault_code, curcpu()->ci_pmap_cur,
4745 		    curcpu()->ci_pmap_asid_cur,
4746 		    armreg_contextidr_read(), armreg_dacr_read());
4747 #ifdef _ARM_ARCH_7
4748 		if (ftype & VM_PROT_WRITE)
4749 			armreg_ats1cuw_write(va);
4750 		else
4751 			armreg_ats1cur_write(va);
4752 		arm_isb();
4753 		printf("fixup: par %#x\n", armreg_par_read());
4754 #endif
4755 #endif
4756 #ifdef DDB
4757 		extern int kernel_debug;
4758 
4759 		if (kernel_debug & 2) {
4760 			pmap_release_pmap_lock(pm);
4761 #ifdef UVMHIST
4762 			KERNHIST_DUMP(maphist);
4763 #endif
4764 			cpu_Debugger();
4765 			pmap_acquire_pmap_lock(pm);
4766 		}
4767 #endif
4768 	}
4769 #endif
4770 #endif
4771 
4772 #ifndef ARM_MMU_EXTENDED
4773 	/* Flush the TLB in the shared L1 case - see comment above */
4774 	pmap_tlb_flush_SE(pm, va,
4775 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
4776 #endif
4777 
4778 	rv = 1;
4779 
4780 out:
4781 	pmap_release_pmap_lock(pm);
4782 
4783 	return rv;
4784 }
4785 
4786 /*
4787  * Routine:	pmap_procwr
4788  *
4789  * Function:
4790  *	Synchronize caches corresponding to [addr, addr+len) in p.
4791  *
4792  */
4793 void
4794 pmap_procwr(struct proc *p, vaddr_t va, int len)
4795 {
4796 #ifndef ARM_MMU_EXTENDED
4797 
4798 	/* We only need to do anything if it is the current process. */
4799 	if (p == curproc)
4800 		cpu_icache_sync_range(va, len);
4801 #endif
4802 }
4803 
4804 /*
4805  * Routine:	pmap_unwire
4806  * Function:	Clear the wired attribute for a map/virtual-address pair.
4807  *
4808  * In/out conditions:
4809  *		The mapping must already exist in the pmap.
4810  */
4811 void
4812 pmap_unwire(pmap_t pm, vaddr_t va)
4813 {
4814 	struct l2_bucket *l2b;
4815 	pt_entry_t *ptep, pte;
4816 	struct vm_page *pg;
4817 	paddr_t pa;
4818 
4819 	UVMHIST_FUNC(__func__);
4820 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
4821 
4822 	pmap_acquire_pmap_lock(pm);
4823 
4824 	l2b = pmap_get_l2_bucket(pm, va);
4825 	KDASSERT(l2b != NULL);
4826 
4827 	ptep = &l2b->l2b_kva[l2pte_index(va)];
4828 	pte = *ptep;
4829 
4830 	/* Extract the physical address of the page */
4831 	pa = l2pte_pa(pte);
4832 
4833 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4834 		/* Update the wired bit in the pv entry for this page. */
4835 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4836 
4837 		pmap_acquire_page_lock(md);
4838 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4839 		pmap_release_page_lock(md);
4840 	}
4841 
4842 	pmap_release_pmap_lock(pm);
4843 
4844 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
4845 }
4846 
4847 #ifdef ARM_MMU_EXTENDED
4848 void
4849 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
4850 {
4851 	UVMHIST_FUNC(__func__);
4852 	struct cpu_info * const ci = curcpu();
4853 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
4854 
4855 	UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
4856 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
4857 
4858 	/*
4859 	 * Assume that TTBR1 has only global mappings and TTBR0 only
4860 	 * has non-global mappings.  To prevent speculation from doing
4861 	 * evil things we disable translation table walks using TTBR0
4862 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
4863 	 * Once both are set, table walks are reenabled.
4864 	 */
4865 	const uint32_t old_ttbcr = armreg_ttbcr_read();
4866 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4867 	arm_isb();
4868 
4869 	pmap_tlb_asid_acquire(pm, l);
4870 
4871 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
4872 	/*
4873 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
4874 	 * have been updated.
4875 	 */
4876 	arm_isb();
4877 
4878 	if (pm != pmap_kernel()) {
4879 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
4880 	}
4881 	cpu_cpwait();
4882 
4883 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
4884 	    ci->ci_pmap_asid_cur, pai->pai_asid);
4885 	ci->ci_pmap_cur = pm;
4886 }
4887 
4888 void
4889 pmap_md_pdetab_deactivate(pmap_t pm)
4890 {
4891 
4892 	UVMHIST_FUNC(__func__);
4893 	UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
4894 
4895 	kpreempt_disable();
4896 	struct cpu_info * const ci = curcpu();
4897 	/*
4898 	 * Disable translation table walks from TTBR0 while no pmap has been
4899 	 * activated.
4900 	 */
4901 	const uint32_t old_ttbcr = armreg_ttbcr_read();
4902 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
4903 	arm_isb();
4904 	pmap_tlb_asid_deactivate(pm);
4905 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
4906 	arm_isb();
4907 
4908 	ci->ci_pmap_cur = pmap_kernel();
4909 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
4910 	    ci->ci_pmap_asid_cur);
4911 	kpreempt_enable();
4912 }
4913 #endif
4914 
4915 void
4916 pmap_activate(struct lwp *l)
4917 {
4918 	extern int block_userspace_access;
4919 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
4920 
4921 	UVMHIST_FUNC(__func__);
4922 	UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
4923 	    (uintptr_t)npm, 0, 0);
4924 
4925 	struct cpu_info * const ci = curcpu();
4926 
4927 	/*
4928 	 * If activating a non-current lwp or the current lwp is
4929 	 * already active, just return.
4930 	 */
4931 	if (false
4932 	    || l != curlwp
4933 #ifdef ARM_MMU_EXTENDED
4934 	    || (ci->ci_pmap_cur == npm &&
4935 		(npm == pmap_kernel()
4936 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
4937 #else
4938 	    || npm->pm_activated == true
4939 #endif
4940 	    || false) {
4941 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
4942 		    (uintptr_t)l, 0, 0);
4943 		return;
4944 	}
4945 
4946 #ifndef ARM_MMU_EXTENDED
4947 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4948 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
4949 
4950 	/*
4951 	 * If TTB and DACR are unchanged, short-circuit all the
4952 	 * TLB/cache management stuff.
4953 	 */
4954 	pmap_t opm = ci->ci_lastlwp
4955 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
4956 	    : NULL;
4957 	if (opm != NULL) {
4958 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
4959 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
4960 
4961 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4962 			goto all_done;
4963 	}
4964 #endif /* !ARM_MMU_EXTENDED */
4965 
4966 	PMAPCOUNT(activations);
4967 	block_userspace_access = 1;
4968 
4969 #ifndef ARM_MMU_EXTENDED
4970 	/*
4971 	 * If switching to a user vmspace which is different to the
4972 	 * most recent one, and the most recent one is potentially
4973 	 * live in the cache, we must write-back and invalidate the
4974 	 * entire cache.
4975 	 */
4976 	pmap_t rpm = ci->ci_pmap_lastuser;
4977 
4978 	/*
4979 	 * XXXSCW: There's a corner case here which can leave turds in the
4980 	 * cache as reported in kern/41058. They're probably left over during
4981 	 * tear-down and switching away from an exiting process. Until the root
4982 	 * cause is identified and fixed, zap the cache when switching pmaps.
4983 	 * This will result in a few unnecessary cache flushes, but that's
4984 	 * better than silently corrupting data.
4985 	 */
4986 #if 0
4987 	if (npm != pmap_kernel() && rpm && npm != rpm &&
4988 	    rpm->pm_cstate.cs_cache) {
4989 		rpm->pm_cstate.cs_cache = 0;
4990 #ifdef PMAP_CACHE_VIVT
4991 		cpu_idcache_wbinv_all();
4992 #endif
4993 	}
4994 #else
4995 	if (rpm) {
4996 		rpm->pm_cstate.cs_cache = 0;
4997 		if (npm == pmap_kernel())
4998 			ci->ci_pmap_lastuser = NULL;
4999 #ifdef PMAP_CACHE_VIVT
5000 		cpu_idcache_wbinv_all();
5001 #endif
5002 	}
5003 #endif
5004 
5005 	/* No interrupts while we frob the TTB/DACR */
5006 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
5007 #endif /* !ARM_MMU_EXTENDED */
5008 
5009 #ifndef ARM_HAS_VBAR
5010 	/*
5011 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
5012 	 * entry corresponding to 'vector_page' in the incoming L1 table
5013 	 * before switching to it otherwise subsequent interrupts/exceptions
5014 	 * (including domain faults!) will jump into hyperspace.
5015 	 */
5016 	if (npm->pm_pl1vec != NULL) {
5017 		cpu_tlb_flushID_SE((u_int)vector_page);
5018 		cpu_cpwait();
5019 		*npm->pm_pl1vec = npm->pm_l1vec;
5020 		PTE_SYNC(npm->pm_pl1vec);
5021 	}
5022 #endif
5023 
5024 #ifdef ARM_MMU_EXTENDED
5025 	pmap_md_pdetab_activate(npm, l);
5026 #else
5027 	cpu_domains(ndacr);
5028 	if (npm == pmap_kernel() || npm == rpm) {
5029 		/*
5030 		 * Switching to a kernel thread, or back to the
5031 		 * same user vmspace as before... Simply update
5032 		 * the TTB (no TLB flush required)
5033 		 */
5034 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
5035 		cpu_cpwait();
5036 	} else {
5037 		/*
5038 		 * Otherwise, update TTB and flush TLB
5039 		 */
5040 		cpu_context_switch(npm->pm_l1->l1_physaddr);
5041 		if (rpm != NULL)
5042 			rpm->pm_cstate.cs_tlb = 0;
5043 	}
5044 
5045 	restore_interrupts(oldirqstate);
5046 #endif /* ARM_MMU_EXTENDED */
5047 
5048 	block_userspace_access = 0;
5049 
5050 #ifndef ARM_MMU_EXTENDED
5051  all_done:
5052 	/*
5053 	 * The new pmap is resident. Make sure it's marked
5054 	 * as resident in the cache/TLB.
5055 	 */
5056 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5057 	if (npm != pmap_kernel())
5058 		ci->ci_pmap_lastuser = npm;
5059 
5060 	/* The old pmap is not longer active */
5061 	if (opm != npm) {
5062 		if (opm != NULL)
5063 			opm->pm_activated = false;
5064 
5065 		/* But the new one is */
5066 		npm->pm_activated = true;
5067 	}
5068 	ci->ci_pmap_cur = npm;
5069 #endif
5070 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5071 }
5072 
5073 void
5074 pmap_deactivate(struct lwp *l)
5075 {
5076 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
5077 
5078 	UVMHIST_FUNC(__func__);
5079 	UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
5080 		(uintptr_t)pm, 0, 0);
5081 
5082 #ifdef ARM_MMU_EXTENDED
5083 	pmap_md_pdetab_deactivate(pm);
5084 #else
5085 	/*
5086 	 * If the process is exiting, make sure pmap_activate() does
5087 	 * a full MMU context-switch and cache flush, which we might
5088 	 * otherwise skip. See PR port-arm/38950.
5089 	 */
5090 	if (l->l_proc->p_sflag & PS_WEXIT)
5091 		curcpu()->ci_lastlwp = NULL;
5092 
5093 	pm->pm_activated = false;
5094 #endif
5095 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5096 }
5097 
5098 void
5099 pmap_update(pmap_t pm)
5100 {
5101 
5102 	UVMHIST_FUNC(__func__);
5103 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5104 	    pm->pm_remove_all, 0, 0);
5105 
5106 #ifndef ARM_MMU_EXTENDED
5107 	if (pm->pm_remove_all) {
5108 		/*
5109 		 * Finish up the pmap_remove_all() optimisation by flushing
5110 		 * the TLB.
5111 		 */
5112 		pmap_tlb_flushID(pm);
5113 		pm->pm_remove_all = false;
5114 	}
5115 
5116 	if (pmap_is_current(pm)) {
5117 		/*
5118 		 * If we're dealing with a current userland pmap, move its L1
5119 		 * to the end of the LRU.
5120 		 */
5121 		if (pm != pmap_kernel())
5122 			pmap_use_l1(pm);
5123 
5124 		/*
5125 		 * We can assume we're done with frobbing the cache/tlb for
5126 		 * now. Make sure any future pmap ops don't skip cache/tlb
5127 		 * flushes.
5128 		 */
5129 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5130 	}
5131 #else
5132 
5133 	kpreempt_disable();
5134 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
5135 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
5136 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
5137 		PMAP_COUNT(shootdown_ipis);
5138 	}
5139 #endif
5140 
5141 	/*
5142 	 * If pmap_remove_all was called, we deactivated ourselves and released
5143 	 * our ASID.  Now we have to reactivate ourselves.
5144 	 */
5145 	if (__predict_false(pm->pm_remove_all)) {
5146 		pm->pm_remove_all = false;
5147 
5148 		KASSERT(pm != pmap_kernel());
5149 		pmap_md_pdetab_activate(pm, curlwp);
5150 	}
5151 
5152 	if (arm_has_mpext_p)
5153 		armreg_bpiallis_write(0);
5154 	else
5155 		armreg_bpiall_write(0);
5156 
5157 	kpreempt_enable();
5158 
5159 	KASSERTMSG(pm == pmap_kernel()
5160 	    || curcpu()->ci_pmap_cur != pm
5161 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
5162 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
5163 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
5164 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
5165 #endif
5166 
5167 	PMAPCOUNT(updates);
5168 
5169 	/*
5170 	 * make sure TLB/cache operations have completed.
