1 /* $NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $ */ 2 3 /* 4 * Copyright 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 2002-2003 Wasabi Systems, Inc. 40 * Copyright (c) 2001 Richard Earnshaw 41 * Copyright (c) 2001-2002 Christopher Gilbert 42 * All rights reserved. 43 * 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. The name of the company nor the name of the author may be used to 50 * endorse or promote products derived from this software without specific 51 * prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 */ 65 66 /*- 67 * Copyright (c) 1999 The NetBSD Foundation, Inc. 68 * All rights reserved. 69 * 70 * This code is derived from software contributed to The NetBSD Foundation 71 * by Charles M. Hannum. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce the above copyright 79 * notice, this list of conditions and the following disclaimer in the 80 * documentation and/or other materials provided with the distribution. 81 * 82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 92 * POSSIBILITY OF SUCH DAMAGE. 93 */ 94 95 /* 96 * Copyright (c) 1994-1998 Mark Brinicombe. 97 * Copyright (c) 1994 Brini. 98 * All rights reserved. 99 * 100 * This code is derived from software written for Brini by Mark Brinicombe 101 * 102 * Redistribution and use in source and binary forms, with or without 103 * modification, are permitted provided that the following conditions 104 * are met: 105 * 1. Redistributions of source code must retain the above copyright 106 * notice, this list of conditions and the following disclaimer. 107 * 2. Redistributions in binary form must reproduce the above copyright 108 * notice, this list of conditions and the following disclaimer in the 109 * documentation and/or other materials provided with the distribution. 110 * 3. All advertising materials mentioning features or use of this software 111 * must display the following acknowledgement: 112 * This product includes software developed by Mark Brinicombe. 113 * 4. The name of the author may not be used to endorse or promote products 114 * derived from this software without specific prior written permission. 115 * 116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 125 * 126 * RiscBSD kernel project 127 * 128 * pmap.c 129 * 130 * Machine dependent vm stuff 131 * 132 * Created : 20/09/94 133 */ 134 135 /* 136 * armv6 and VIPT cache support by 3am Software Foundry, 137 * Copyright (c) 2007 Microsoft 138 */ 139 140 /* 141 * Performance improvements, UVM changes, overhauls and part-rewrites 142 * were contributed by Neil A. Carson <neil@causality.com>. 143 */ 144 145 /* 146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables 147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi 148 * Systems, Inc. 149 * 150 * There are still a few things outstanding at this time: 151 * 152 * - There are some unresolved issues for MP systems: 153 * 154 * o The L1 metadata needs a lock, or more specifically, some places 155 * need to acquire an exclusive lock when modifying L1 translation 156 * table entries. 157 * 158 * o When one cpu modifies an L1 entry, and that L1 table is also 159 * being used by another cpu, then the latter will need to be told 160 * that a tlb invalidation may be necessary. (But only if the old 161 * domain number in the L1 entry being over-written is currently 162 * the active domain on that cpu). I guess there are lots more tlb 163 * shootdown issues too... 164 * 165 * o If the vector_page is at 0x00000000 instead of in kernel VA space, 166 * then MP systems will lose big-time because of the MMU domain hack. 167 * The only way this can be solved (apart from moving the vector 168 * page to 0xffff0000) is to reserve the first 1MB of user address 169 * space for kernel use only. This would require re-linking all 170 * applications so that the text section starts above this 1MB 171 * boundary. 172 * 173 * o Tracking which VM space is resident in the cache/tlb has not yet 174 * been implemented for MP systems. 175 * 176 * o Finally, there is a pathological condition where two cpus running 177 * two separate processes (not lwps) which happen to share an L1 178 * can get into a fight over one or more L1 entries. This will result 179 * in a significant slow-down if both processes are in tight loops. 180 */ 181 182 /* 183 * Special compilation symbols 184 * PMAP_DEBUG - Build in pmap_debug_level code 185 */ 186 187 /* Include header files */ 188 189 #include "opt_arm_debug.h" 190 #include "opt_cpuoptions.h" 191 #include "opt_pmap_debug.h" 192 #include "opt_ddb.h" 193 #include "opt_lockdebug.h" 194 #include "opt_multiprocessor.h" 195 196 #ifdef MULTIPROCESSOR 197 #define _INTR_PRIVATE 198 #endif 199 200 #include <sys/param.h> 201 #include <sys/types.h> 202 #include <sys/kernel.h> 203 #include <sys/systm.h> 204 #include <sys/proc.h> 205 #include <sys/intr.h> 206 #include <sys/pool.h> 207 #include <sys/kmem.h> 208 #include <sys/cdefs.h> 209 #include <sys/cpu.h> 210 #include <sys/sysctl.h> 211 #include <sys/bus.h> 212 #include <sys/atomic.h> 213 #include <sys/kernhist.h> 214 215 #include <uvm/uvm.h> 216 #include <uvm/pmap/pmap_pvt.h> 217 218 #include <arm/locore.h> 219 220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.365 2018/04/01 04:35:03 ryo Exp $"); 221 222 //#define PMAP_DEBUG 223 #ifdef PMAP_DEBUG 224 225 /* XXX need to get rid of all refs to this */ 226 int pmap_debug_level = 0; 227 228 /* 229 * for switching to potentially finer grained debugging 230 */ 231 #define PDB_FOLLOW 0x0001 232 #define PDB_INIT 0x0002 233 #define PDB_ENTER 0x0004 234 #define PDB_REMOVE 0x0008 235 #define PDB_CREATE 0x0010 236 #define PDB_PTPAGE 0x0020 237 #define PDB_GROWKERN 0x0040 238 #define PDB_BITS 0x0080 239 #define PDB_COLLECT 0x0100 240 #define PDB_PROTECT 0x0200 241 #define PDB_MAP_L1 0x0400 242 #define PDB_BOOTSTRAP 0x1000 243 #define PDB_PARANOIA 0x2000 244 #define PDB_WIRING 0x4000 245 #define PDB_PVDUMP 0x8000 246 #define PDB_VAC 0x10000 247 #define PDB_KENTER 0x20000 248 #define PDB_KREMOVE 0x40000 249 #define PDB_EXEC 0x80000 250 251 int debugmap = 1; 252 int pmapdebug = 0; 253 #define NPDEBUG(_lev_,_stat_) \ 254 if (pmapdebug & (_lev_)) \ 255 ((_stat_)) 256 257 #else /* PMAP_DEBUG */ 258 #define NPDEBUG(_lev_,_stat_) /* Nothing */ 259 #endif /* PMAP_DEBUG */ 260 261 /* 262 * pmap_kernel() points here 263 */ 264 static struct pmap kernel_pmap_store = { 265 #ifndef ARM_MMU_EXTENDED 266 .pm_activated = true, 267 .pm_domain = PMAP_DOMAIN_KERNEL, 268 .pm_cstate.cs_all = PMAP_CACHE_STATE_ALL, 269 #endif 270 }; 271 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store; 272 #undef pmap_kernel 273 #define pmap_kernel() (&kernel_pmap_store) 274 #ifdef PMAP_NEED_ALLOC_POOLPAGE 275 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT; 276 #endif 277 278 /* 279 * Pool and cache that pmap structures are allocated from. 280 * We use a cache to avoid clearing the pm_l2[] array (1KB) 281 * in pmap_create(). 282 */ 283 static struct pool_cache pmap_cache; 284 285 /* 286 * Pool of PV structures 287 */ 288 static struct pool pmap_pv_pool; 289 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int); 290 static void pmap_bootstrap_pv_page_free(struct pool *, void *); 291 static struct pool_allocator pmap_bootstrap_pv_allocator = { 292 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free 293 }; 294 295 /* 296 * Pool and cache of l2_dtable structures. 297 * We use a cache to avoid clearing the structures when they're 298 * allocated. (196 bytes) 299 */ 300 static struct pool_cache pmap_l2dtable_cache; 301 static vaddr_t pmap_kernel_l2dtable_kva; 302 303 /* 304 * Pool and cache of L2 page descriptors. 