5171 	 */
5172 	cpu_cpwait();
5173 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5174 }
5175 
5176 bool
5177 pmap_remove_all(pmap_t pm)
5178 {
5179 
5180 	UVMHIST_FUNC(__func__);
5181 	UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
5182 
5183 	KASSERT(pm != pmap_kernel());
5184 
5185 	/*
5186 	 * The vmspace described by this pmap is about to be torn down.
5187 	 * Until pmap_update() is called, UVM will only make calls
5188 	 * to pmap_remove(). We can make life much simpler by flushing
5189 	 * the cache now, and deferring TLB invalidation to pmap_update().
5190 	 */
5191 #ifdef PMAP_CACHE_VIVT
5192 	pmap_cache_wbinv_all(pm, PVF_EXEC);
5193 #endif
5194 #ifdef ARM_MMU_EXTENDED
5195 #ifdef MULTIPROCESSOR
5196 	struct cpu_info * const ci = curcpu();
5197 	// This should be the last CPU with this pmap onproc
5198 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
5199 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
5200 #endif
5201 		pmap_tlb_asid_deactivate(pm);
5202 #ifdef MULTIPROCESSOR
5203 	KASSERT(kcpuset_iszero(pm->pm_onproc));
5204 #endif
5205 
5206 	pmap_tlb_asid_release_all(pm);
5207 #endif
5208 	pm->pm_remove_all = true;
5209 
5210 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
5211 	return false;
5212 }
5213 
5214 /*
5215  * Retire the given physical map from service.
5216  * Should only be called if the map contains no valid mappings.
5217  */
5218 void
5219 pmap_destroy(pmap_t pm)
5220 {
5221 	UVMHIST_FUNC(__func__);
5222 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
5223 	    pm ? pm->pm_remove_all : 0, 0, 0);
5224 
5225 	if (pm == NULL)
5226 		return;
5227 
5228 	if (pm->pm_remove_all) {
5229 #ifdef ARM_MMU_EXTENDED
5230  		pmap_tlb_asid_release_all(pm);
5231 #else
5232 		pmap_tlb_flushID(pm);
5233 #endif
5234 		pm->pm_remove_all = false;
5235 	}
5236 
5237 	/*
5238 	 * Drop reference count
5239 	 */
5240 	if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
5241 #ifndef ARM_MMU_EXTENDED
5242 		if (pmap_is_current(pm)) {
5243 			if (pm != pmap_kernel())
5244 				pmap_use_l1(pm);
5245 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5246 		}
5247 #endif
5248 		return;
5249 	}
5250 
5251 	/*
5252 	 * reference count is zero, free pmap resources and then free pmap.
5253 	 */
5254 
5255 #ifndef ARM_HAS_VBAR
5256 	if (vector_page < KERNEL_BASE) {
5257 		KDASSERT(!pmap_is_current(pm));
5258 
5259 		/* Remove the vector page mapping */
5260 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
5261 		pmap_update(pm);
5262 	}
5263 #endif
5264 
5265 	pmap_free_l1(pm);
5266 
5267 #ifdef ARM_MMU_EXTENDED
5268 #ifdef MULTIPROCESSOR
5269 	kcpuset_destroy(pm->pm_active);
5270 	kcpuset_destroy(pm->pm_onproc);
5271 #endif
5272 #else
5273 	struct cpu_info * const ci = curcpu();
5274 	if (ci->ci_pmap_lastuser == pm)
5275 		ci->ci_pmap_lastuser = NULL;
5276 #endif
5277 
5278 	mutex_destroy(&pm->pm_lock);
5279 	pool_cache_put(&pmap_cache, pm);
5280 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
5281 }
5282 
5283 
5284 /*
5285  * void pmap_reference(pmap_t pm)
5286  *
5287  * Add a reference to the specified pmap.
5288  */
5289 void
5290 pmap_reference(pmap_t pm)
5291 {
5292 
5293 	if (pm == NULL)
5294 		return;
5295 
5296 #ifndef ARM_MMU_EXTENDED
5297 	pmap_use_l1(pm);
5298 #endif
5299 
5300 	atomic_inc_uint(&pm->pm_refs);
5301 }
5302 
5303 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5304 
5305 static struct evcnt pmap_prefer_nochange_ev =
5306     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
5307 static struct evcnt pmap_prefer_change_ev =
5308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
5309 
5310 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
5311 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
5312 
5313 void
5314 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
5315 {
5316 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
5317 	vaddr_t va = *vap;
5318 	vaddr_t diff = (hint - va) & mask;
5319 	if (diff == 0) {
5320 		pmap_prefer_nochange_ev.ev_count++;
5321 	} else {
5322 		pmap_prefer_change_ev.ev_count++;
5323 		if (__predict_false(td))
5324 			va -= mask + 1;
5325 		*vap = va + diff;
5326 	}
5327 }
5328 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
5329 
5330 /*
5331  * pmap_zero_page()
5332  *
5333  * Zero a given physical page by mapping it at a page hook point.
5334  * In doing the zero page op, the page we zero is mapped cachable, as with
5335  * StrongARM accesses to non-cached pages are non-burst making writing
5336  * _any_ bulk data very slow.
5337  */
5338 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5339 void
5340 pmap_zero_page_generic(paddr_t pa)
5341 {
5342 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5343 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5344 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5345 #endif
5346 #if defined(PMAP_CACHE_VIPT)
5347 	/* Choose the last page color it had, if any */
5348 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5349 #else
5350 	const vsize_t va_offset = 0;
5351 #endif
5352 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5353 	/*
5354 	 * Is this page mapped at its natural color?
5355 	 * If we have all of memory mapped, then just convert PA to VA.
5356 	 */
5357 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5358 	   || va_offset == (pa & arm_cache_prefer_mask);
5359 	const vaddr_t vdstp = okcolor
5360 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5361 	    : cpu_cdstp(va_offset);
5362 #else
5363 	const bool okcolor = false;
5364 	const vaddr_t vdstp = cpu_cdstp(va_offset);
5365 #endif
5366 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5367 
5368 
5369 #ifdef DEBUG
5370 	if (!SLIST_EMPTY(&md->pvh_list))
5371 		panic("pmap_zero_page: page has mappings");
5372 #endif
5373 
5374 	KDASSERT((pa & PGOFSET) == 0);
5375 
5376 	if (!okcolor) {
5377 		/*
5378 		 * Hook in the page, zero it, and purge the cache for that
5379 		 * zeroed page. Invalidate the TLB as needed.
5380 		 */
5381 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
5382 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
5383 		l2pte_set(ptep, npte, 0);
5384 		PTE_SYNC(ptep);
5385 		cpu_tlb_flushD_SE(vdstp);
5386 		cpu_cpwait();
5387 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
5388     && !defined(ARM_MMU_EXTENDED)
5389 		/*
5390 		 * If we are direct-mapped and our color isn't ok, then before
5391 		 * we bzero the page invalidate its contents from the cache and
5392 		 * reset the color to its natural color.
5393 		 */
5394 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5395 		md->pvh_attrs &= ~arm_cache_prefer_mask;
5396 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
5397 #endif
5398 	}
5399 	bzero_page(vdstp);
5400 	if (!okcolor) {
5401 		/*
5402 		 * Unmap the page.
5403 		 */
5404 		l2pte_reset(ptep);
5405 		PTE_SYNC(ptep);
5406 		cpu_tlb_flushD_SE(vdstp);
5407 #ifdef PMAP_CACHE_VIVT
5408 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5409 #endif
5410 	}
5411 #ifdef PMAP_CACHE_VIPT
5412 	/*
5413 	 * This page is now cache resident so it now has a page color.
5414 	 * Any contents have been obliterated so clear the EXEC flag.
5415 	 */
5416 #ifndef ARM_MMU_EXTENDED
5417 	if (!pmap_is_page_colored_p(md)) {
5418 		PMAPCOUNT(vac_color_new);
5419 		md->pvh_attrs |= PVF_COLORED;
5420 	}
5421 	md->pvh_attrs |= PVF_DIRTY;
5422 #endif
5423 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5424 		md->pvh_attrs &= ~PVF_EXEC;
5425 		PMAPCOUNT(exec_discarded_zero);
5426 	}
5427 #endif
5428 }
5429 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5430 
5431 #if ARM_MMU_XSCALE == 1
5432 void
5433 pmap_zero_page_xscale(paddr_t pa)
5434 {
5435 #ifdef DEBUG
5436 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
5437 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5438 
5439 	if (!SLIST_EMPTY(&md->pvh_list))
5440 		panic("pmap_zero_page: page has mappings");
5441 #endif
5442 
5443 	KDASSERT((pa & PGOFSET) == 0);
5444 
5445 	/*
5446 	 * Hook in the page, zero it, and purge the cache for that
5447 	 * zeroed page. Invalidate the TLB as needed.
5448 	 */
5449 
5450 	pt_entry_t npte = L2_S_PROTO | pa |
5451 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
5452 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5453 	l2pte_set(cdst_pte, npte, 0);
5454 	PTE_SYNC(cdst_pte);
5455 	cpu_tlb_flushD_SE(cdstp);
5456 	cpu_cpwait();
5457 	bzero_page(cdstp);
5458 	xscale_cache_clean_minidata();
5459 	l2pte_reset(cdst_pte);
5460 	PTE_SYNC(cdst_pte);
5461 }
5462 #endif /* ARM_MMU_XSCALE == 1 */
5463 
5464 /* pmap_pageidlezero()
5465  *
5466  * The same as above, except that we assume that the page is not
5467  * mapped.  This means we never have to flush the cache first.  Called
5468  * from the idle loop.
5469  */
5470 bool
5471 pmap_pageidlezero(paddr_t pa)
5472 {
5473 	bool rv = true;
5474 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5475 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
5476 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
5477 #endif
5478 #ifdef PMAP_CACHE_VIPT
5479 	/* Choose the last page color it had, if any */
5480 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
5481 #else
5482 	const vsize_t va_offset = 0;
5483 #endif
5484 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
5485 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5486 	   || va_offset == (pa & arm_cache_prefer_mask);
5487 	const vaddr_t vdstp = okcolor
5488 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
5489 	    : cpu_cdstp(va_offset);
5490 #else
5491 	const bool okcolor = false;
5492 	const vaddr_t vdstp = cpu_cdstp(va_offset);
5493 #endif
5494 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
5495 
5496 
5497 #ifdef DEBUG
5498 	if (!SLIST_EMPTY(&md->pvh_list))
5499 		panic("pmap_pageidlezero: page has mappings");
5500 #endif
5501 
5502 	KDASSERT((pa & PGOFSET) == 0);
5503 
5504 	if (!okcolor) {
5505 		/*
5506 		 * Hook in the page, zero it, and purge the cache for that
5507 		 * zeroed page. Invalidate the TLB as needed.
5508 		 */
5509 		const pt_entry_t npte = L2_S_PROTO | pa |
5510 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5511 		l2pte_set(ptep, npte, 0);
5512 		PTE_SYNC(ptep);
5513 		cpu_tlb_flushD_SE(vdstp);
5514 		cpu_cpwait();
5515 	}
5516 
5517 	uint64_t *ptr = (uint64_t *)vdstp;
5518 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
5519 		if (sched_curcpu_runnable_p() != 0) {
5520 			/*
5521 			 * A process has become ready.  Abort now,
5522 			 * so we don't keep it waiting while we
5523 			 * do slow memory access to finish this
5524 			 * page.
5525 			 */
5526 			rv = false;
5527 			break;
5528 		}
5529 		*ptr++ = 0;
5530 	}
5531 
5532 #ifdef PMAP_CACHE_VIVT
5533 	if (rv)
5534 		/*
5535 		 * if we aborted we'll rezero this page again later so don't
5536 		 * purge it unless we finished it
5537 		 */
5538 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5539 #elif defined(PMAP_CACHE_VIPT)
5540 	/*
5541 	 * This page is now cache resident so it now has a page color.
5542 	 * Any contents have been obliterated so clear the EXEC flag.
5543 	 */
5544 #ifndef ARM_MMU_EXTENDED
5545 	if (!pmap_is_page_colored_p(md)) {
5546 		PMAPCOUNT(vac_color_new);
5547 		md->pvh_attrs |= PVF_COLORED;
5548 	}
5549 #endif
5550 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
5551 		md->pvh_attrs &= ~PVF_EXEC;
5552 		PMAPCOUNT(exec_discarded_zero);
5553 	}
5554 #endif
5555 	/*
5556 	 * Unmap the page.
5557 	 */
5558 	if (!okcolor) {
5559 		l2pte_reset(ptep);
5560 		PTE_SYNC(ptep);
5561 		cpu_tlb_flushD_SE(vdstp);
5562 	}
5563 
5564 	return rv;
5565 }
5566 
5567 /*
5568  * pmap_copy_page()
5569  *
5570  * Copy one physical page into another, by mapping the pages into
5571  * hook points. The same comment regarding cachability as in
5572  * pmap_zero_page also applies here.
5573  */
5574 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5575 void
5576 pmap_copy_page_generic(paddr_t src, paddr_t dst)
5577 {
5578 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
5579 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5580 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
5581 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
5582 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
5583 #endif
5584 #ifdef PMAP_CACHE_VIPT
5585 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
5586 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
5587 #else
5588 	const vsize_t src_va_offset = 0;
5589 	const vsize_t dst_va_offset = 0;
5590 #endif
5591 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
5592 	/*
5593 	 * Is this page mapped at its natural color?
5594 	 * If we have all of memory mapped, then just convert PA to VA.
5595 	 */
5596 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5597 	    || src_va_offset == (src & arm_cache_prefer_mask);
5598 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
5599 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
5600 	const vaddr_t vsrcp = src_okcolor
5601 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
5602 		cpu_csrcp(src_va_offset))
5603 	    : cpu_csrcp(src_va_offset);
5604 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
5605 	    cpu_cdstp(dst_va_offset));
5606 #else
5607 	const bool src_okcolor = false;
5608 	const bool dst_okcolor = false;
5609 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
5610 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
5611 #endif
5612 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
5613 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
5614 
5615 #ifdef DEBUG
5616 	if (!SLIST_EMPTY(&dst_md->pvh_list))
5617 		panic("pmap_copy_page: dst page has mappings");
5618 #endif
5619 
5620 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5621 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
5622 #endif
5623 	KDASSERT((src & PGOFSET) == 0);
5624 	KDASSERT((dst & PGOFSET) == 0);
5625 
5626 	/*
5627 	 * Clean the source page.  Hold the source page's lock for
5628 	 * the duration of the copy so that no other mappings can
5629 	 * be created while we have a potentially aliased mapping.
5630 	 */
5631 #ifdef PMAP_CACHE_VIVT
5632 	pmap_acquire_page_lock(src_md);
5633 	(void) pmap_clean_page(src_md, true);
5634 	pmap_release_page_lock(src_md);
5635 #endif
5636 
5637 	/*
5638 	 * Map the pages into the page hook points, copy them, and purge
5639 	 * the cache for the appropriate page. Invalidate the TLB
5640 	 * as required.
5641 	 */
5642 	if (!src_okcolor) {
5643 		const pt_entry_t nsrc_pte = L2_S_PROTO
5644 		    | src
5645 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
5646 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
5647 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
5648 		    | pte_l2_s_cache_mode
5649 #endif
5650 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
5651 		l2pte_set(src_ptep, nsrc_pte, 0);
5652 		PTE_SYNC(src_ptep);
5653 		cpu_tlb_flushD_SE(vsrcp);
5654 		cpu_cpwait();
5655 	}
5656 	if (!dst_okcolor) {
5657 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
5658 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
5659 		l2pte_set(dst_ptep, ndst_pte, 0);
5660 		PTE_SYNC(dst_ptep);
5661 		cpu_tlb_flushD_SE(vdstp);
5662 		cpu_cpwait();
5663 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
5664 		/*
5665 		 * If we are direct-mapped and our color isn't ok, then before
5666 		 * we bcopy to the new page invalidate its contents from the
5667 		 * cache and reset its color to its natural color.
5668 		 */
5669 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
5670 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5671 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5672 #endif
5673 	}
5674 	bcopy_page(vsrcp, vdstp);
5675 #ifdef PMAP_CACHE_VIVT
5676 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
5677 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
5678 #endif
5679 	/*
5680 	 * Unmap the pages.
5681 	 */
5682 	if (!src_okcolor) {
5683 		l2pte_reset(src_ptep);
5684 		PTE_SYNC(src_ptep);
5685 		cpu_tlb_flushD_SE(vsrcp);
5686 		cpu_cpwait();
5687 	}
5688 	if (!dst_okcolor) {
5689 		l2pte_reset(dst_ptep);
5690 		PTE_SYNC(dst_ptep);
5691 		cpu_tlb_flushD_SE(vdstp);
5692 		cpu_cpwait();
5693 	}
5694 #ifdef PMAP_CACHE_VIPT
5695 	/*
5696 	 * Now that the destination page is in the cache, mark it as colored.
5697 	 * If this was an exec page, discard it.
5698 	 */
5699 	pmap_acquire_page_lock(dst_md);
5700 #ifndef ARM_MMU_EXTENDED
5701 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
5702 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
5703 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
5704 	}
5705 	if (!pmap_is_page_colored_p(dst_md)) {
5706 		PMAPCOUNT(vac_color_new);
5707 		dst_md->pvh_attrs |= PVF_COLORED;
5708 	}
5709 	dst_md->pvh_attrs |= PVF_DIRTY;
5710 #endif
5711 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
5712 		dst_md->pvh_attrs &= ~PVF_EXEC;
5713 		PMAPCOUNT(exec_discarded_copy);
5714 	}
5715 	pmap_release_page_lock(dst_md);
5716 #endif
5717 }
5718 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5719 
5720 #if ARM_MMU_XSCALE == 1
5721 void
5722 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
5723 {
5724 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
5725 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
5726 #ifdef DEBUG
5727 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
5728 
5729 	if (!SLIST_EMPTY(&dst_md->pvh_list))
5730 		panic("pmap_copy_page: dst page has mappings");
5731 #endif
5732 
5733 	KDASSERT((src & PGOFSET) == 0);
5734 	KDASSERT((dst & PGOFSET) == 0);
5735 
5736 	/*
5737 	 * Clean the source page.  Hold the source page's lock for
5738 	 * the duration of the copy so that no other mappings can
5739 	 * be created while we have a potentially aliased mapping.
5740 	 */
5741 #ifdef PMAP_CACHE_VIVT
5742 	pmap_acquire_page_lock(src_md);
5743 	(void) pmap_clean_page(src_md, true);
5744 	pmap_release_page_lock(src_md);
5745 #endif
5746 
5747 	/*
5748 	 * Map the pages into the page hook points, copy them, and purge
5749 	 * the cache for the appropriate page. Invalidate the TLB
5750 	 * as required.
5751 	 */
5752 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
5753 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
5754 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5755 	l2pte_set(csrc_pte, nsrc_pte, 0);
5756 	PTE_SYNC(csrc_pte);
5757 
5758 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
5759 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
5760 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
5761 	l2pte_set(cdst_pte, ndst_pte, 0);
5762 	PTE_SYNC(cdst_pte);
5763 
5764 	cpu_tlb_flushD_SE(csrcp);
5765 	cpu_tlb_flushD_SE(cdstp);
5766 	cpu_cpwait();
5767 	bcopy_page(csrcp, cdstp);
5768 	xscale_cache_clean_minidata();
5769 	l2pte_reset(csrc_pte);
5770 	l2pte_reset(cdst_pte);
5771 	PTE_SYNC(csrc_pte);
5772 	PTE_SYNC(cdst_pte);
5773 }
5774 #endif /* ARM_MMU_XSCALE == 1 */
5775 
5776 /*
5777  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5778  *
5779  * Return the start and end addresses of the kernel's virtual space.
5780  * These values are setup in pmap_bootstrap and are updated as pages
5781  * are allocated.
5782  */
5783 void
5784 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
5785 {
5786 	*start = virtual_avail;
5787 	*end = virtual_end;
5788 }
5789 
5790 /*
5791  * Helper function for pmap_grow_l2_bucket()
5792  */
5793 static inline int
5794 pmap_grow_map(vaddr_t va, paddr_t *pap)
5795 {
5796 	paddr_t pa;
5797 
5798 	KASSERT((va & PGOFSET) == 0);
5799 
5800 	if (uvm.page_init_done == false) {
5801 #ifdef PMAP_STEAL_MEMORY
5802 		pv_addr_t pv;
5803 		pmap_boot_pagealloc(PAGE_SIZE,
5804 #ifdef PMAP_CACHE_VIPT
5805 		    arm_cache_prefer_mask,
5806 		    va & arm_cache_prefer_mask,
5807 #else
5808 		    0, 0,
5809 #endif
5810 		    &pv);
5811 		pa = pv.pv_pa;
5812 #else
5813 		if (uvm_page_physget(&pa) == false)
5814 			return 1;
5815 #endif	/* PMAP_STEAL_MEMORY */
5816 	} else {
5817 		struct vm_page *pg;
5818 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
5819 		if (pg == NULL)
5820 			return 1;
5821 		pa = VM_PAGE_TO_PHYS(pg);
5822 		/*
5823 		 * This new page must not have any mappings.
5824 		 */
5825 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
5826 		KASSERT(SLIST_EMPTY(&md->pvh_list));
5827 	}
5828 
5829 	/*
5830 	 * Enter it via pmap_kenter_pa and let that routine do the hard work.
5831 	 */
5832 	pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
5833 	    PMAP_KMPAGE | PMAP_PTE);
5834 
5835 	if (pap)
5836 		*pap = pa;
5837 
5838 	PMAPCOUNT(pt_mappings);
5839 
5840 	const pmap_t kpm __diagused = pmap_kernel();
5841 	struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
5842 	KASSERT(l2b != NULL);
5843 
5844 	pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
5845 	const pt_entry_t pte __diagused = *ptep;
5846 	KASSERT(l2pte_valid_p(pte));
5847 	KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
5848 
5849 	memset((void *)va, 0, PAGE_SIZE);
5850 
5851 	return 0;
5852 }
5853 
5854 /*
5855  * This is the same as pmap_alloc_l2_bucket(), except that it is only
5856  * used by pmap_growkernel().
5857  */
5858 static inline struct l2_bucket *
5859 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5860 {
5861 	const size_t l1slot = l1pte_index(va);
5862 	struct l2_dtable *l2;
5863 	vaddr_t nva;
5864 
5865 	CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
5866 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
5867 		/*
5868 		 * No mapping at this address, as there is
5869 		 * no entry in the L1 table.
5870 		 * Need to allocate a new l2_dtable.
5871 		 */
5872 		nva = pmap_kernel_l2dtable_kva;
5873 		if ((nva & PGOFSET) == 0) {
5874 			/*
5875 			 * Need to allocate a backing page
5876 			 */
5877 			if (pmap_grow_map(nva, NULL))
5878 				return NULL;
5879 		}
5880 
5881 		l2 = (struct l2_dtable *)nva;
5882 		nva += sizeof(struct l2_dtable);
5883 
5884 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5885 			/*
5886 			 * The new l2_dtable straddles a page boundary.
5887 			 * Map in another page to cover it.
5888 			 */
5889 			if (pmap_grow_map(nva & ~PGOFSET, NULL))
5890 				return NULL;
5891 		}
5892 
5893 		pmap_kernel_l2dtable_kva = nva;
5894 
5895 		/*
5896 		 * Link it into the parent pmap
5897 		 */
5898 		pm->pm_l2[L2_IDX(l1slot)] = l2;
5899 	}
5900 
5901 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
5902 
5903 	/*
5904 	 * Fetch pointer to the L2 page table associated with the address.
5905 	 */
5906 	if (l2b->l2b_kva == NULL) {
5907 		pt_entry_t *ptep;
5908 
5909 		/*
5910 		 * No L2 page table has been allocated. Chances are, this
5911 		 * is because we just allocated the l2_dtable, above.
5912 		 */
5913 		nva = pmap_kernel_l2ptp_kva;
5914 		ptep = (pt_entry_t *)nva;
5915 		if ((nva & PGOFSET) == 0) {
5916 			/*
5917 			 * Need to allocate a backing page
5918 			 */
5919 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
5920 				return NULL;
5921 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5922 		}
5923 
5924 		l2->l2_occupancy++;
5925 		l2b->l2b_kva = ptep;
5926 		l2b->l2b_l1slot = l1slot;
5927 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
5928 
5929 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5930 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5931 	}
5932 
5933 	return l2b;
5934 }
5935 
5936 vaddr_t
5937 pmap_growkernel(vaddr_t maxkvaddr)
5938 {
5939 	UVMHIST_FUNC(__func__);
5940 	UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx\n",
5941 	    pmap_curmaxkvaddr, maxkvaddr, 0, 0);
5942 
5943 	pmap_t kpm = pmap_kernel();
5944 #ifndef ARM_MMU_EXTENDED
5945 	struct l1_ttable *l1;
5946 #endif
5947 	int s;
5948 
5949 	if (maxkvaddr <= pmap_curmaxkvaddr)
5950 		goto out;		/* we are OK */
5951 
5952 	KDASSERT(maxkvaddr <= virtual_end);
5953 
5954 	/*
5955 	 * whoops!   we need to add kernel PTPs
5956 	 */
5957 
5958 	vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
5959 
5960 	s = splvm();	/* to be safe */
5961 	mutex_enter(&kpm_lock);
5962 
5963 	/* Map 1MB at a time */
5964 	size_t l1slot = l1pte_index(pmap_maxkvaddr);
5965 #ifdef ARM_MMU_EXTENDED
5966 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
5967 	pd_entry_t *pdep = spdep;
5968 #endif
5969 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
5970 #ifdef ARM_MMU_EXTENDED
5971 	     pdep++,
5972 #endif
5973 	     l1slot++) {
5974 		struct l2_bucket *l2b =
5975 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5976 		KASSERT(l2b != NULL);
5977 
5978 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
5979 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
5980 #ifdef ARM_MMU_EXTENDED
5981 		KASSERT(*pdep == 0);
5982 		l1pte_setone(pdep, npde);
5983 #else
5984 		/* Distribute new L1 entry to all other L1s */
5985 		SLIST_FOREACH(l1, &l1_list, l1_link) {
5986 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
5987 			l1pte_setone(pdep, npde);
5988 			PDE_SYNC(pdep);
5989 		}
5990 #endif
5991 	}
5992 #ifdef ARM_MMU_EXTENDED
5993 	PDE_SYNC_RANGE(spdep, pdep - spdep);
5994 #endif
5995 
5996 #ifdef PMAP_CACHE_VIVT
5997 	/*
5998 	 * flush out the cache, expensive but growkernel will happen so
5999 	 * rarely
6000 	 */
6001 	cpu_dcache_wbinv_all();
6002 	cpu_tlb_flushD();
6003 	cpu_cpwait();
6004 #endif
6005 
6006 	mutex_exit(&kpm_lock);
6007 	splx(s);
6008 
6009 	kasan_shadow_map((void *)pmap_maxkvaddr,
6010 	    (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
6011 
6012 out:
6013 	return pmap_curmaxkvaddr;
6014 }
6015 
6016 /************************ Utility routines ****************************/
6017 
6018 #ifndef ARM_HAS_VBAR
6019 /*
6020  * vector_page_setprot:
6021  *
6022  *	Manipulate the protection of the vector page.