305 * We use a cache to avoid clearing the descriptor table 306 * when they're allocated. (1KB) 307 */ 308 static struct pool_cache pmap_l2ptp_cache; 309 static vaddr_t pmap_kernel_l2ptp_kva; 310 static paddr_t pmap_kernel_l2ptp_phys; 311 312 #ifdef PMAPCOUNTERS 313 #define PMAP_EVCNT_INITIALIZER(name) \ 314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name) 315 316 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 317 static struct evcnt pmap_ev_vac_clean_one = 318 PMAP_EVCNT_INITIALIZER("clean page (1 color)"); 319 static struct evcnt pmap_ev_vac_flush_one = 320 PMAP_EVCNT_INITIALIZER("flush page (1 color)"); 321 static struct evcnt pmap_ev_vac_flush_lots = 322 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)"); 323 static struct evcnt pmap_ev_vac_flush_lots2 = 324 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)"); 325 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one); 326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one); 327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots); 328 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2); 329 330 static struct evcnt pmap_ev_vac_color_new = 331 PMAP_EVCNT_INITIALIZER("new page color"); 332 static struct evcnt pmap_ev_vac_color_reuse = 333 PMAP_EVCNT_INITIALIZER("ok first page color"); 334 static struct evcnt pmap_ev_vac_color_ok = 335 PMAP_EVCNT_INITIALIZER("ok page color"); 336 static struct evcnt pmap_ev_vac_color_blind = 337 PMAP_EVCNT_INITIALIZER("blind page color"); 338 static struct evcnt pmap_ev_vac_color_change = 339 PMAP_EVCNT_INITIALIZER("change page color"); 340 static struct evcnt pmap_ev_vac_color_erase = 341 PMAP_EVCNT_INITIALIZER("erase page color"); 342 static struct evcnt pmap_ev_vac_color_none = 343 PMAP_EVCNT_INITIALIZER("no page color"); 344 static struct evcnt pmap_ev_vac_color_restore = 345 PMAP_EVCNT_INITIALIZER("restore page color"); 346 347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new); 348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse); 349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok); 350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind); 351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change); 352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase); 353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none); 354 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore); 355 #endif 356 357 static struct evcnt pmap_ev_mappings = 358 PMAP_EVCNT_INITIALIZER("pages mapped"); 359 static struct evcnt pmap_ev_unmappings = 360 PMAP_EVCNT_INITIALIZER("pages unmapped"); 361 static struct evcnt pmap_ev_remappings = 362 PMAP_EVCNT_INITIALIZER("pages remapped"); 363 364 EVCNT_ATTACH_STATIC(pmap_ev_mappings); 365 EVCNT_ATTACH_STATIC(pmap_ev_unmappings); 366 EVCNT_ATTACH_STATIC(pmap_ev_remappings); 367 368 static struct evcnt pmap_ev_kernel_mappings = 369 PMAP_EVCNT_INITIALIZER("kernel pages mapped"); 370 static struct evcnt pmap_ev_kernel_unmappings = 371 PMAP_EVCNT_INITIALIZER("kernel pages unmapped"); 372 static struct evcnt pmap_ev_kernel_remappings = 373 PMAP_EVCNT_INITIALIZER("kernel pages remapped"); 374 375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings); 376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings); 377 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings); 378 379 static struct evcnt pmap_ev_kenter_mappings = 380 PMAP_EVCNT_INITIALIZER("kenter pages mapped"); 381 static struct evcnt pmap_ev_kenter_unmappings = 382 PMAP_EVCNT_INITIALIZER("kenter pages unmapped"); 383 static struct evcnt pmap_ev_kenter_remappings = 384 PMAP_EVCNT_INITIALIZER("kenter pages remapped"); 385 static struct evcnt pmap_ev_pt_mappings = 386 PMAP_EVCNT_INITIALIZER("page table pages mapped"); 387 388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings); 389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings); 390 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings); 391 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings); 392 393 static struct evcnt pmap_ev_fixup_mod = 394 PMAP_EVCNT_INITIALIZER("page modification emulations"); 395 static struct evcnt pmap_ev_fixup_ref = 396 PMAP_EVCNT_INITIALIZER("page reference emulations"); 397 static struct evcnt pmap_ev_fixup_exec = 398 PMAP_EVCNT_INITIALIZER("exec pages fixed up"); 399 static struct evcnt pmap_ev_fixup_pdes = 400 PMAP_EVCNT_INITIALIZER("pdes fixed up"); 401 #ifndef ARM_MMU_EXTENDED 402 static struct evcnt pmap_ev_fixup_ptesync = 403 PMAP_EVCNT_INITIALIZER("ptesync fixed"); 404 #endif 405 406 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod); 407 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref); 408 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec); 409 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes); 410 #ifndef ARM_MMU_EXTENDED 411 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync); 412 #endif 413 414 #ifdef PMAP_CACHE_VIPT 415 static struct evcnt pmap_ev_exec_mappings = 416 PMAP_EVCNT_INITIALIZER("exec pages mapped"); 417 static struct evcnt pmap_ev_exec_cached = 418 PMAP_EVCNT_INITIALIZER("exec pages cached"); 419 420 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings); 421 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached); 422 423 static struct evcnt pmap_ev_exec_synced = 424 PMAP_EVCNT_INITIALIZER("exec pages synced"); 425 static struct evcnt pmap_ev_exec_synced_map = 426 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)"); 427 static struct evcnt pmap_ev_exec_synced_unmap = 428 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)"); 429 static struct evcnt pmap_ev_exec_synced_remap = 430 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)"); 431 static struct evcnt pmap_ev_exec_synced_clearbit = 432 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)"); 433 #ifndef ARM_MMU_EXTENDED 434 static struct evcnt pmap_ev_exec_synced_kremove = 435 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)"); 436 #endif 437 438 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced); 439 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map); 440 #ifndef ARM_MMU_EXTENDED 441 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap); 442 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap); 443 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit); 444 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove); 445 #endif 446 447 static struct evcnt pmap_ev_exec_discarded_unmap = 448 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)"); 449 static struct evcnt pmap_ev_exec_discarded_zero = 450 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)"); 451 static struct evcnt pmap_ev_exec_discarded_copy = 452 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)"); 453 static struct evcnt pmap_ev_exec_discarded_page_protect = 454 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)"); 455 static struct evcnt pmap_ev_exec_discarded_clearbit = 456 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)"); 457 static struct evcnt pmap_ev_exec_discarded_kremove = 458 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)"); 459 #ifdef ARM_MMU_EXTENDED 460 static struct evcnt pmap_ev_exec_discarded_modfixup = 461 PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)"); 462 #endif 463 464 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap); 465 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero); 466 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy); 467 