6023  */
6024 void
6025 vector_page_setprot(int prot)
6026 {
6027 	struct l2_bucket *l2b;
6028 	pt_entry_t *ptep;
6029 
6030 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
6031 	/*
6032 	 * If we are using VBAR to use the vectors in the kernel, then it's
6033 	 * already mapped in the kernel text so no need to anything here.
6034 	 */
6035 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
6036 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
6037 		return;
6038 	}
6039 #endif
6040 
6041 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
6042 	KASSERT(l2b != NULL);
6043 
6044 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
6045 
6046 	const pt_entry_t opte = *ptep;
6047 #ifdef ARM_MMU_EXTENDED
6048 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
6049 	    | L2_S_PROT(PTE_KERNEL, prot);
6050 #else
6051 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
6052 	    | L2_S_PROT(PTE_KERNEL, prot);
6053 #endif
6054 	l2pte_set(ptep, npte, opte);
6055 	PTE_SYNC(ptep);
6056 	cpu_tlb_flushD_SE(vector_page);
6057 	cpu_cpwait();
6058 }
6059 #endif
6060 
6061 /*
6062  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
6063  * Returns true if the mapping exists, else false.
6064  *
6065  * NOTE: This function is only used by a couple of arm-specific modules.
6066  * It is not safe to take any pmap locks here, since we could be right
6067  * in the middle of debugging the pmap anyway...
6068  *
6069  * It is possible for this routine to return false even though a valid
6070  * mapping does exist. This is because we don't lock, so the metadata
6071  * state may be inconsistent.
6072  *
6073  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
6074  * a "section" mapping.
6075  */
6076 bool
6077 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
6078 {
6079 	struct l2_dtable *l2;
6080 	pd_entry_t *pdep, pde;
6081 	pt_entry_t *ptep;
6082 	u_short l1slot;
6083 
6084 	if (pm->pm_l1 == NULL)
6085 		return false;
6086 
6087 	l1slot = l1pte_index(va);
6088 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
6089 	pde = *pdep;
6090 
6091 	if (l1pte_section_p(pde)) {
6092 		*ptp = NULL;
6093 		return true;
6094 	}
6095 
6096 	l2 = pm->pm_l2[L2_IDX(l1slot)];
6097 	if (l2 == NULL ||
6098 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
6099 		return false;
6100 	}
6101 
6102 	*ptp = &ptep[l2pte_index(va)];
6103 	return true;
6104 }
6105 
6106 bool
6107 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
6108 {
6109 
6110 	if (pm->pm_l1 == NULL)
6111 		return false;
6112 
6113 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
6114 
6115 	return true;
6116 }
6117 
6118 /************************ Bootstrapping routines ****************************/
6119 
6120 #ifndef ARM_MMU_EXTENDED
6121 static void
6122 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
6123 {
6124 	int i;
6125 
6126 	l1->l1_kva = l1pt;
6127 	l1->l1_domain_use_count = 0;
6128 	l1->l1_domain_first = 0;
6129 
6130 	for (i = 0; i < PMAP_DOMAINS; i++)
6131 		l1->l1_domain_free[i] = i + 1;
6132 
6133 	/*
6134 	 * Copy the kernel's L1 entries to each new L1.
6135 	 */
6136 	if (pmap_initialized)
6137 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
6138 
6139 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
6140 	    &l1->l1_physaddr) == false)
6141 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
6142 
6143 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
6144 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
6145 }
6146 #endif /* !ARM_MMU_EXTENDED */
6147 
6148 /*
6149  * pmap_bootstrap() is called from the board-specific initarm() routine
6150  * once the kernel L1/L2 descriptors tables have been set up.
6151  *
6152  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
6153  * spread over a number of disparate files/functions.
6154  *
6155  * We are passed the following parameters
6156  *  - vstart
6157  *    1MB-aligned start of managed kernel virtual memory.
6158  *  - vend
6159  *    1MB-aligned end of managed kernel virtual memory.
6160  *
6161  * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
6162  * struct l2_dtable) necessary to track kernel mappings.
6163  */
6164 #define	PMAP_STATIC_L2_SIZE 16
6165 void
6166 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
6167 {
6168 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
6169 #ifndef ARM_MMU_EXTENDED
6170 	static struct l1_ttable static_l1;
6171 	struct l1_ttable *l1 = &static_l1;
6172 #endif
6173 	struct l2_dtable *l2;
6174 	struct l2_bucket *l2b;
6175 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
6176 	pmap_t pm = pmap_kernel();
6177 	pt_entry_t *ptep;
6178 	paddr_t pa;
6179 	vsize_t size;
6180 	int nptes, l2idx, l2next = 0;
6181 
6182 #ifdef ARM_MMU_EXTENDED
6183 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
6184 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
6185 #endif
6186 
6187 	VPRINTF("kpm ");
6188 	/*
6189 	 * Initialise the kernel pmap object
6190 	 */
6191 	curcpu()->ci_pmap_cur = pm;
6192 #ifdef ARM_MMU_EXTENDED
6193 	pm->pm_l1 = l1pt;
6194 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
6195 	VPRINTF("tlb0 ");
6196 	pmap_tlb_info_init(&pmap_tlb0_info);
6197 #ifdef MULTIPROCESSOR
6198 	VPRINTF("kcpusets ");
6199 	pm->pm_onproc = kcpuset_running;
6200 	pm->pm_active = kcpuset_running;
6201 #endif
6202 #else
6203 	pm->pm_l1 = l1;
6204 #endif
6205 
6206 	VPRINTF("locks ");
6207 	/*
6208 	 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
6209 	 * context, so its locks have to be at IPL_VM
6210 	 */
6211 	mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
6212 	mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
6213 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
6214 	pm->pm_refs = 1;
6215 
6216 	VPRINTF("l1pt ");
6217 	/*
6218 	 * Scan the L1 translation table created by initarm() and create
6219 	 * the required metadata for all valid mappings found in it.
6220 	 */
6221 	for (size_t l1slot = 0;
6222 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
6223 	     l1slot++) {
6224 		pd_entry_t pde = l1pt[l1slot];
6225 
6226 		/*
6227 		 * We're only interested in Coarse mappings.
6228 		 * pmap_extract() can deal with section mappings without
6229 		 * recourse to checking L2 metadata.
6230 		 */
6231 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
6232 			continue;
6233 
6234 		/*
6235 		 * Lookup the KVA of this L2 descriptor table
6236 		 */
6237 		pa = l1pte_pa(pde);
6238 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6239 		if (ptep == NULL) {
6240 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
6241 			    (u_int)l1slot << L1_S_SHIFT, pa);
6242 		}
6243 
6244 		/*
6245 		 * Fetch the associated L2 metadata structure.
6246 		 * Allocate a new one if necessary.
6247 		 */
6248 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
6249 			if (l2next == PMAP_STATIC_L2_SIZE)
6250 				panic("pmap_bootstrap: out of static L2s");
6251 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
6252 		}
6253 
6254 		/*
6255 		 * One more L1 slot tracked...
6256 		 */
6257 		l2->l2_occupancy++;
6258 
6259 		/*
6260 		 * Fill in the details of the L2 descriptor in the
6261 		 * appropriate bucket.
6262 		 */
6263 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
6264 		l2b->l2b_kva = ptep;
6265 		l2b->l2b_pa = pa;
6266 		l2b->l2b_l1slot = l1slot;
6267 
6268 		/*
6269 		 * Establish an initial occupancy count for this descriptor
6270 		 */
6271 		for (l2idx = 0;
6272 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
6273 		    l2idx++) {
6274 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
6275 				l2b->l2b_occupancy++;
6276 			}
6277 		}
6278 
6279 		/*
6280 		 * Make sure the descriptor itself has the correct cache mode.
6281 		 * If not, fix it, but whine about the problem. Port-meisters
6282 		 * should consider this a clue to fix up their initarm()
6283 		 * function. :)
6284 		 */
6285 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
6286 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
6287 			    "L2 pte @ %p\n", ptep);
6288 		}
6289 	}
6290 
6291 	VPRINTF("cache(l1pt) ");
6292 	/*
6293 	 * Ensure the primary (kernel) L1 has the correct cache mode for
6294 	 * a page table. Bitch if it is not correctly set.
6295 	 */
6296 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
6297 		    L1_TABLE_SIZE / L2_S_SIZE)) {
6298 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
6299 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
6300 	}
6301 
6302 #ifdef PMAP_CACHE_VIVT
6303 	cpu_dcache_wbinv_all();
6304 	cpu_tlb_flushID();
6305 	cpu_cpwait();
6306 #endif
6307 
6308 	/*
6309 	 * now we allocate the "special" VAs which are used for tmp mappings
6310 	 * by the pmap (and other modules).  we allocate the VAs by advancing
6311 	 * virtual_avail (note that there are no pages mapped at these VAs).
6312 	 *
6313 	 * Managed KVM space start from wherever initarm() tells us.
6314 	 */
6315 	virtual_avail = vstart;
6316 	virtual_end = vend;
6317 
6318 	VPRINTF("specials ");
6319 
6320 	pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
6321 
6322 #ifdef PMAP_CACHE_VIPT
6323 	/*
6324 	 * If we have a VIPT cache, we need one page/pte per possible alias
6325 	 * page so we won't violate cache aliasing rules.
6326 	 */
6327 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
6328 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
6329 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6330 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
6331 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
6332 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
6333 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
6334 	}
6335 #else
6336 	nptes = PAGE_SIZE / L2_S_SIZE;
6337 #endif
6338 #ifdef MULTIPROCESSOR
6339 	cnptes = nptes;
6340 	nptes *= arm_cpu_max;
6341 #endif
6342 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
6343 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
6344 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
6345 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
6346 	if (msgbufaddr == NULL) {
6347 		pmap_alloc_specials(&virtual_avail,
6348 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
6349 		    (void *)&msgbufaddr, NULL);
6350 	}
6351 
6352 	/*
6353 	 * Allocate a range of kernel virtual address space to be used
6354 	 * for L2 descriptor tables and metadata allocation in
6355 	 * pmap_growkernel().
6356 	 */
6357 	size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
6358 	pmap_alloc_specials(&virtual_avail,
6359 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
6360 	    &pmap_kernel_l2ptp_kva, NULL);
6361 
6362 	size = howmany(size, L2_BUCKET_SIZE);
6363 	pmap_alloc_specials(&virtual_avail,
6364 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
6365 	    &pmap_kernel_l2dtable_kva, NULL);
6366 
6367 #ifndef ARM_MMU_EXTENDED
6368 	/*
6369 	 * init the static-global locks and global pmap list.
6370 	 */
6371 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
6372 
6373 	/*
6374 	 * We can now initialise the first L1's metadata.
6375 	 */
6376 	SLIST_INIT(&l1_list);
6377 	TAILQ_INIT(&l1_lru_list);
6378 	pmap_init_l1(l1, l1pt);
6379 #endif /* ARM_MMU_EXTENDED */
6380 
6381 #ifndef ARM_HAS_VBAR
6382 	/* Set up vector page L1 details, if necessary */
6383 	if (vector_page < KERNEL_BASE) {
6384 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
6385 		l2b = pmap_get_l2_bucket(pm, vector_page);
6386 		KDASSERT(l2b != NULL);
6387 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
6388 		    L1_C_DOM(pmap_domain(pm));
6389 	} else
6390 		pm->pm_pl1vec = NULL;
6391 #endif
6392 
6393 	VPRINTF("pools ");
6394 	/*
6395 	 * Initialize the pmap cache
6396 	 */
6397 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
6398 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
6399 
6400 	/*
6401 	 * Initialize the pv pool.
6402 	 */
6403 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
6404 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
6405 
6406 	/*
6407 	 * Initialize the L2 dtable pool and cache.
6408 	 */
6409 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
6410 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
6411 
6412 	/*
6413 	 * Initialise the L2 descriptor table pool and cache
6414 	 */
6415 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
6416 	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
6417 	    pmap_l2ptp_ctor, NULL, NULL);
6418 
6419 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
6420 
6421 	cpu_dcache_wbinv_all();
6422 }
6423 
6424 static bool
6425 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
6426 {
6427 #ifdef ARM_MMU_EXTENDED
6428 	return false;
6429 #else
6430 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
6431 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
6432 		return false;
6433 
6434 	const vaddr_t eva = va + nptes * PAGE_SIZE;
6435 	int rv = 0;
6436 
6437 	while (va < eva) {
6438 		/*
6439 		 * Make sure the descriptor itself has the correct cache mode
6440 		 */
6441 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
6442 		pd_entry_t pde = *pdep;
6443 
6444 		if (l1pte_section_p(pde)) {
6445 			KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
6446 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
6447 				*pdep = (pde & ~L1_S_CACHE_MASK) |
6448 				    pte_l1_s_cache_mode_pt;
6449 				PDE_SYNC(pdep);
6450 				cpu_dcache_wbinv_range((vaddr_t)pdep,
6451 				    sizeof(*pdep));
6452 				rv = 1;
6453 			}
6454 			return rv;
6455 		}
6456 		vaddr_t pa = l1pte_pa(pde);
6457 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
6458 		if (ptep == NULL)
6459 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
6460 
6461 		ptep += l2pte_index(va);
6462 		const pt_entry_t opte = *ptep;
6463 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
6464 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
6465 			    | pte_l2_s_cache_mode_pt;
6466 			l2pte_set(ptep, npte, opte);
6467 			PTE_SYNC(ptep);
6468 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
6469 			rv = 1;
6470 		}
6471 		va += PAGE_SIZE;
6472 	}
6473 
6474 	return rv;
6475 #endif
6476 }
6477 
6478 static void
6479 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
6480 {
6481 	vaddr_t va = *availp;
6482 	struct l2_bucket *l2b;
6483 
6484 	if (ptep) {
6485 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6486 		if (l2b == NULL)
6487 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
6488 
6489 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
6490 	}
6491 
6492 	*vap = va;
6493 	*availp = va + (PAGE_SIZE * pages);
6494 }
6495 
6496 void
6497 pmap_init(void)
6498 {
6499 
6500 	/*
6501 	 * Set the available memory vars - These do not map to real memory
6502 	 * addresses and cannot as the physical memory is fragmented.
6503 	 * They are used by ps for %mem calculations.
6504 	 * One could argue whether this should be the entire memory or just
6505 	 * the memory that is useable in a user process.
6506 	 */
6507 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
6508 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
6509 
6510 	/*
6511 	 * Now we need to free enough pv_entry structures to allow us to get
6512 	 * the kmem_map/kmem_object allocated and inited (done after this
6513 	 * function is finished).  to do this we allocate one bootstrap page out
6514 	 * of kernel_map and use it to provide an initial pool of pv_entry
6515 	 * structures.   we never free this page.
6516 	 */
6517 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
6518 
6519 #ifdef ARM_MMU_EXTENDED
6520 	/*
6521 	 * Initialise the L1 pool and cache.
6522 	 */
6523 
6524 	pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
6525 	    0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
6526 	     NULL, NULL);
6527 
6528 	int error __diagused = pmap_maxproc_set(maxproc);
6529 	KASSERT(error == 0);
6530 
6531 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
6532 #endif
6533 
6534 	pmap_initialized = true;
6535 }
6536 
6537 static vaddr_t last_bootstrap_page = 0;
6538 static void *free_bootstrap_pages = NULL;
6539 
6540 static void *
6541 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
6542 {
6543 	extern void *pool_page_alloc(struct pool *, int);
6544 	vaddr_t new_page;
6545 	void *rv;
6546 
6547 	if (pmap_initialized)
6548 		return pool_page_alloc(pp, flags);
6549 
6550 	if (free_bootstrap_pages) {
6551 		rv = free_bootstrap_pages;
6552 		free_bootstrap_pages = *((void **)rv);
6553 		return rv;
6554 	}
6555 
6556 	KASSERT(kernel_map != NULL);
6557 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
6558 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
6559 
6560 	KASSERT(new_page > last_bootstrap_page);
6561 	last_bootstrap_page = new_page;
6562 	return (void *)new_page;
6563 }
6564 
6565 static void
6566 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
6567 {
6568 	extern void pool_page_free(struct pool *, void *);
6569 
6570 	if ((vaddr_t)v <= last_bootstrap_page) {
6571 		*((void **)v) = free_bootstrap_pages;
6572 		free_bootstrap_pages = v;
6573 		return;
6574 	}
6575 
6576 	if (pmap_initialized) {
6577 		pool_page_free(pp, v);
6578 		return;
6579 	}
6580 }
6581 
6582 
6583 #if defined(ARM_MMU_EXTENDED)
6584 static void *
6585 pmap_l1tt_alloc(struct pool *pp, int flags)
6586 {
6587 	struct pglist plist;
6588 	vaddr_t va;
6589 
6590 	const int waitok = flags & PR_WAITOK;
6591 
6592 	int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
6593 	    waitok);
6594 	if (error)
6595 		panic("Cannot allocate L1TT physical pages, %d", error);
6596 
6597 	struct vm_page *pg = TAILQ_FIRST(&plist);
6598 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6599 
6600 	/* Allocate a L1 translation table VA */
6601 	va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
6602 	if (va == 0)
6603 		panic("Cannot allocate L1TT KVA");
6604 
6605 	const vaddr_t eva = va + L1TT_SIZE;
6606 	vaddr_t mva = va;
6607 	while (pg && mva < eva) {
6608 		paddr_t pa = VM_PAGE_TO_PHYS(pg);
6609 
6610 		pmap_kenter_pa(mva, pa,
6611 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6612 
6613 		mva += PAGE_SIZE;
6614 		pg = TAILQ_NEXT(pg, pageq.queue);
6615 	}
6616 	KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
6617 	    " eva %" PRIxVADDR, pg, mva, eva);
6618 #else
6619 	bool ok;
6620 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
6621 	va = pmap_direct_mapped_phys(pa, &ok, 0);
6622 	KASSERT(ok);
6623 	KASSERT(va >= KERNEL_BASE);
6624 #endif
6625 
6626 	return (void *)va;
6627 }
6628 
6629 static void
6630 pmap_l1tt_free(struct pool *pp, void *v)
6631 {
6632 	vaddr_t va = (vaddr_t)v;
6633 
6634 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
6635 	uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
6636 #else
6637 #if defined(KERNEL_BASE_VOFFSET)
6638 	paddr_t pa = va - KERNEL_BASE_VOFFSET;
6639 #else
6640 	paddr_t pa = va - KERNEL_BASE + physical_start;
6641 #endif
6642 	const paddr_t epa = pa + L1TT_SIZE;
6643 
6644 	for (; pa < epa; pa += PAGE_SIZE) {
6645 		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
6646 		uvm_pagefree(pg);
6647 	}
6648 #endif
6649 }
6650 #endif
6651 
6652 /*
6653  * pmap_postinit()
6654  *
6655  * This routine is called after the vm and kmem subsystems have been
6656  * initialised. This allows the pmap code to perform any initialisation
6657  * that can only be done once the memory allocation is in place.
6658  */
6659 void
6660 pmap_postinit(void)
6661 {
6662 #ifndef ARM_MMU_EXTENDED
6663 	extern paddr_t physical_start, physical_end;
6664 	struct l1_ttable *l1;
6665 	struct pglist plist;
6666 	struct vm_page *m;
6667 	pd_entry_t *pdep;
6668 	vaddr_t va, eva;
6669 	u_int loop, needed;
6670 	int error;
6671 #endif
6672 
6673 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
6674 	pool_cache_setlowat(&pmap_l2dtable_cache,
6675 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
6676 
6677 #ifndef ARM_MMU_EXTENDED
6678 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
6679 	needed -= 1;
6680 
6681 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
6682 
6683 	for (loop = 0; loop < needed; loop++, l1++) {
6684 		/* Allocate a L1 page table */
6685 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
6686 		if (va == 0)
6687 			panic("Cannot allocate L1 KVM");
6688 
6689 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
6690 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
6691 		if (error)
6692 			panic("Cannot allocate L1 physical pages");
6693 
6694 		m = TAILQ_FIRST(&plist);
6695 		eva = va + L1_TABLE_SIZE;
6696 		pdep = (pd_entry_t *)va;
6697 
6698 		while (m && va < eva) {
6699 			paddr_t pa = VM_PAGE_TO_PHYS(m);
6700 
6701 			pmap_kenter_pa(va, pa,
6702 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
6703 
6704 			va += PAGE_SIZE;
6705 			m = TAILQ_NEXT(m, pageq.queue);
6706 		}
6707 
6708 #ifdef DIAGNOSTIC
6709 		if (m)
6710 			panic("pmap_alloc_l1pt: pglist not empty");
6711 #endif	/* DIAGNOSTIC */
6712 
6713 		pmap_init_l1(l1, pdep);
6714 	}
6715 
6716 #ifdef DEBUG
6717 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
6718 	    needed);
6719 #endif
6720 #endif /* !ARM_MMU_EXTENDED */
6721 }
6722 
6723 /*
6724  * Note that the following routines are used by board-specific initialisation
6725  * code to configure the initial kernel page tables.
6726  *
6727  */
6728 
6729 /*
6730  * This list exists for the benefit of pmap_map_chunk().  It keeps track
6731  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
6732  * find them as necessary.
6733  *
6734  * Note that the data on this list MUST remain valid after initarm() returns,
6735  * as pmap_bootstrap() uses it to construct L2 table metadata.
6736  */
6737 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
6738 
6739 static vaddr_t
6740 kernel_pt_lookup(paddr_t pa)
6741 {
6742 	pv_addr_t *pv;
6743 
6744 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
6745 		if (pv->pv_pa == (pa & ~PGOFSET))
6746 			return pv->pv_va | (pa & PGOFSET);
6747 	}
6748 	return 0;
6749 }
6750 
6751 /*
6752  * pmap_map_section:
6753  *
6754  *	Create a single section mapping.
6755  */
6756 void
6757 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6758 {
6759 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6760 	const size_t l1slot = l1pte_index(va);
6761 	pd_entry_t fl;
6762 
6763 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
6764 
6765 	switch (cache) {
6766 	case PTE_NOCACHE:
6767 		fl = pte_l1_s_nocache_mode;
6768 		break;
6769 
6770 	case PTE_CACHE:
6771 		fl = pte_l1_s_cache_mode;
6772 		break;
6773 
6774 	case PTE_PAGETABLE:
6775 		fl = pte_l1_s_cache_mode_pt;
6776 		break;
6777 
6778 	case PTE_DEV:
6779 	default:
6780 		fl = 0;
6781 		break;
6782 	}
6783 
6784 	const pd_entry_t npde = L1_S_PROTO | pa |
6785 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6786 	l1pte_setone(pdep + l1slot, npde);
6787 	PDE_SYNC(pdep + l1slot);
6788 }
6789 
6790 /*
6791  * pmap_map_entry:
6792  *
6793  *	Create a single page mapping.
6794  */
6795 void
6796 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
6797 {
6798 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6799 	const size_t l1slot = l1pte_index(va);
6800 	pt_entry_t npte;
6801 	pt_entry_t *ptep;
6802 
6803 	KASSERT(((va | pa) & PGOFSET) == 0);
6804 
6805 	switch (cache) {
6806 	case PTE_NOCACHE:
6807 		npte = pte_l2_s_nocache_mode;
6808 		break;
6809 
6810 	case PTE_CACHE:
6811 		npte = pte_l2_s_cache_mode;
6812 		break;
6813 
6814 	case PTE_PAGETABLE:
6815 		npte = pte_l2_s_cache_mode_pt;
6816 		break;
6817 
6818 	default:
6819 		npte = 0;
6820 		break;
6821 	}
6822 
6823 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6824 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
6825 
6826 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6827 	if (ptep == NULL)
6828 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
6829 
6830 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
6831 #ifdef ARM_MMU_EXTENDED
6832 	if (prot & VM_PROT_EXECUTE) {
6833 		npte &= ~L2_XS_XN;
6834 	}
6835 #endif
6836 	ptep += l2pte_index(va);
6837 	l2pte_set(ptep, npte, 0);
6838 	PTE_SYNC(ptep);
6839 }
6840 
6841 /*
6842  * pmap_link_l2pt:
6843  *
6844  *	Link the L2 page table specified by "l2pv" into the L1
6845  *	page table at the slot for "va".
6846  */
6847 void
6848 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
6849 {
6850 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
6851 
6852 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
6853 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
6854 
6855 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
6856 	    | l2pv->pv_pa;
6857 
6858 	l1pte_set(pdep, npde);
6859 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
6860 
6861 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
6862 }
6863 
6864 /*
6865  * pmap_map_chunk:
6866  *
6867  *	Map a chunk of memory using the most efficient mappings
6868  *	possible (section, large page, small page) into the
6869  *	provided L1 and L2 tables at the specified virtual address.