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect); 468 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit); 469 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove); 470 #ifdef ARM_MMU_EXTENDED 471 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup); 472 #endif 473 #endif /* PMAP_CACHE_VIPT */ 474 475 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates"); 476 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects"); 477 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations"); 478 479 EVCNT_ATTACH_STATIC(pmap_ev_updates); 480 EVCNT_ATTACH_STATIC(pmap_ev_collects); 481 EVCNT_ATTACH_STATIC(pmap_ev_activations); 482 483 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++)) 484 #else 485 #define PMAPCOUNT(x) ((void)0) 486 #endif 487 488 #ifdef ARM_MMU_EXTENDED 489 void pmap_md_pdetab_activate(pmap_t, struct lwp *); 490 void pmap_md_pdetab_deactivate(pmap_t pm); 491 #endif 492 493 /* 494 * pmap copy/zero page, and mem(5) hook point 495 */ 496 static pt_entry_t *csrc_pte, *cdst_pte; 497 static vaddr_t csrcp, cdstp; 498 #ifdef MULTIPROCESSOR 499 static size_t cnptes; 500 #define cpu_csrc_pte(o) (csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT)) 501 #define cpu_cdst_pte(o) (cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT)) 502 #define cpu_csrcp(o) (csrcp + L2_S_SIZE * cnptes * cpu_number() + (o)) 503 #define cpu_cdstp(o) (cdstp + L2_S_SIZE * cnptes * cpu_number() + (o)) 504 #else 505 #define cpu_csrc_pte(o) (csrc_pte + ((o) >> L2_S_SHIFT)) 506 #define cpu_cdst_pte(o) (cdst_pte + ((o) >> L2_S_SHIFT)) 507 #define cpu_csrcp(o) (csrcp + (o)) 508 #define cpu_cdstp(o) (cdstp + (o)) 509 #endif 510 vaddr_t memhook; /* used by mem.c & others */ 511 kmutex_t memlock __cacheline_aligned; /* used by mem.c & others */ 512 kmutex_t pmap_lock __cacheline_aligned; 513 extern void *msgbufaddr; 514 int pmap_kmpages; 515 /* 516 * Flag to indicate if pmap_init() has done its thing 517 */ 518 bool pmap_initialized; 519 520 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 521 /* 522 * Virtual end of direct-mapped memory 523 */ 524 vaddr_t pmap_directlimit; 525 #endif 526 527 /* 528 * Misc. locking data structures 529 */ 530 531 static inline void 532 pmap_acquire_pmap_lock(pmap_t pm) 533 { 534 if (pm == pmap_kernel()) { 535 #ifdef MULTIPROCESSOR 536 KERNEL_LOCK(1, NULL); 537 #endif 538 } else { 539 mutex_enter(pm->pm_lock); 540 } 541 } 542 543 static inline void 544 pmap_release_pmap_lock(pmap_t pm) 545 { 546 if (pm == pmap_kernel()) { 547 #ifdef MULTIPROCESSOR 548 KERNEL_UNLOCK_ONE(NULL); 549 #endif 550 } else { 551 mutex_exit(pm->pm_lock); 552 } 553 } 554 555 static inline void 556 pmap_acquire_page_lock(struct vm_page_md *md) 557 { 558 mutex_enter(&pmap_lock); 559 } 560 561 static inline void 562 pmap_release_page_lock(struct vm_page_md *md) 563 { 564 mutex_exit(&pmap_lock); 565 } 566 567 #ifdef DIAGNOSTIC 568 static inline int 569 pmap_page_locked_p(struct vm_page_md *md) 570 { 571 return mutex_owned(&pmap_lock); 572 } 573 #endif 574 575 576 /* 577 * Metadata for L1 translation tables. 578 */ 579 #ifndef ARM_MMU_EXTENDED 580 struct l1_ttable { 581 /* Entry on the L1 Table list */ 582 SLIST_ENTRY(l1_ttable) l1_link; 583 584 /* Entry on the L1 Least Recently Used list */ 585 TAILQ_ENTRY(l1_ttable) l1_lru; 586 587 /* Track how many domains are allocated from this L1 */ 588 volatile u_int l1_domain_use_count; 589 590 /* 591 * A free-list of domain numbers for this L1. 592 * We avoid using ffs() and a bitmap to track domains since ffs() 593 * is slow on ARM. 594 */ 595 uint8_t l1_domain_first; 596 uint8_t l1_domain_free[PMAP_DOMAINS]; 597 598 /* Physical address of this L1 page table */ 599 paddr_t l1_physaddr; 600 601 /* KVA of this L1 page table */ 602 pd_entry_t *l1_kva; 603 }; 604 605 /* 606 * L1 Page Tables are tracked using a Least Recently Used list. 607 * - New L1s are allocated from the HEAD. 608 * - Freed L1s are added to the TAIl. 609 * - Recently accessed L1s (where an 'access' is some change to one of 610 * the userland pmaps which owns this L1) are moved to the TAIL. 611 */ 612 static TAILQ_HEAD(, l1_ttable) l1_lru_list; 613 static kmutex_t l1_lru_lock __cacheline_aligned; 614 615 /* 616 * A list of all L1 tables 617 */ 618 static SLIST_HEAD(, l1_ttable) l1_list; 619 #endif /* ARM_MMU_EXTENDED */ 620 621 /* 622 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots. 623 * 624 * This is normally 16MB worth L2 page descriptors for any given pmap. 625 * Reference counts are maintained for L2 descriptors so they can be 626 * freed when empty. 627 */ 628 struct l2_bucket { 629 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */ 630 paddr_t l2b_pa; /* Physical address of same */ 631 u_short l2b_l1slot; /* This L2 table's L1 index */ 632 u_short l2b_occupancy; /* How many active descriptors */ 633 }; 634 635 struct l2_dtable { 636 /* The number of L2 page descriptors allocated to this l2_dtable */ 637 u_int l2_occupancy; 638 639 /* List of L2 page descriptors */ 640 struct l2_bucket l2_bucket[L2_BUCKET_SIZE]; 641 }; 642 643 /* 644 * Given an L1 table index, calculate the corresponding l2_dtable index 645 * and bucket index within the l2_dtable. 646 */ 647 #define L2_BUCKET_XSHIFT (L2_BUCKET_XLOG2 - L1_S_SHIFT) 648 #define L2_BUCKET_XFRAME (~(vaddr_t)0 << L2_BUCKET_XLOG2) 649 #define L2_BUCKET_IDX(l1slot) ((l1slot) >> L2_BUCKET_XSHIFT) 650 #define L2_IDX(l1slot) (L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2) 651 #define L2_BUCKET(l1slot) (L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1)) 652 653 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE)); 654 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1)); 655 656 /* 657 * Given a virtual address, this macro returns the 658 * virtual address required to drop into the next L2 bucket. 659 */ 660 #define L2_NEXT_BUCKET_VA(va) (((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE) 661 662 /* 663 * L2 allocation. 664 */ 665 #define pmap_alloc_l2_dtable() \ 666 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT) 667 #define pmap_free_l2_dtable(l2) \ 668 pool_cache_put(&pmap_l2dtable_cache, (l2)) 669 #define pmap_alloc_l2_ptp(pap) \ 670 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\ 671 PR_NOWAIT, (pap))) 672 673 /* 674 * We try to map the page tables write-through, if possible. However, not 675 * all CPUs have a write-through cache mode, so on those we have to sync 676 * the cache when we frob page tables. 677 * 678 * We try to evaluate this at compile time, if possible. However, it's 679 * not always possible to do that, hence this run-time var. 680 */ 681 int pmap_needs_pte_sync; 682 683 /* 684 * Real definition of pv_entry. 685 */ 686 struct pv_entry { 687 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */ 688 pmap_t pv_pmap; /* pmap where mapping lies */ 689 vaddr_t pv_va; /* virtual address for mapping */ 690 u_int pv_flags; /* flags */ 691 }; 692 693 /* 694 * Macros to determine if a mapping might be resident in the 695 * instruction/data cache and/or TLB 696 */ 697 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED) 698 /* 699 * Speculative loads by Cortex cores can cause TLB entries to be filled even if 700 * there are no explicit accesses, so there may be always be TLB entries to 701 * flush. If we used ASIDs then this would not be a problem. 702 */ 703 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC) 704 #define PV_BEEN_REFD(f) (true) 705 #else 706 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC)) 707 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0) 708 #endif 709 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0) 710 #define PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0) 711 #define PV_IS_WRITE_P(f) (((f) & PVF_WRITE) != 0) 712 713 /* 714 * Local prototypes 715 */ 716 static bool pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t); 717 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *, 718 pt_entry_t **); 719 static bool pmap_is_current(pmap_t) __unused; 720 static bool pmap_is_cached(pmap_t); 721 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *, 722 pmap_t, vaddr_t, u_int); 723 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t); 724 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t); 725 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t, 726 u_int, u_int); 727 728 static void pmap_pinit(pmap_t); 729 static int pmap_pmap_ctor(void *, void *, int); 730 731 static void pmap_alloc_l1(pmap_t); 732 static void pmap_free_l1(pmap_t); 733 #ifndef ARM_MMU_EXTENDED 734 static void pmap_use_l1(pmap_t); 735 #endif 736 737 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t); 738 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t); 739 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int); 740 static int pmap_l2ptp_ctor(void *, void *, int); 741 static int pmap_l2dtable_ctor(void *, void *, int); 742 743 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t); 744 #ifdef PMAP_CACHE_VIVT 745 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t); 746 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t); 747 #endif 748 749 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int); 750 #ifdef PMAP_CACHE_VIVT 751 static bool pmap_clean_page(struct vm_page_md *, bool); 752 #endif 753 #ifdef PMAP_CACHE_VIPT 754 static void pmap_syncicache_page(struct vm_page_md *, paddr_t); 755 enum pmap_flush_op { 756 PMAP_FLUSH_PRIMARY, 757 PMAP_FLUSH_SECONDARY, 758 PMAP_CLEAN_PRIMARY 759 }; 760 #ifndef ARM_MMU_EXTENDED 761 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op); 762 #endif 763 #endif 764 static void pmap_page_remove(struct vm_page_md *, paddr_t); 765 static void pmap_pv_remove(paddr_t); 766 767 #ifndef ARM_MMU_EXTENDED 768 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *); 769 #endif 770 static vaddr_t kernel_pt_lookup(paddr_t); 771 772 773 /* 774 * Misc variables 775 */ 776 vaddr_t virtual_avail; 777 vaddr_t virtual_end; 778 vaddr_t pmap_curmaxkvaddr; 779 780 paddr_t avail_start; 781 paddr_t avail_end; 782 783 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq); 784 pv_addr_t kernelpages; 785 pv_addr_t kernel_l1pt; 786 pv_addr_t systempage; 787 788 /* Function to set the debug level of the pmap code */ 789 790 #ifdef PMAP_DEBUG 791 void 792 pmap_debug(int level) 793 { 794 pmap_debug_level = level; 795 printf("pmap_debug: level=%d\n", pmap_debug_level); 796 } 797 #endif /* PMAP_DEBUG */ 798 799 #ifdef PMAP_CACHE_VIPT 800 #define PMAP_VALIDATE_MD_PAGE(md) \ 801 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \ 802 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \ 803 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings); 804 #endif /* PMAP_CACHE_VIPT */ 805 /* 806 * A bunch of routines to conditionally flush the caches/TLB depending 807 * on whether the specified pmap actually needs to be flushed at any 808 * given time. 809 */ 810 static inline void 811 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags) 812 { 813 #ifdef ARM_MMU_EXTENDED 814 pmap_tlb_invalidate_addr(pm, va); 815 #else 816 if (pm->pm_cstate.cs_tlb_id != 0) { 817 if (PV_BEEN_EXECD(flags)) { 818 cpu_tlb_flushID_SE(va); 819 } else if (PV_BEEN_REFD(flags)) { 820 cpu_tlb_flushD_SE(va); 821 } 822 } 823 #endif /* ARM_MMU_EXTENDED */ 824 } 825 826 #ifndef ARM_MMU_EXTENDED 827 static inline void 828 pmap_tlb_flushID(pmap_t pm) 829 { 830 if (pm->pm_cstate.cs_tlb_id) { 831 cpu_tlb_flushID(); 832 #if ARM_MMU_V7 == 0 833 /* 834 * Speculative loads by Cortex cores can cause TLB entries to 835 * be filled even if there are no explicit accesses, so there 836 * may be always be TLB entries to flush. If we used ASIDs 837 * then it would not be a problem. 838 * This is not true for other CPUs. 839 */ 840 pm->pm_cstate.cs_tlb = 0; 841 #endif /* ARM_MMU_V7 */ 842 } 843 } 844 845 static inline void 846 pmap_tlb_flushD(pmap_t pm) 847 { 848 if (pm->pm_cstate.cs_tlb_d) { 849 cpu_tlb_flushD(); 850 #if ARM_MMU_V7 == 0 851 /* 852 * Speculative loads by Cortex cores can cause TLB entries to 853 * be filled even if there are no explicit accesses, so there 854 * may be always be TLB entries to flush. If we used ASIDs 855 * then it would not be a problem. 856 * This is not true for other CPUs. 857 */ 858 pm->pm_cstate.cs_tlb_d = 0; 859 #endif /* ARM_MMU_V7 */ 860 } 861 } 862 #endif /* ARM_MMU_EXTENDED */ 863 864 #ifdef PMAP_CACHE_VIVT 865 static inline void 866 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags) 867 { 868 if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) { 869 cpu_idcache_wbinv_range(va, PAGE_SIZE); 870 } else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) { 871 if (do_inv) { 872 if (flags & PVF_WRITE) 873 cpu_dcache_wbinv_range(va, PAGE_SIZE); 874 else 875 cpu_dcache_inv_range(va, PAGE_SIZE); 876 } else if (flags & PVF_WRITE) { 877 cpu_dcache_wb_range(va, PAGE_SIZE); 878 } 879 } 880 } 881 882 static inline void 883 pmap_cache_wbinv_all(pmap_t pm, u_int flags) 884 { 885 if (PV_BEEN_EXECD(flags)) { 886 if (pm->pm_cstate.cs_cache_id) { 887 cpu_idcache_wbinv_all(); 888 pm->pm_cstate.cs_cache = 0; 889 } 890 } else if (pm->pm_cstate.cs_cache_d) { 891 cpu_dcache_wbinv_all(); 892 pm->pm_cstate.cs_cache_d = 0; 893 } 894 } 895 #endif /* PMAP_CACHE_VIVT */ 896 897 static inline uint8_t 898 pmap_domain(pmap_t pm) 899 { 900 #ifdef ARM_MMU_EXTENDED 901 return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER; 902 #else 903 return pm->pm_domain; 904 #endif 905 } 906 907 static inline pd_entry_t * 908 pmap_l1_kva(pmap_t pm) 909 { 910 #ifdef ARM_MMU_EXTENDED 911 return pm->pm_l1; 912 #else 913 return pm->pm_l1->l1_kva; 914 #endif 915 } 916 917 static inline bool 918 pmap_is_current(pmap_t pm) 919 { 920 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm) 921 return true; 922 923 return false; 924 } 925 926 static inline bool 927 pmap_is_cached(pmap_t pm) 928 { 929 #ifdef ARM_MMU_EXTENDED 930 if (pm == pmap_kernel()) 931 return true; 932 #ifdef MULTIPROCESSOR 933 // Is this pmap active on any CPU? 934 if (!kcpuset_iszero(pm->pm_active)) 935 return true; 936 #else 937 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 938 // Is this pmap active? 