6870  */
6871 vsize_t
6872 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
6873     int prot, int cache)
6874 {
6875 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
6876 	pt_entry_t f1, f2s, f2l;
6877 	vsize_t resid;
6878 
6879 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
6880 
6881 	if (l1pt == 0)
6882 		panic("pmap_map_chunk: no L1 table provided");
6883 
6884 // 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
6885 // 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
6886 
6887 	switch (cache) {
6888 	case PTE_NOCACHE:
6889 		f1 = pte_l1_s_nocache_mode;
6890 		f2l = pte_l2_l_nocache_mode;
6891 		f2s = pte_l2_s_nocache_mode;
6892 		break;
6893 
6894 	case PTE_CACHE:
6895 		f1 = pte_l1_s_cache_mode;
6896 		f2l = pte_l2_l_cache_mode;
6897 		f2s = pte_l2_s_cache_mode;
6898 		break;
6899 
6900 	case PTE_PAGETABLE:
6901 		f1 = pte_l1_s_cache_mode_pt;
6902 		f2l = pte_l2_l_cache_mode_pt;
6903 		f2s = pte_l2_s_cache_mode_pt;
6904 		break;
6905 
6906 	case PTE_DEV:
6907 	default:
6908 		f1 = 0;
6909 		f2l = 0;
6910 		f2s = 0;
6911 		break;
6912 	}
6913 
6914 	size = resid;
6915 
6916 	while (resid > 0) {
6917 		const size_t l1slot = l1pte_index(va);
6918 #ifdef ARM_MMU_EXTENDED
6919 		/* See if we can use a supersection mapping. */
6920 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
6921 			/* Supersection are always domain 0 */
6922 			const pd_entry_t npde = L1_SS_PROTO | pa
6923 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6924 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6925 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
6926 			VPRINTF("sS");
6927 			l1pte_set(&pdep[l1slot], npde);
6928 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
6929 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6930 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6931 			va += L1_SS_SIZE;
6932 			pa += L1_SS_SIZE;
6933 			resid -= L1_SS_SIZE;
6934 			continue;
6935 		}
6936 #endif
6937 		/* See if we can use a section mapping. */
6938 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
6939 			const pd_entry_t npde = L1_S_PROTO | pa
6940 #ifdef ARM_MMU_EXTENDED
6941 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
6942 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
6943 #endif
6944 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
6945 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
6946 			VPRINTF("S");
6947 			l1pte_set(&pdep[l1slot], npde);
6948 			PDE_SYNC(&pdep[l1slot]);
6949 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
6950 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
6951 			va += L1_S_SIZE;
6952 			pa += L1_S_SIZE;
6953 			resid -= L1_S_SIZE;
6954 			continue;
6955 		}
6956 
6957 		/*
6958 		 * Ok, we're going to use an L2 table.  Make sure
6959 		 * one is actually in the corresponding L1 slot
6960 		 * for the current VA.
6961 		 */
6962 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
6963 			panic("%s: no L2 table for VA %#lx", __func__, va);
6964 
6965 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
6966 		if (ptep == NULL)
6967 			panic("%s: can't find L2 table for VA %#lx", __func__,
6968 			    va);
6969 
6970 		ptep += l2pte_index(va);
6971 
6972 		/* See if we can use a L2 large page mapping. */
6973 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
6974 			const pt_entry_t npte = L2_L_PROTO | pa
6975 #ifdef ARM_MMU_EXTENDED
6976 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
6977 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
6978 #endif
6979 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
6980 			VPRINTF("L");
6981 			l2pte_set(ptep, npte, 0);
6982 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
6983 			va += L2_L_SIZE;
6984 			pa += L2_L_SIZE;
6985 			resid -= L2_L_SIZE;
6986 			continue;
6987 		}
6988 
6989 		VPRINTF("P");
6990 		/* Use a small page mapping. */
6991 		pt_entry_t npte = L2_S_PROTO | pa
6992 #ifdef ARM_MMU_EXTENDED
6993 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
6994 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
6995 #endif
6996 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6997 #ifdef ARM_MMU_EXTENDED
6998 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
6999 #endif
7000 		l2pte_set(ptep, npte, 0);
7001 		PTE_SYNC(ptep);
7002 		va += PAGE_SIZE;
7003 		pa += PAGE_SIZE;
7004 		resid -= PAGE_SIZE;
7005 	}
7006 	VPRINTF("\n");
7007 	return size;
7008 }
7009 
7010 /*
7011  * pmap_unmap_chunk:
7012  *
7013  *	Unmap a chunk of memory that was previously pmap_map_chunk
7014  */
7015 void
7016 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
7017 {
7018 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
7019 	const size_t l1slot = l1pte_index(va);
7020 
7021 	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
7022 
7023 	l1pte_set(&pdep[l1slot], 0);
7024 	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
7025 
7026 	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
7027 }
7028 
7029 
7030 
7031 /********************** Static device map routines ***************************/
7032 
7033 static const struct pmap_devmap *pmap_devmap_table;
7034 
7035 /*
7036  * Register the devmap table.  This is provided in case early console
7037  * initialization needs to register mappings created by bootstrap code
7038  * before pmap_devmap_bootstrap() is called.
7039  */
7040 void
7041 pmap_devmap_register(const struct pmap_devmap *table)
7042 {
7043 
7044 	pmap_devmap_table = table;
7045 }
7046 
7047 /*
7048  * Map all of the static regions in the devmap table, and remember
7049  * the devmap table so other parts of the kernel can look up entries
7050  * later.
7051  */
7052 void
7053 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
7054 {
7055 	int i;
7056 
7057 	pmap_devmap_table = table;
7058 
7059 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7060 		const struct pmap_devmap *pdp = &pmap_devmap_table[i];
7061 
7062 		KASSERTMSG(VADDR_MAX - pdp->pd_va >= pdp->pd_size - 1, "va %" PRIxVADDR
7063 		    " sz %" PRIxPSIZE, pdp->pd_va, pdp->pd_size);
7064 		KASSERTMSG(PADDR_MAX - pdp->pd_pa >= pdp->pd_size - 1, "pa %" PRIxPADDR
7065 		    " sz %" PRIxPSIZE, pdp->pd_pa, pdp->pd_size);
7066 		VPRINTF("devmap: %08lx -> %08lx @ %08lx\n", pdp->pd_pa,
7067 		    pdp->pd_pa + pdp->pd_size - 1, pdp->pd_va);
7068 
7069 		pmap_map_chunk(l1pt, pdp->pd_va, pdp->pd_pa, pdp->pd_size,
7070 		    pdp->pd_prot, pdp->pd_cache);
7071 	}
7072 }
7073 
7074 const struct pmap_devmap *
7075 pmap_devmap_find_pa(paddr_t pa, psize_t size)
7076 {
7077 	uint64_t endpa;
7078 	int i;
7079 
7080 	if (pmap_devmap_table == NULL)
7081 		return NULL;
7082 
7083 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
7084 
7085 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7086 		if (pa >= pmap_devmap_table[i].pd_pa &&
7087 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
7088 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
7089 			return &pmap_devmap_table[i];
7090 	}
7091 
7092 	return NULL;
7093 }
7094 
7095 const struct pmap_devmap *
7096 pmap_devmap_find_va(vaddr_t va, vsize_t size)
7097 {
7098 	int i;
7099 
7100 	if (pmap_devmap_table == NULL)
7101 		return NULL;
7102 
7103 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
7104 		if (va >= pmap_devmap_table[i].pd_va &&
7105 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
7106 				     pmap_devmap_table[i].pd_size - 1)
7107 			return &pmap_devmap_table[i];
7108 	}
7109 
7110 	return NULL;
7111 }
7112 
7113 /********************** PTE initialization routines **************************/
7114 
7115 /*
7116  * These routines are called when the CPU type is identified to set up
7117  * the PTE prototypes, cache modes, etc.
7118  *
7119  * The variables are always here, just in case modules need to reference
7120  * them (though, they shouldn't).
7121  */
7122 
7123 pt_entry_t	pte_l1_s_nocache_mode;
7124 pt_entry_t	pte_l1_s_cache_mode;
7125 pt_entry_t	pte_l1_s_wc_mode;
7126 pt_entry_t	pte_l1_s_cache_mode_pt;
7127 pt_entry_t	pte_l1_s_cache_mask;
7128 
7129 pt_entry_t	pte_l2_l_nocache_mode;
7130 pt_entry_t	pte_l2_l_cache_mode;
7131 pt_entry_t	pte_l2_l_wc_mode;
7132 pt_entry_t	pte_l2_l_cache_mode_pt;
7133 pt_entry_t	pte_l2_l_cache_mask;
7134 
7135 pt_entry_t	pte_l2_s_nocache_mode;
7136 pt_entry_t	pte_l2_s_cache_mode;
7137 pt_entry_t	pte_l2_s_wc_mode;
7138 pt_entry_t	pte_l2_s_cache_mode_pt;
7139 pt_entry_t	pte_l2_s_cache_mask;
7140 
7141 pt_entry_t	pte_l1_s_prot_u;
7142 pt_entry_t	pte_l1_s_prot_w;
7143 pt_entry_t	pte_l1_s_prot_ro;
7144 pt_entry_t	pte_l1_s_prot_mask;
7145 
7146 pt_entry_t	pte_l2_s_prot_u;
7147 pt_entry_t	pte_l2_s_prot_w;
7148 pt_entry_t	pte_l2_s_prot_ro;
7149 pt_entry_t	pte_l2_s_prot_mask;
7150 
7151 pt_entry_t	pte_l2_l_prot_u;
7152 pt_entry_t	pte_l2_l_prot_w;
7153 pt_entry_t	pte_l2_l_prot_ro;
7154 pt_entry_t	pte_l2_l_prot_mask;
7155 
7156 pt_entry_t	pte_l1_ss_proto;
7157 pt_entry_t	pte_l1_s_proto;
7158 pt_entry_t	pte_l1_c_proto;
7159 pt_entry_t	pte_l2_s_proto;
7160 
7161 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
7162 void		(*pmap_zero_page_func)(paddr_t);
7163 
7164 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
7165 void
7166 pmap_pte_init_generic(void)
7167 {
7168 
7169 	pte_l1_s_nocache_mode = 0;
7170 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7171 	pte_l1_s_wc_mode = L1_S_B;
7172 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
7173 
7174 	pte_l2_l_nocache_mode = 0;
7175 	pte_l2_l_cache_mode = L2_B|L2_C;
7176 	pte_l2_l_wc_mode = L2_B;
7177 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
7178 
7179 	pte_l2_s_nocache_mode = 0;
7180 	pte_l2_s_cache_mode = L2_B|L2_C;
7181 	pte_l2_s_wc_mode = L2_B;
7182 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
7183 
7184 	/*
7185 	 * If we have a write-through cache, set B and C.  If
7186 	 * we have a write-back cache, then we assume setting
7187 	 * only C will make those pages write-through (except for those
7188 	 * Cortex CPUs which can read the L1 caches).
7189 	 */
7190 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
7191 #if ARM_MMU_V7 > 0
7192 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
7193 #endif
7194 #if ARM_MMU_V6 > 0
7195 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
7196 #endif
7197 	    || false) {
7198 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7199 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
7200 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
7201 	} else {
7202 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
7203 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
7204 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
7205 	}
7206 
7207 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
7208 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
7209 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
7210 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
7211 
7212 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7213 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7214 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7215 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7216 
7217 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7218 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7219 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7220 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7221 
7222 	pte_l1_ss_proto = L1_SS_PROTO_generic;
7223 	pte_l1_s_proto = L1_S_PROTO_generic;
7224 	pte_l1_c_proto = L1_C_PROTO_generic;
7225 	pte_l2_s_proto = L2_S_PROTO_generic;
7226 
7227 	pmap_copy_page_func = pmap_copy_page_generic;
7228 	pmap_zero_page_func = pmap_zero_page_generic;
7229 }
7230 
7231 #if defined(CPU_ARM8)
7232 void
7233 pmap_pte_init_arm8(void)
7234 {
7235 
7236 	/*
7237 	 * ARM8 is compatible with generic, but we need to use
7238 	 * the page tables uncached.
7239 	 */
7240 	pmap_pte_init_generic();
7241 
7242 	pte_l1_s_cache_mode_pt = 0;
7243 	pte_l2_l_cache_mode_pt = 0;
7244 	pte_l2_s_cache_mode_pt = 0;
7245 }
7246 #endif /* CPU_ARM8 */
7247 
7248 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
7249 void
7250 pmap_pte_init_arm9(void)
7251 {
7252 
7253 	/*
7254 	 * ARM9 is compatible with generic, but we want to use
7255 	 * write-through caching for now.
7256 	 */
7257 	pmap_pte_init_generic();
7258 
7259 	pte_l1_s_cache_mode = L1_S_C;
7260 	pte_l2_l_cache_mode = L2_C;
7261 	pte_l2_s_cache_mode = L2_C;
7262 
7263 	pte_l1_s_wc_mode = L1_S_B;
7264 	pte_l2_l_wc_mode = L2_B;
7265 	pte_l2_s_wc_mode = L2_B;
7266 
7267 	pte_l1_s_cache_mode_pt = L1_S_C;
7268 	pte_l2_l_cache_mode_pt = L2_C;
7269 	pte_l2_s_cache_mode_pt = L2_C;
7270 }
7271 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
7272 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
7273 
7274 #if defined(CPU_ARM10)
7275 void
7276 pmap_pte_init_arm10(void)
7277 {
7278 
7279 	/*
7280 	 * ARM10 is compatible with generic, but we want to use
7281 	 * write-through caching for now.
7282 	 */
7283 	pmap_pte_init_generic();
7284 
7285 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
7286 	pte_l2_l_cache_mode = L2_B | L2_C;
7287 	pte_l2_s_cache_mode = L2_B | L2_C;
7288 
7289 	pte_l1_s_cache_mode = L1_S_B;
7290 	pte_l2_l_cache_mode = L2_B;
7291 	pte_l2_s_cache_mode = L2_B;
7292 
7293 	pte_l1_s_cache_mode_pt = L1_S_C;
7294 	pte_l2_l_cache_mode_pt = L2_C;
7295 	pte_l2_s_cache_mode_pt = L2_C;
7296 
7297 }
7298 #endif /* CPU_ARM10 */
7299 
7300 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
7301 void
7302 pmap_pte_init_arm11(void)
7303 {
7304 
7305 	/*
7306 	 * ARM11 is compatible with generic, but we want to use
7307 	 * write-through caching for now.