939 if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti)) 940 return true; 941 #endif 942 #else 943 struct cpu_info * const ci = curcpu(); 944 if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL 945 || ci->ci_pmap_lastuser == pm) 946 return true; 947 #endif /* ARM_MMU_EXTENDED */ 948 949 return false; 950 } 951 952 /* 953 * PTE_SYNC_CURRENT: 954 * 955 * Make sure the pte is written out to RAM. 956 * We need to do this for one of two cases: 957 * - We're dealing with the kernel pmap 958 * - There is no pmap active in the cache/tlb. 959 * - The specified pmap is 'active' in the cache/tlb. 960 */ 961 962 #ifdef PMAP_INCLUDE_PTE_SYNC 963 static inline void 964 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep) 965 { 966 if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm)) 967 PTE_SYNC(ptep); 968 arm_dsb(); 969 } 970 971 # define PTE_SYNC_CURRENT(pm, ptep) pmap_pte_sync_current(pm, ptep) 972 #else 973 # define PTE_SYNC_CURRENT(pm, ptep) __nothing 974 #endif 975 976 /* 977 * main pv_entry manipulation functions: 978 * pmap_enter_pv: enter a mapping onto a vm_page list 979 * pmap_remove_pv: remove a mapping from a vm_page list 980 * 981 * NOTE: pmap_enter_pv expects to lock the pvh itself 982 * pmap_remove_pv expects the caller to lock the pvh before calling 983 */ 984 985 /* 986 * pmap_enter_pv: enter a mapping onto a vm_page lst 987 * 988 * => caller should hold the proper lock on pmap_main_lock 989 * => caller should have pmap locked 990 * => we will gain the lock on the vm_page and allocate the new pv_entry 991 * => caller should adjust ptp's wire_count before calling 992 * => caller should not adjust pmap's wire_count 993 */ 994 static void 995 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm, 996 vaddr_t va, u_int flags) 997 { 998 struct pv_entry **pvp; 999 1000 NPDEBUG(PDB_PVDUMP, 1001 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags)); 1002 1003 pv->pv_pmap = pm; 1004 pv->pv_va = va; 1005 pv->pv_flags = flags; 1006 1007 pvp = &SLIST_FIRST(&md->pvh_list); 1008 #ifdef PMAP_CACHE_VIPT 1009 /* 1010 * Insert unmanaged entries, writeable first, at the head of 1011 * the pv list. 1012 */ 1013 if (__predict_true(!PV_IS_KENTRY_P(flags))) { 1014 while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags)) 1015 pvp = &SLIST_NEXT(*pvp, pv_link); 1016 } 1017 if (!PV_IS_WRITE_P(flags)) { 1018 while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags)) 1019 pvp = &SLIST_NEXT(*pvp, pv_link); 1020 } 1021 #endif 1022 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */ 1023 *pvp = pv; /* ... locked list */ 1024 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD); 1025 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 1026 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE) 1027 md->pvh_attrs |= PVF_KMOD; 1028 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC) 1029 md->pvh_attrs |= PVF_DIRTY; 1030 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 1031 #endif 1032 if (pm == pmap_kernel()) { 1033 PMAPCOUNT(kernel_mappings); 1034 if (flags & PVF_WRITE) 1035 md->krw_mappings++; 1036 else 1037 md->kro_mappings++; 1038 } else { 1039 if (flags & PVF_WRITE) 1040 md->urw_mappings++; 1041 else 1042 md->uro_mappings++; 1043 } 1044 1045 #ifdef PMAP_CACHE_VIPT 1046 #ifndef ARM_MMU_EXTENDED 1047 /* 1048 * Even though pmap_vac_me_harder will set PVF_WRITE for us, 1049 * do it here as well to keep the mappings & KVF_WRITE consistent. 1050 */ 1051 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) { 1052 md->pvh_attrs |= PVF_WRITE; 1053 } 1054 #endif 1055 /* 1056 * If this is an exec mapping and its the first exec mapping 1057 * for this page, make sure to sync the I-cache. 1058 */ 1059 if (PV_IS_EXEC_P(flags)) { 1060 if (!PV_IS_EXEC_P(md->pvh_attrs)) { 1061 pmap_syncicache_page(md, pa); 1062 PMAPCOUNT(exec_synced_map); 1063 } 1064 PMAPCOUNT(exec_mappings); 1065 } 1066 #endif 1067 1068 PMAPCOUNT(mappings); 1069 1070 if (pv->pv_flags & PVF_WIRED) 1071 ++pm->pm_stats.wired_count; 1072 } 1073 1074 /* 1075 * 1076 * pmap_find_pv: Find a pv entry 1077 * 1078 * => caller should hold lock on vm_page 1079 */ 1080 static inline struct pv_entry * 1081 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va) 1082 { 1083 struct pv_entry *pv; 1084 1085 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 1086 if (pm == pv->pv_pmap && va == pv->pv_va) 1087 break; 1088 } 1089 1090 return (pv); 1091 } 1092 1093 /* 1094 * pmap_remove_pv: try to remove a mapping from a pv_list 1095 * 1096 * => caller should hold proper lock on pmap_main_lock 1097 * => pmap should be locked 1098 * => caller should hold lock on vm_page [so that attrs can be adjusted] 1099 * => caller should adjust ptp's wire_count and free PTP if needed 1100 * => caller should NOT adjust pmap's wire_count 1101 * => we return the removed pv 1102 */ 1103 static struct pv_entry * 1104 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va) 1105 { 1106 struct pv_entry *pv, **prevptr; 1107 1108 NPDEBUG(PDB_PVDUMP, 1109 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va)); 1110 1111 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */ 1112 pv = *prevptr; 1113 1114 while (pv) { 1115 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */ 1116 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md " 1117 "%p, flags 0x%x\n", pm, md, pv->pv_flags)); 1118 if (pv->pv_flags & PVF_WIRED) { 1119 --pm->pm_stats.wired_count; 1120 } 1121 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */ 1122 if (pm == pmap_kernel()) { 1123 PMAPCOUNT(kernel_unmappings); 1124 if (pv->pv_flags & PVF_WRITE) 1125 md->krw_mappings--; 1126 else 1127 md->kro_mappings--; 1128 } else { 1129 if (pv->pv_flags & PVF_WRITE) 1130 md->urw_mappings--; 1131 else 1132 md->uro_mappings--; 1133 } 1134 1135 PMAPCOUNT(unmappings); 1136 #ifdef PMAP_CACHE_VIPT 1137 /* 1138 * If this page has had an exec mapping, then if 1139 * this was the last mapping, discard the contents, 1140 * otherwise sync the i-cache for this page. 1141 */ 1142 if (PV_IS_EXEC_P(md->pvh_attrs)) { 1143 if (SLIST_EMPTY(&md->pvh_list)) { 1144 md->pvh_attrs &= ~PVF_EXEC; 1145 PMAPCOUNT(exec_discarded_unmap); 1146 } else if (pv->pv_flags & PVF_WRITE) { 1147 pmap_syncicache_page(md, pa); 1148 PMAPCOUNT(exec_synced_unmap); 1149 } 1150 } 1151 #endif /* PMAP_CACHE_VIPT */ 1152 break; 1153 } 1154 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */ 1155 pv = *prevptr; /* advance */ 1156 } 1157 1158 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 1159 /* 1160 * If we no longer have a WRITEABLE KENTRY at the head of list, 1161 * clear the KMOD attribute from the page. 1162 */ 1163 if (SLIST_FIRST(&md->pvh_list) == NULL 1164 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE) 1165 md->pvh_attrs &= ~PVF_KMOD; 1166 1167 /* 1168 * If this was a writeable page and there are no more writeable 1169 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback 1170 * the contents to memory. 1171 */ 1172 if (arm_cache_prefer_mask != 0) { 1173 if (md->krw_mappings + md->urw_mappings == 0) 1174 md->pvh_attrs &= ~PVF_WRITE; 1175 PMAP_VALIDATE_MD_PAGE(md); 1176 } 1177 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 1178 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */ 1179 1180 /* return removed pv */ 1181 return pv; 1182 } 1183 1184 /* 1185 * 1186 * pmap_modify_pv: Update pv flags 1187 * 1188 * => caller should hold lock on vm_page [so that attrs can be adjusted] 1189 * => caller should NOT adjust pmap's wire_count 1190 * => caller must call pmap_vac_me_harder() if writable status of a page 1191 * may have changed. 1192 * => we return the old flags 1193 * 1194 * Modify a physical-virtual mapping in the pv table 1195 */ 1196 static u_int 1197 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va, 1198 u_int clr_mask, u_int set_mask) 1199 { 1200 struct pv_entry *npv; 1201 u_int flags, oflags; 1202 1203 KASSERT(!PV_IS_KENTRY_P(clr_mask)); 1204 KASSERT(!PV_IS_KENTRY_P(set_mask)); 1205 1206 if ((npv = pmap_find_pv(md, pm, va)) == NULL) 1207 return (0); 1208 1209 NPDEBUG(PDB_PVDUMP, 1210 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags)); 1211 1212 /* 1213 * There is at least one VA mapping this page. 1214 */ 1215 1216 if (clr_mask & (PVF_REF | PVF_MOD)) { 1217 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD); 1218 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 1219 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC) 1220 md->pvh_attrs |= PVF_DIRTY; 1221 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 1222 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */ 1223 } 1224 1225 oflags = npv->pv_flags; 1226 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask; 1227 1228 if ((flags ^ oflags) & PVF_WIRED) { 1229 if (flags & PVF_WIRED) 1230 ++pm->pm_stats.wired_count; 1231 else 1232 --pm->pm_stats.wired_count; 1233 } 1234 1235 if ((flags ^ oflags) & PVF_WRITE) { 1236 if (pm == pmap_kernel()) { 1237 if (flags & PVF_WRITE) { 1238 md->krw_mappings++; 1239 md->kro_mappings--; 1240 } else { 1241 md->kro_mappings++; 1242 md->krw_mappings--; 1243 } 1244 } else { 1245 if (flags & PVF_WRITE) { 1246 md->urw_mappings++; 1247 md->uro_mappings--; 1248 } else { 1249 md->uro_mappings++; 1250 md->urw_mappings--; 1251 } 1252 } 1253 } 1254 #ifdef PMAP_CACHE_VIPT 1255 if (arm_cache_prefer_mask != 0) { 1256 if (md->urw_mappings + md->krw_mappings == 0) { 1257 md->pvh_attrs &= ~PVF_WRITE; 1258 } else { 1259 md->pvh_attrs |= PVF_WRITE; 1260 } 1261 } 1262 /* 1263 * We have two cases here: the first is from enter_pv (new exec 1264 * page), the second is a combined pmap_remove_pv/pmap_enter_pv. 1265 * Since in latter, pmap_enter_pv won't do anything, we just have 1266 * to do what pmap_remove_pv would do. 1267 */ 1268 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs)) 1269 || (PV_IS_EXEC_P(md->pvh_attrs) 1270 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) { 1271 pmap_syncicache_page(md, pa); 1272 PMAPCOUNT(exec_synced_remap); 1273 } 1274 #ifndef ARM_MMU_EXTENDED 1275 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 1276 #endif /* !ARM_MMU_EXTENDED */ 1277 #endif /* PMAP_CACHE_VIPT */ 1278 1279 PMAPCOUNT(remappings); 1280 1281 return (oflags); 1282 } 1283 1284 /* 1285 * Allocate an L1 translation table for the specified pmap. 1286 * This is called at pmap creation time. 1287 */ 1288 static void 1289 pmap_alloc_l1(pmap_t pm) 1290 { 1291 #ifdef ARM_MMU_EXTENDED 1292 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 1293 struct vm_page *pg; 1294 bool ok __diagused; 1295 for (;;) { 1296 #ifdef PMAP_NEED_ALLOC_POOLPAGE 1297 pg = arm_pmap_alloc_poolpage(UVM_PGA_ZERO); 1298 #else 1299 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO); 1300 #endif 1301 if (pg != NULL) 1302 break; 1303 uvm_wait("pmapl1alloc"); 1304 } 1305 pm->pm_l1_pa = VM_PAGE_TO_PHYS(pg); 1306 vaddr_t va = pmap_direct_mapped_phys(pm->pm_l1_pa, &ok, 0); 1307 KASSERT(ok); 1308 KASSERT(va >= KERNEL_BASE); 1309 1310 #else 1311 KASSERTMSG(kernel_map != NULL, "pm %p", pm); 1312 vaddr_t va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 1313 UVM_KMF_WIRED|UVM_KMF_ZERO); 1314 KASSERT(va); 1315 pmap_extract(pmap_kernel(), va, &pm->pm_l1_pa); 1316 #endif 1317 pm->pm_l1 = (pd_entry_t *)va; 1318 PTE_SYNC_RANGE(pm->pm_l1, PAGE_SIZE / sizeof(pt_entry_t)); 1319 #else 1320 struct l1_ttable *l1; 1321 uint8_t domain; 1322 1323 /* 1324 * Remove the L1 at the head of the LRU list 1325 */ 1326 mutex_spin_enter(&l1_lru_lock); 1327 l1 = TAILQ_FIRST(&l1_lru_list); 1328 KDASSERT(l1 != NULL); 1329 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1330 1331 /* 1332 * Pick the first available domain number, and update 1333 * the link to the next number. 1334 */ 1335 domain = l1->l1_domain_first; 1336 l1->l1_domain_first = l1->l1_domain_free[domain]; 1337 1338 /* 1339 * If there are still free domain numbers in this L1, 1340 * put it back on the TAIL of the LRU list. 1341 */ 1342 if (++l1->l1_domain_use_count < PMAP_DOMAINS) 1343 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1344 1345 mutex_spin_exit(&l1_lru_lock); 1346 1347 /* 1348 * Fix up the relevant bits in the pmap structure 1349 */ 1350 pm->pm_l1 = l1; 1351 pm->pm_domain = domain + 1; 1352 #endif 1353 } 1354 1355 /* 1356 * Free an L1 translation table. 1357 * This is called at pmap destruction time. 1358 */ 1359 static void 1360 pmap_free_l1(pmap_t pm) 1361 { 1362 #ifdef ARM_MMU_EXTENDED 1363 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 1364 struct vm_page *pg = PHYS_TO_VM_PAGE(pm->pm_l1_pa); 1365 uvm_pagefree(pg); 1366 #else 1367 uvm_km_free(kernel_map, (vaddr_t)pm->pm_l1, PAGE_SIZE, UVM_KMF_WIRED); 1368 #endif 1369 pm->pm_l1 = NULL; 1370 pm->pm_l1_pa = 0; 1371 #else 1372 struct l1_ttable *l1 = pm->pm_l1; 1373 1374 mutex_spin_enter(&l1_lru_lock); 1375 1376 /* 1377 * If this L1 is currently on the LRU list, remove it. 1378 */ 1379 if (l1->l1_domain_use_count < PMAP_DOMAINS) 1380 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1381 1382 /* 1383 * Free up the domain number which was allocated to the pmap 1384 */ 1385 l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first; 1386 l1->l1_domain_first = pmap_domain(pm) - 1; 1387 l1->l1_domain_use_count--; 1388 1389 /* 1390 * The L1 now must have at least 1 free domain, so add 1391 * it back to the LRU list. If the use count is zero, 1392 * put it at the head of the list, otherwise it goes 1393 * to the tail. 1394 */ 1395 if (l1->l1_domain_use_count == 0) 1396 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru); 1397 else 1398 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1399 1400 mutex_spin_exit(&l1_lru_lock); 1401 #endif /* ARM_MMU_EXTENDED */ 1402 } 1403 1404 #ifndef ARM_MMU_EXTENDED 1405 static inline void 1406 pmap_use_l1(pmap_t pm) 1407 { 1408 struct l1_ttable *l1; 1409 1410 /* 1411 * Do nothing if we're in interrupt context. 1412 * Access to an L1 by the kernel pmap must not affect 1413 * the LRU list. 1414 */ 1415 if (cpu_intr_p() || pm == pmap_kernel()) 1416 return; 1417 1418 l1 = pm->pm_l1; 1419 1420 /* 1421 * If the L1 is not currently on the LRU list, just return 1422 */ 1423 if (l1->l1_domain_use_count == PMAP_DOMAINS) 1424 return; 1425 1426 mutex_spin_enter(&l1_lru_lock); 1427 1428 /* 1429 * Check the use count again, now that we've acquired the lock 1430 */ 1431 if (l1->l1_domain_use_count == PMAP_DOMAINS) { 1432 mutex_spin_exit(&l1_lru_lock); 1433 return; 1434 } 1435 1436 /* 1437 * Move the L1 to the back of the LRU list 1438 */ 1439 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1440 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1441 1442 mutex_spin_exit(&l1_lru_lock); 1443 } 1444 #endif /* !ARM_MMU_EXTENDED */ 1445 1446 /* 1447 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *) 1448 * 1449 * Free an L2 descriptor table. 1450 */ 1451 static inline void 1452 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT) 1453 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa) 1454 #else 1455 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa) 1456 #endif 1457 { 1458 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT) 1459 /* 1460 * Note: With a write-back cache, we may need to sync this 1461 * L2 table before re-using it. 1462 * This is because it may have belonged to a non-current 1463 * pmap, in which case the cache syncs would have been 1464 * skipped for the pages that were being unmapped. If the 1465 * L2 table were then to be immediately re-allocated to 1466 * the *current* pmap, it may well contain stale mappings 1467 * which have not yet been cleared by a cache write-back 1468 * and so would still be visible to the mmu. 1469 */ 1470 if (need_sync) 1471 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 1472 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */ 1473 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa); 1474 } 1475 1476 /* 1477 * Returns a pointer to the L2 bucket associated with the specified pmap 1478 * and VA, or NULL if no L2 bucket exists for the address. 