7308 	 */
7309 	pmap_pte_init_generic();
7310 
7311 	pte_l1_s_cache_mode = L1_S_C;
7312 	pte_l2_l_cache_mode = L2_C;
7313 	pte_l2_s_cache_mode = L2_C;
7314 
7315 	pte_l1_s_wc_mode = L1_S_B;
7316 	pte_l2_l_wc_mode = L2_B;
7317 	pte_l2_s_wc_mode = L2_B;
7318 
7319 	pte_l1_s_cache_mode_pt = L1_S_C;
7320 	pte_l2_l_cache_mode_pt = L2_C;
7321 	pte_l2_s_cache_mode_pt = L2_C;
7322 }
7323 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
7324 
7325 #if ARM_MMU_SA1 == 1
7326 void
7327 pmap_pte_init_sa1(void)
7328 {
7329 
7330 	/*
7331 	 * The StrongARM SA-1 cache does not have a write-through
7332 	 * mode.  So, do the generic initialization, then reset
7333 	 * the page table cache mode to B=1,C=1, and note that
7334 	 * the PTEs need to be sync'd.
7335 	 */
7336 	pmap_pte_init_generic();
7337 
7338 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
7339 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
7340 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
7341 
7342 	pmap_needs_pte_sync = 1;
7343 }
7344 #endif /* ARM_MMU_SA1 == 1*/
7345 
7346 #if ARM_MMU_XSCALE == 1
7347 #if (ARM_NMMUS > 1)
7348 static u_int xscale_use_minidata;
7349 #endif
7350 
7351 void
7352 pmap_pte_init_xscale(void)
7353 {
7354 	uint32_t auxctl;
7355 	int write_through = 0;
7356 
7357 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
7358 	pte_l1_s_wc_mode = L1_S_B;
7359 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
7360 
7361 	pte_l2_l_cache_mode = L2_B|L2_C;
7362 	pte_l2_l_wc_mode = L2_B;
7363 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
7364 
7365 	pte_l2_s_cache_mode = L2_B|L2_C;
7366 	pte_l2_s_wc_mode = L2_B;
7367 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
7368 
7369 	pte_l1_s_cache_mode_pt = L1_S_C;
7370 	pte_l2_l_cache_mode_pt = L2_C;
7371 	pte_l2_s_cache_mode_pt = L2_C;
7372 
7373 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
7374 	/*
7375 	 * The XScale core has an enhanced mode where writes that
7376 	 * miss the cache cause a cache line to be allocated.  This
7377 	 * is significantly faster than the traditional, write-through
7378 	 * behavior of this case.
7379 	 */
7380 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
7381 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
7382 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
7383 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
7384 
7385 #ifdef XSCALE_CACHE_WRITE_THROUGH
7386 	/*
7387 	 * Some versions of the XScale core have various bugs in
7388 	 * their cache units, the work-around for which is to run
7389 	 * the cache in write-through mode.  Unfortunately, this
7390 	 * has a major (negative) impact on performance.  So, we
7391 	 * go ahead and run fast-and-loose, in the hopes that we
7392 	 * don't line up the planets in a way that will trip the
7393 	 * bugs.
7394 	 *
7395 	 * However, we give you the option to be slow-but-correct.
7396 	 */
7397 	write_through = 1;
7398 #elif defined(XSCALE_CACHE_WRITE_BACK)
7399 	/* force write back cache mode */
7400 	write_through = 0;
7401 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
7402 	/*
7403 	 * Intel PXA2[15]0 processors are known to have a bug in
7404 	 * write-back cache on revision 4 and earlier (stepping
7405 	 * A[01] and B[012]).  Fixed for C0 and later.
7406 	 */
7407 	{
7408 		uint32_t id, type;
7409 
7410 		id = cpufunc_id();
7411 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
7412 
7413 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
7414 			if ((id & CPU_ID_REVISION_MASK) < 5) {
7415 				/* write through for stepping A0-1 and B0-2 */
7416 				write_through = 1;
7417 			}
7418 		}
7419 	}
7420 #endif /* XSCALE_CACHE_WRITE_THROUGH */
7421 
7422 	if (write_through) {
7423 		pte_l1_s_cache_mode = L1_S_C;
7424 		pte_l2_l_cache_mode = L2_C;
7425 		pte_l2_s_cache_mode = L2_C;
7426 	}
7427 
7428 #if (ARM_NMMUS > 1)
7429 	xscale_use_minidata = 1;
7430 #endif
7431 
7432 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
7433 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
7434 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
7435 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
7436 
7437 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
7438 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
7439 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
7440 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
7441 
7442 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
7443 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
7444 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
7445 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
7446 
7447 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
7448 	pte_l1_s_proto = L1_S_PROTO_xscale;
7449 	pte_l1_c_proto = L1_C_PROTO_xscale;
7450 	pte_l2_s_proto = L2_S_PROTO_xscale;
7451 
7452 	pmap_copy_page_func = pmap_copy_page_xscale;
7453 	pmap_zero_page_func = pmap_zero_page_xscale;
7454 
7455 	/*
7456 	 * Disable ECC protection of page table access, for now.
7457 	 */
7458 	auxctl = armreg_auxctl_read();
7459 	auxctl &= ~XSCALE_AUXCTL_P;
7460 	armreg_auxctl_write(auxctl);
7461 }
7462 
7463 /*
7464  * xscale_setup_minidata:
7465  *
7466  *	Set up the mini-data cache clean area.  We require the
7467  *	caller to allocate the right amount of physically and
7468  *	virtually contiguous space.
7469  */
7470 void
7471 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
7472 {
7473 	extern vaddr_t xscale_minidata_clean_addr;
7474 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
7475 	pd_entry_t *pde = (pd_entry_t *) l1pt;
7476 	vsize_t size;
7477 	uint32_t auxctl;
7478 
7479 	xscale_minidata_clean_addr = va;
7480 
7481 	/* Round it to page size. */
7482 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
7483 
7484 	for (; size != 0;
7485 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
7486 		const size_t l1slot = l1pte_index(va);
7487 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
7488 		if (ptep == NULL)
7489 			panic("xscale_setup_minidata: can't find L2 table for "
7490 			    "VA 0x%08lx", va);
7491 
7492 		ptep += l2pte_index(va);
7493 		pt_entry_t opte = *ptep;
7494 		l2pte_set(ptep,
7495 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
7496 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
7497 	}
7498 
7499 	/*
7500 	 * Configure the mini-data cache for write-back with
7501 	 * read/write-allocate.
7502 	 *
7503 	 * NOTE: In order to reconfigure the mini-data cache, we must
7504 	 * make sure it contains no valid data!  In order to do that,
7505 	 * we must issue a global data cache invalidate command!
7506 	 *
7507 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
7508 	 * THIS IS VERY IMPORTANT!
7509 	 */
7510 
7511 	/* Invalidate data and mini-data. */
7512 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
7513 	auxctl = armreg_auxctl_read();
7514 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
7515 	armreg_auxctl_write(auxctl);
7516 }
7517 
7518 /*
7519  * Change the PTEs for the specified kernel mappings such that they
7520  * will use the mini data cache instead of the main data cache.
7521  */
7522 void
7523 pmap_uarea(vaddr_t va)
7524 {
7525 	vaddr_t next_bucket, eva;
7526 
7527 #if (ARM_NMMUS > 1)
7528 	if (xscale_use_minidata == 0)
7529 		return;
7530 #endif
7531 
7532 	eva = va + USPACE;
7533 
7534 	while (va < eva) {
7535 		next_bucket = L2_NEXT_BUCKET_VA(va);
7536 		if (next_bucket > eva)
7537 			next_bucket = eva;
7538 
7539 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
7540 		KDASSERT(l2b != NULL);
7541 
7542 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
7543 		pt_entry_t *ptep = sptep;
7544 
7545 		while (va < next_bucket) {
7546 			const pt_entry_t opte = *ptep;
7547 			if (!l2pte_minidata_p(opte)) {
7548 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
7549 				cpu_tlb_flushD_SE(va);
7550 				l2pte_set(ptep, opte & ~L2_B, opte);
7551 			}
7552 			ptep += PAGE_SIZE / L2_S_SIZE;
7553 			va += PAGE_SIZE;
7554 		}
7555 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
7556 	}
7557 	cpu_cpwait();
7558 }
7559 #endif /* ARM_MMU_XSCALE == 1 */
7560 
7561 
7562 #if defined(CPU_ARM11MPCORE)
7563 void
7564 pmap_pte_init_arm11mpcore(void)
7565 {
7566 
7567 	/* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
7568 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
7569 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
7570 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7571 	/* use extended small page (without APn, with TEX) */
7572 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
7573 #else
7574 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
7575 #endif
7576 
7577 	/* write-back, write-allocate */
7578 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7579 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
7580 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7581 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7582 #else
7583 	/* no TEX. read-allocate */
7584 	pte_l2_s_cache_mode = L2_C | L2_B;
7585 #endif
7586 	/*
7587 	 * write-back, write-allocate for page tables.
7588 	 */
7589 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
7590 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
7591 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7592 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
7593 #else
7594 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
7595 #endif
7596 
7597 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7598 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7599 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7600 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7601 
7602 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
7603 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7604 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7605 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7606 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7607 
7608 #else
7609 	/* with AP[0..3] */
7610 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
7611 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
7612 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
7613 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
7614 #endif
7615 
7616 #ifdef	ARM11MPCORE_COMPAT_MMU
7617 	/* with AP[0..3] */
7618 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
7619 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
7620 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
7621 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
7622 
7623 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7624 	pte_l1_s_proto = L1_S_PROTO_armv6;
7625 	pte_l1_c_proto = L1_C_PROTO_armv6;
7626 	pte_l2_s_proto = L2_S_PROTO_armv6c;
7627 #else
7628 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7629 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7630 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7631 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7632 
7633 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7634 	pte_l1_s_proto = L1_S_PROTO_armv6;
7635 	pte_l1_c_proto = L1_C_PROTO_armv6;
7636 	pte_l2_s_proto = L2_S_PROTO_armv6n;
7637 #endif
7638 
7639 	pmap_copy_page_func = pmap_copy_page_generic;
7640 	pmap_zero_page_func = pmap_zero_page_generic;
7641 	pmap_needs_pte_sync = 1;
7642 }
7643 #endif	/* CPU_ARM11MPCORE */
7644 
7645 
7646 #if ARM_MMU_V6 == 1
7647 void
7648 pmap_pte_init_armv6(void)
7649 {
7650 	/*
7651 	 * The ARMv6-A MMU is mostly compatible with generic. If the
7652 	 * AP field is zero, that now means "no access" rather than
7653 	 * read-only. The prototypes are a little different because of
7654 	 * the XN bit.
7655 	 */
7656 	pmap_pte_init_generic();
7657 
7658 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7659 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7660 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7661 
7662 #ifdef ARM11_COMPAT_MMU
7663 	/* with AP[0..3] */
7664 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7665 #else
7666 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
7667 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
7668 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
7669 
7670 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
7671 	pte_l1_s_proto = L1_S_PROTO_armv6;
7672 	pte_l1_c_proto = L1_C_PROTO_armv6;
7673 	pte_l2_s_proto = L2_S_PROTO_armv6n;
7674 
7675 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
7676 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
7677 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
7678 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
7679 
7680 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
7681 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
7682 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
7683 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
7684 
7685 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
7686 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
7687 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
7688 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
7689 
7690 #endif
7691 }
7692 #endif /* ARM_MMU_V6 */
7693 
7694 #if ARM_MMU_V7 == 1
7695 void
7696 pmap_pte_init_armv7(void)
7697 {
7698 	/*
7699 	 * The ARMv7-A MMU is mostly compatible with generic. If the
7700 	 * AP field is zero, that now means "no access" rather than
7701 	 * read-only. The prototypes are a little different because of
7702 	 * the XN bit.
7703 	 */
7704 	pmap_pte_init_generic();
7705 
7706 	pmap_needs_pte_sync = 1;
7707 
7708 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
7709 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
7710 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
7711 
7712 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
7713 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
7714 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
7715 
7716 	/*
7717 	 * If the core support coherent walk then updates to translation tables
7718 	 * do not require a clean to the point of unification to ensure
7719 	 * visibility by subsequent translation table walks.  That means we can
7720 	 * map everything shareable and cached and the right thing will happen.
7721 	 */
7722         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
7723 		pmap_needs_pte_sync = 0;
7724 
7725 		/*
7726 		 * write-back, no write-allocate, shareable for normal pages.
7727 		 */
7728 		pte_l1_s_cache_mode |= L1_S_V6_S;
7729 		pte_l2_l_cache_mode |= L2_XS_S;
7730 		pte_l2_s_cache_mode |= L2_XS_S;
7731 	}
7732 
7733 	/*
7734 	 * Page tables are just all other memory.  We can use write-back since
7735 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
7736 	 */
7737 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
7738 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
7739 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
7740 
7741 	/*
7742 	 * Check the Memory Model Features to see if this CPU supports
7743 	 * the TLBIASID coproc op.
7744 	 */
7745 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
7746 		arm_has_tlbiasid_p = true;
7747 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
7748 		arm_has_tlbiasid_p = true;
7749 	}
7750 
7751 	/*
7752 	 * Check the MPIDR to see if this CPU supports MP extensions.
7753 	 */
7754 #ifdef MULTIPROCESSOR
7755 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
7756 #else
7757 	arm_has_mpext_p = false;
7758 #endif
7759 
7760 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
7761 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
7762 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
7763 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
7764 
7765 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
7766 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
7767 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
7768 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
7769 
7770 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
7771 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
7772 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
7773 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
7774 
7775 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
7776 	pte_l1_s_proto = L1_S_PROTO_armv7;
7777 	pte_l1_c_proto = L1_C_PROTO_armv7;
7778 	pte_l2_s_proto = L2_S_PROTO_armv7;
7779 
7780 }
7781 #endif /* ARM_MMU_V7 */
7782 
7783 /*
7784  * return the PA of the current L1 table, for use when handling a crash dump
7785  */
7786 uint32_t
7787 pmap_kernel_L1_addr(void)
7788 {
7789 #ifdef ARM_MMU_EXTENDED
7790 	return pmap_kernel()->pm_l1_pa;
7791 #else
7792 	return pmap_kernel()->pm_l1->l1_physaddr;
7793 #endif
7794 }
7795 
7796 #if defined(DDB)
7797 /*
7798  * A couple of ddb-callable functions for dumping pmaps
7799  */
7800 void pmap_dump(pmap_t);
7801 
7802 static pt_entry_t ncptes[64];
7803 static void pmap_dump_ncpg(pmap_t);
7804 
7805 void
7806 pmap_dump(pmap_t pm)
7807 {
7808 	struct l2_dtable *l2;
7809 	struct l2_bucket *l2b;
7810 	pt_entry_t *ptep, pte;
7811 	vaddr_t l2_va, l2b_va, va;
7812 	int i, j, k, occ, rows = 0;
7813 
7814 	if (pm == pmap_kernel())
7815 		printf("pmap_kernel (%p): ", pm);
7816 	else
7817 		printf("user pmap (%p): ", pm);
7818 
7819 #ifdef ARM_MMU_EXTENDED
7820 	printf("l1 at %p\n", pmap_l1_kva(pm));
7821 #else
7822 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
7823 #endif
7824 
7825 	l2_va = 0;
7826 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
7827 		l2 = pm->pm_l2[i];
7828 
7829 		if (l2 == NULL || l2->l2_occupancy == 0)
7830 			continue;
7831 
7832 		l2b_va = l2_va;
7833 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
7834 			l2b = &l2->l2_bucket[j];
7835 
7836 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
7837 				continue;
7838 
7839 			ptep = l2b->l2b_kva;
7840 
7841 			for (k = 0; k < 256 && ptep[k] == 0; k++)
7842 				;
7843 
7844 			k &= ~63;
7845 			occ = l2b->l2b_occupancy;
7846 			va = l2b_va + (k * 4096);
7847 			for (; k < 256; k++, va += 0x1000) {
7848 				char ch = ' ';
7849 				if ((k % 64) == 0) {
7850 					if ((rows % 8) == 0) {
7851 						printf(
7852 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
7853 					}
7854 					printf("%08lx: ", va);
7855 				}
7856 
7857 				ncptes[k & 63] = 0;
7858 				pte = ptep[k];
7859 				if (pte == 0) {
7860 					ch = '.';
7861 				} else {
7862 					occ--;
7863 					switch (pte & 0x4c) {
7864 					case 0x00:
7865 						ch = 'N'; /* No cache No buff */
7866 						break;
7867 					case 0x04:
7868 						ch = 'B'; /* No cache buff */
7869 						break;
7870 					case 0x08:
7871 						ch = 'C'; /* Cache No buff */
7872 						break;
7873 					case 0x0c:
7874 						ch = 'F'; /* Cache Buff */
7875 						break;
7876 					case 0x40:
7877 						ch = 'D';
7878 						break;
7879 					case 0x48:
7880 						ch = 'm'; /* Xscale mini-data */
7881 						break;
7882 					default:
7883 						ch = '?';
7884 						break;
7885 					}
7886 
7887 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
7888 						ch += 0x20;
7889 
7890 					if ((pte & 0xc) == 0)
7891 						ncptes[k & 63] = pte;
7892 				}
7893 
7894 				if ((k % 64) == 63) {
7895 					rows++;
7896 					printf("%c\n", ch);
7897 					pmap_dump_ncpg(pm);
7898 					if (occ == 0)
7899 						break;
7900 				} else
7901 					printf("%c", ch);
7902 			}
7903 		}
7904 	}
7905 }
7906 
7907 static void
7908 pmap_dump_ncpg(pmap_t pm)
7909 {
7910 	struct vm_page *pg;
7911 	struct vm_page_md *md;
7912 	struct pv_entry *pv;
7913 	int i;
7914 
7915 	for (i = 0; i < 63; i++) {
7916 		if (ncptes[i] == 0)
7917 			continue;
7918 
7919 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
7920 		if (pg == NULL)
7921 			continue;
7922 		md = VM_PAGE_TO_MD(pg);
7923 
7924 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
7925 		    VM_PAGE_TO_PHYS(pg),
7926 		    md->krw_mappings, md->kro_mappings,
7927 		    md->urw_mappings, md->uro_mappings);
7928 
7929 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
7930 			printf("   %c va 0x%08lx, flags 0x%x\n",
7931 			    (pm == pv->pv_pmap) ? '*' : ' ',
7932 			    pv->pv_va, pv->pv_flags);
7933 		}
7934 	}
7935 }
7936 #endif
7937 
7938 #ifdef PMAP_STEAL_MEMORY
7939 void
7940 pmap_boot_pageadd(pv_addr_t *newpv)
7941 {
7942 	pv_addr_t *pv, *npv;
7943 
7944 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
7945 		if (newpv->pv_pa < pv->pv_va) {
7946 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
7947 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
7948 				newpv->pv_size += pv->pv_size;
7949 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
7950 			}
7951 			pv = NULL;
7952 		} else {
7953 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
7954 			     pv = npv) {
7955 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
7956 				KASSERT(pv->pv_pa < newpv->pv_pa);
7957 				if (newpv->pv_pa > npv->pv_pa)
7958 					continue;
7959 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
7960 					pv->pv_size += newpv->pv_size;
7961 					return;
7962 				}
7963 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
7964 					break;
7965 				newpv->pv_size += npv->pv_size;
7966 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
7967 				SLIST_REMOVE_AFTER(newpv, pv_list);
7968 				return;
7969 			}
7970 		}
7971 	}
7972 
7973 	if (pv) {
7974 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
7975 	} else {
7976 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
7977 	}
7978 }
7979 
7980 void
7981 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
7982 	pv_addr_t *rpv)
7983 {
7984 	pv_addr_t *pv, **pvp;
7985 
7986 	KASSERT(amount & PGOFSET);
7987 	KASSERT((mask & PGOFSET) == 0);
7988 	KASSERT((match & PGOFSET) == 0);
7989 	KASSERT(amount != 0);
7990 
7991 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
7992 	     (pv = *pvp) != NULL;
7993 	     pvp = &SLIST_NEXT(pv, pv_list)) {
7994 		pv_addr_t *newpv;
7995 		psize_t off;
7996 		/*
7997 		 * If this entry is too small to satisfy the request...
7998 		 */
7999 		KASSERT(pv->pv_size > 0);
8000 		if (pv->pv_size < amount)
8001 			continue;
8002 
8003 		for (off = 0; off <= mask; off += PAGE_SIZE) {
8004 			if (((pv->pv_pa + off) & mask) == match
8005 			    && off + amount <= pv->pv_size)
8006 				break;
8007 		}
8008 		if (off > mask)
8009 			continue;
8010 
8011 		rpv->pv_va = pv->pv_va + off;
8012 		rpv->pv_pa = pv->pv_pa + off;
8013 		rpv->pv_size = amount;
8014 		pv->pv_size -= amount;
8015 		if (pv->pv_size == 0) {
8016 			KASSERT(off == 0);
8017 			KASSERT((vaddr_t) pv == rpv->pv_va);
8018 			*pvp = SLIST_NEXT(pv, pv_list);
8019 		} else if (off == 0) {
8020 			KASSERT((vaddr_t) pv == rpv->pv_va);
8021 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8022 			*newpv = *pv;
8023 			newpv->pv_pa += amount;
8024 			newpv->pv_va += amount;
8025 			*pvp = newpv;
8026 		} else if (off < pv->pv_size) {
8027 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
8028 			*newpv = *pv;
8029 			newpv->pv_size -= off;
8030 			newpv->pv_pa += off + amount;
8031 			newpv->pv_va += off + amount;
8032 
8033 			SLIST_NEXT(pv, pv_list) = newpv;
8034 			pv->pv_size = off;
8035 		} else {
8036 			KASSERT((vaddr_t) pv != rpv->pv_va);
8037 		}
8038 		memset((void *)rpv->pv_va, 0, amount);
8039 		return;
8040 	}
8041 
8042 	if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
8043 		panic("pmap_boot_pagealloc: couldn't allocate memory");
8044 
8045 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
8046 	     (pv = *pvp) != NULL;
8047 	     pvp = &SLIST_NEXT(pv, pv_list)) {
8048 		if (SLIST_NEXT(pv, pv_list) == NULL)
8049 			break;
8050 	}
8051 	KASSERT(mask == 0);
8052 
8053 	for (uvm_physseg_t ups = uvm_physseg_get_first();
8054 	    uvm_physseg_valid_p(ups);
8055 	    ups = uvm_physseg_get_next(ups)) {
8056 
8057 		paddr_t spn = uvm_physseg_get_start(ups);
8058 		paddr_t epn = uvm_physseg_get_end(ups);
8059 		if (spn == atop(pv->pv_pa + pv->pv_size)
8060 		    && pv->pv_va + pv->pv_size <= ptoa(epn)) {
8061 			rpv->pv_va = pv->pv_va;
8062 			rpv->pv_pa = pv->pv_pa;
8063 			rpv->pv_size = amount;
8064 			*pvp = NULL;
8065 			pmap_map_chunk(kernel_l1pt.pv_va,
8066 			     ptoa(spn) + (pv->pv_va - pv->pv_pa),
8067 			     ptoa(spn),
8068 			     amount - pv->pv_size,
8069 			     VM_PROT_READ|VM_PROT_WRITE,
8070 			     PTE_CACHE);
8071 
8072 			uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
8073 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
8074 			return;
8075 		}
8076 	}
8077 
8078 	panic("pmap_boot_pagealloc: couldn't allocate memory");
8079 }
8080 
8081 vaddr_t
8082 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
8083 {
8084 	pv_addr_t pv;
8085 
8086 	pmap_boot_pagealloc(size, 0, 0, &pv);
8087 
8088 	return pv.pv_va;
8089 }
8090 #endif /* PMAP_STEAL_MEMORY */
8091 
8092 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
8093 {
8094 	sysctl_createv(clog, 0, NULL, NULL,
8095 			CTLFLAG_PERMANENT,
8096 			CTLTYPE_NODE, "machdep", NULL,
8097 			NULL, 0, NULL, 0,
8098 			CTL_MACHDEP, CTL_EOL);
8099 
8100 	sysctl_createv(clog, 0, NULL, NULL,
8101 			CTLFLAG_PERMANENT,
8102 			CTLTYPE_INT, "kmpages",
8103 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
8104 			NULL, 0, &pmap_kmpages, 0,
8105 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
8106 }
8107 
8108 #ifdef PMAP_NEED_ALLOC_POOLPAGE
8109 struct vm_page *
8110 arm_pmap_alloc_poolpage(int flags)
8111 {
8112 	/*
8113 	 * On some systems, only some pages may be "coherent" for dma and we
8114 	 * want to prefer those for pool pages (think mbufs) but fallback to
8115 	 * any page if none is available.
8116 	 */
8117 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
8118 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
8119 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
8120 	}
8121 
8122 	return uvm_pagealloc(NULL, 0, NULL, flags);
8123 }
8124 #endif
8125 
8126 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
8127 void
8128 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
8129 {
8130         /* nothing */
8131 }
8132 
8133 int
8134 pic_ipi_shootdown(void *arg)
8135 {
8136 #if PMAP_TLB_NEED_SHOOTDOWN
8137 	pmap_tlb_shootdown_process();
8138 #endif
8139 	return 1;
8140 }
8141 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
8142 
8143 
8144 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
8145 vaddr_t
8146 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
8147 {
8148 	bool ok = false;
8149 	if (physical_start <= pa && pa < physical_end) {
8150 #ifdef KERNEL_BASE_VOFFSET
8151 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
8152 #else
8153 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
8154 #endif
8155 #ifdef ARM_MMU_EXTENDED
8156 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
8157 #endif
8158 			va = newva;
8159 			ok = true;
8160 #ifdef ARM_MMU_EXTENDED
8161 		}
8162 #endif
8163 	}
8164 	KASSERT(ok_p);
8165 	*ok_p = ok;
8166 	return va;
8167 }
8168 
8169 vaddr_t
8170 pmap_map_poolpage(paddr_t pa)
8171 {
8172 	bool ok __diagused;
8173 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
8174 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
8175 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
8176 	if (arm_cache_prefer_mask != 0) {
8177 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
8178 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
8179 		pmap_acquire_page_lock(md);
8180 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
8181 		pmap_release_page_lock(md);
8182 	}
8183 #endif
8184 	return va;
8185 }
8186 
8187 paddr_t
8188 pmap_unmap_poolpage(vaddr_t va)
8189 {
8190 	KASSERT(va >= KERNEL_BASE);
8191 #ifdef PMAP_CACHE_VIVT
8192 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
8193 #endif
8194 #if defined(KERNEL_BASE_VOFFSET)
8195         return va - KERNEL_BASE_VOFFSET;
8196 #else
8197         return va - KERNEL_BASE + physical_start;
8198 #endif
8199 }
8200 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
8201