1479 */ 1480 static inline struct l2_bucket * 1481 pmap_get_l2_bucket(pmap_t pm, vaddr_t va) 1482 { 1483 const size_t l1slot = l1pte_index(va); 1484 struct l2_dtable *l2; 1485 struct l2_bucket *l2b; 1486 1487 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL || 1488 (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL) 1489 return (NULL); 1490 1491 return (l2b); 1492 } 1493 1494 /* 1495 * Returns a pointer to the L2 bucket associated with the specified pmap 1496 * and VA. 1497 * 1498 * If no L2 bucket exists, perform the necessary allocations to put an L2 1499 * bucket/page table in place. 1500 * 1501 * Note that if a new L2 bucket/page was allocated, the caller *must* 1502 * increment the bucket occupancy counter appropriately *before* 1503 * releasing the pmap's lock to ensure no other thread or cpu deallocates 1504 * the bucket/page in the meantime. 1505 */ 1506 static struct l2_bucket * 1507 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va) 1508 { 1509 const size_t l1slot = l1pte_index(va); 1510 struct l2_dtable *l2; 1511 1512 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) { 1513 /* 1514 * No mapping at this address, as there is 1515 * no entry in the L1 table. 1516 * Need to allocate a new l2_dtable. 1517 */ 1518 if ((l2 = pmap_alloc_l2_dtable()) == NULL) 1519 return (NULL); 1520 1521 /* 1522 * Link it into the parent pmap 1523 */ 1524 pm->pm_l2[L2_IDX(l1slot)] = l2; 1525 } 1526 1527 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)]; 1528 1529 /* 1530 * Fetch pointer to the L2 page table associated with the address. 1531 */ 1532 if (l2b->l2b_kva == NULL) { 1533 pt_entry_t *ptep; 1534 1535 /* 1536 * No L2 page table has been allocated. Chances are, this 1537 * is because we just allocated the l2_dtable, above. 1538 */ 1539 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) { 1540 /* 1541 * Oops, no more L2 page tables available at this 1542 * time. We may need to deallocate the l2_dtable 1543 * if we allocated a new one above. 1544 */ 1545 if (l2->l2_occupancy == 0) { 1546 pm->pm_l2[L2_IDX(l1slot)] = NULL; 1547 pmap_free_l2_dtable(l2); 1548 } 1549 return (NULL); 1550 } 1551 1552 l2->l2_occupancy++; 1553 l2b->l2b_kva = ptep; 1554 l2b->l2b_l1slot = l1slot; 1555 1556 #ifdef ARM_MMU_EXTENDED 1557 /* 1558 * We know there will be a mapping here, so simply 1559 * enter this PTP into the L1 now. 1560 */ 1561 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot; 1562 pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa 1563 | L1_C_DOM(pmap_domain(pm)); 1564 KASSERT(*pdep == 0); 1565 l1pte_setone(pdep, npde); 1566 PDE_SYNC(pdep); 1567 #endif 1568 } 1569 1570 return (l2b); 1571 } 1572 1573 /* 1574 * One or more mappings in the specified L2 descriptor table have just been 1575 * invalidated. 1576 * 1577 * Garbage collect the metadata and descriptor table itself if necessary. 1578 * 1579 * The pmap lock must be acquired when this is called (not necessary 1580 * for the kernel pmap). 1581 */ 1582 static void 1583 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count) 1584 { 1585 KDASSERT(count <= l2b->l2b_occupancy); 1586 1587 /* 1588 * Update the bucket's reference count according to how many 1589 * PTEs the caller has just invalidated. 1590 */ 1591 l2b->l2b_occupancy -= count; 1592 1593 /* 1594 * Note: 1595 * 1596 * Level 2 page tables allocated to the kernel pmap are never freed 1597 * as that would require checking all Level 1 page tables and 1598 * removing any references to the Level 2 page table. See also the 1599 * comment elsewhere about never freeing bootstrap L2 descriptors. 1600 * 1601 * We make do with just invalidating the mapping in the L2 table. 1602 * 1603 * This isn't really a big deal in practice and, in fact, leads 1604 * to a performance win over time as we don't need to continually 1605 * alloc/free. 1606 */ 1607 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel()) 1608 return; 1609 1610 /* 1611 * There are no more valid mappings in this level 2 page table. 1612 * Go ahead and NULL-out the pointer in the bucket, then 1613 * free the page table. 1614 */ 1615 const size_t l1slot = l2b->l2b_l1slot; 1616 pt_entry_t * const ptep = l2b->l2b_kva; 1617 l2b->l2b_kva = NULL; 1618 1619 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot; 1620 pd_entry_t pde __diagused = *pdep; 1621 1622 #ifdef ARM_MMU_EXTENDED 1623 /* 1624 * Invalidate the L1 slot. 1625 */ 1626 KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C); 1627 #else 1628 /* 1629 * If the L1 slot matches the pmap's domain number, then invalidate it. 1630 */ 1631 if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK)) 1632 == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) { 1633 #endif 1634 l1pte_setone(pdep, 0); 1635 PDE_SYNC(pdep); 1636 #ifndef ARM_MMU_EXTENDED 1637 } 1638 #endif 1639 1640 /* 1641 * Release the L2 descriptor table back to the pool cache. 1642 */ 1643 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT) 1644 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa); 1645 #else 1646 pmap_free_l2_ptp(ptep, l2b->l2b_pa); 1647 #endif 1648 1649 /* 1650 * Update the reference count in the associated l2_dtable 1651 */ 1652 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)]; 1653 if (--l2->l2_occupancy > 0) 1654 return; 1655 1656 /* 1657 * There are no more valid mappings in any of the Level 1 1658 * slots managed by this l2_dtable. Go ahead and NULL-out 1659 * the pointer in the parent pmap and free the l2_dtable. 1660 */ 1661 pm->pm_l2[L2_IDX(l1slot)] = NULL; 1662 pmap_free_l2_dtable(l2); 1663 } 1664 1665 /* 1666 * Pool cache constructors for L2 descriptor tables, metadata and pmap 1667 * structures. 1668 */ 1669 static int 1670 pmap_l2ptp_ctor(void *arg, void *v, int flags) 1671 { 1672 #ifndef PMAP_INCLUDE_PTE_SYNC 1673 vaddr_t va = (vaddr_t)v & ~PGOFSET; 1674 1675 /* 1676 * The mappings for these page tables were initially made using 1677 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache- 1678 * mode will not be right for page table mappings. To avoid 1679 * polluting the pmap_kenter_pa() code with a special case for 1680 * page tables, we simply fix up the cache-mode here if it's not 1681 * correct. 1682 */ 1683 if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) { 1684 const struct l2_bucket * const l2b = 1685 pmap_get_l2_bucket(pmap_kernel(), va); 1686 KASSERTMSG(l2b != NULL, "%#lx", va); 1687 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 1688 const pt_entry_t opte = *ptep; 1689 1690 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { 1691 /* 1692 * Page tables must have the cache-mode set correctly. 1693 */ 1694 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK) 1695 | pte_l2_s_cache_mode_pt; 1696 l2pte_set(ptep, npte, opte); 1697 PTE_SYNC(ptep); 1698 cpu_tlb_flushD_SE(va); 1699 cpu_cpwait(); 1700 } 1701 } 1702 #endif 1703 1704 memset(v, 0, L2_TABLE_SIZE_REAL); 1705 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 1706 return (0); 1707 } 1708 1709 static int 1710 pmap_l2dtable_ctor(void *arg, void *v, int flags) 1711 { 1712 1713 memset(v, 0, sizeof(struct l2_dtable)); 1714 return (0); 1715 } 1716 1717 static int 1718 pmap_pmap_ctor(void *arg, void *v, int flags) 1719 { 1720 1721 memset(v, 0, sizeof(struct pmap)); 1722 return (0); 1723 } 1724 1725 static void 1726 pmap_pinit(pmap_t pm) 1727 { 1728 #ifndef ARM_HAS_VBAR 1729 struct l2_bucket *l2b; 1730 1731 if (vector_page < KERNEL_BASE) { 1732 /* 1733 * Map the vector page. 1734 */ 1735 pmap_enter(pm, vector_page, systempage.pv_pa, 1736 VM_PROT_READ | VM_PROT_EXECUTE, 1737 VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED); 1738 pmap_update(pm); 1739 1740 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page); 1741 l2b = pmap_get_l2_bucket(pm, vector_page); 1742 KASSERTMSG(l2b != NULL, "%#lx", vector_page); 1743 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO | 1744 L1_C_DOM(pmap_domain(pm)); 1745 } else 1746 pm->pm_pl1vec = NULL; 1747 #endif 1748 } 1749 1750 #ifdef PMAP_CACHE_VIVT 1751 /* 1752 * Since we have a virtually indexed cache, we may need to inhibit caching if 1753 * there is more than one mapping and at least one of them is writable. 1754 * Since we purge the cache on every context switch, we only need to check for 1755 * other mappings within the same pmap, or kernel_pmap. 1756 * This function is also called when a page is unmapped, to possibly reenable 1757 * caching on any remaining mappings. 1758 * 1759 * The code implements the following logic, where: 1760 * 1761 * KW = # of kernel read/write pages 1762 * KR = # of kernel read only pages 1763 * UW = # of user read/write pages 1764 * UR = # of user read only pages 1765 * 1766 * KC = kernel mapping is cacheable 1767 * UC = user mapping is cacheable 1768 * 1769 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0 1770 * +--------------------------------------------- 1771 * UW=0,UR=0 | --- KC=1 KC=1 KC=0 1772 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0 1773 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0 1774 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0 1775 */ 1776 1777 static const int pmap_vac_flags[4][4] = { 1778 {-1, 0, 0, PVF_KNC}, 1779 {0, 0, PVF_NC, PVF_NC}, 1780 {0, PVF_NC, PVF_NC, PVF_NC}, 1781 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC} 1782 }; 1783 1784 static inline int 1785 pmap_get_vac_flags(const struct vm_page_md *md) 1786 { 1787 int kidx, uidx; 1788 1789 kidx = 0; 1790 if (md->kro_mappings || md->krw_mappings > 1) 1791 kidx |= 1; 1792 if (md->krw_mappings) 1793 kidx |= 2; 1794 1795 uidx = 0; 1796 if (md->uro_mappings || md->urw_mappings > 1) 1797 uidx |= 1; 1798 if (md->urw_mappings) 1799 uidx |= 2; 1800 1801 return (pmap_vac_flags[uidx][kidx]); 1802 } 1803 1804 static inline void 1805 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va) 1806 { 1807 int nattr; 1808 1809 nattr = pmap_get_vac_flags(md); 1810 1811 if (nattr < 0) { 1812 md->pvh_attrs &= ~PVF_NC; 1813 return; 1814 } 1815 1816 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0) 1817 return; 1818 1819 if (pm == pmap_kernel()) 1820 pmap_vac_me_kpmap(md, pa, pm, va); 1821 else 1822 pmap_vac_me_user(md, pa, pm, va); 1823 1824 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr; 1825 } 1826 1827 static void 1828 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va) 1829 { 1830 u_int u_cacheable, u_entries; 1831 struct pv_entry *pv; 1832 pmap_t last_pmap = pm; 1833 1834 /* 1835 * Pass one, see if there are both kernel and user pmaps for 1836 * this page. Calculate whether there are user-writable or 1837 * kernel-writable pages. 1838 */ 1839 u_cacheable = 0; 1840 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 1841 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0) 1842 u_cacheable++; 1843 } 1844 1845 u_entries = md->urw_mappings + md->uro_mappings; 1846 1847 /* 1848 * We know we have just been updating a kernel entry, so if 1849 * all user pages are already cacheable, then there is nothing 1850 * further to do. 1851 */ 1852 if (md->k_mappings == 0 && u_cacheable == u_entries) 1853 return; 1854 1855 if (u_entries) { 1856 /* 1857 * Scan over the list again, for each entry, if it 1858 * might not be set correctly, call pmap_vac_me_user 1859 * to recalculate the settings. 1860 */ 1861 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 1862 /* 1863 * We know kernel mappings will get set 1864 * correctly in other calls. We also know 1865 * that if the pmap is the same as last_pmap 1866 * then we've just handled this entry. 1867 */ 1868 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap) 1869 continue; 1870 1871 /* 1872 * If there are kernel entries and this page 1873 * is writable but non-cacheable, then we can 1874 * skip this entry also. 1875 */ 1876 if (md->k_mappings && 1877 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 1878 (PVF_NC | PVF_WRITE)) 1879 continue; 1880 1881 /* 1882 * Similarly if there are no kernel-writable 1883 * entries and the page is already 1884 * read-only/cacheable. 1885 */ 1886 if (md->krw_mappings == 0 && 1887 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0) 1888 continue; 1889 1890 /* 1891 * For some of the remaining cases, we know 1892 * that we must recalculate, but for others we 1893 * can't tell if they are correct or not, so 1894 * we recalculate anyway. 1895 */ 1896 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0); 1897 } 1898 1899 if (md->k_mappings == 0) 1900 return; 1901 } 1902 1903 pmap_vac_me_user(md, pa, pm, va); 1904 } 1905 1906 static void 1907 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va) 1908 { 1909 pmap_t kpmap = pmap_kernel(); 1910 struct pv_entry *pv, *npv = NULL; 1911 u_int entries = 0; 1912 u_int writable = 0; 1913 u_int cacheable_entries = 0; 1914 u_int kern_cacheable = 0; 1915 u_int other_writable = 0; 1916 1917 /* 1918 * Count mappings and writable mappings in this pmap. 1919 * Include kernel mappings as part of our own. 1920 * Keep a pointer to the first one. 1921 */ 1922 npv = NULL; 1923 KASSERT(pmap_page_locked_p(md)); 1924 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 1925 /* Count mappings in the same pmap */ 1926 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) { 1927 if (entries++ == 0) 1928 npv = pv; 1929 1930 /* Cacheable mappings */ 1931 if ((pv->pv_flags & PVF_NC) == 0) { 1932 cacheable_entries++; 1933 if (kpmap == pv->pv_pmap) 1934 kern_cacheable++; 1935 } 1936 1937 /* Writable mappings */ 1938 if (pv->pv_flags & PVF_WRITE) 1939 ++writable; 1940 } else if (pv->pv_flags & PVF_WRITE) 1941 other_writable = 1; 1942 } 1943 1944 /* 1945 * Enable or disable caching as necessary. 1946 * Note: the first entry might be part of the kernel pmap, 1947 * so we can't assume this is indicative of the state of the 1948 * other (maybe non-kpmap) entries. 1949 */ 1950 if ((entries > 1 && writable) || 1951 (entries > 0 && pm == kpmap && other_writable)) { 1952 if (cacheable_entries == 0) { 1953 return; 1954 } 1955 1956 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) { 1957 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) || 1958 (pv->pv_flags & PVF_NC)) 1959 continue; 1960 1961 pv->pv_flags |= PVF_NC; 1962 1963 struct l2_bucket * const l2b 1964 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); 1965 KASSERTMSG(l2b != NULL, "%#lx", va); 1966 pt_entry_t * const ptep 1967 = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 1968 const pt_entry_t opte = *ptep; 1969 pt_entry_t npte = opte & ~L2_S_CACHE_MASK; 1970 1971 if ((va != pv->pv_va || pm != pv->pv_pmap) 1972 && l2pte_valid_p(opte)) { 1973 pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va, 1974 true, pv->pv_flags); 1975 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, 1976 pv->pv_flags); 1977 } 1978 1979 l2pte_set(ptep, npte, opte); 1980 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 1981 } 1982 cpu_cpwait(); 1983 } else if (entries > cacheable_entries) { 1984 /* 1985 * Turn cacheing back on for some pages. If it is a kernel 1986 * page, only do so if there are no other writable pages. 1987 */ 1988 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) { 1989 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap && 1990 (kpmap != pv->pv_pmap || other_writable))) 1991 continue; 1992 1993 pv->pv_flags &= ~PVF_NC; 1994 1995 struct l2_bucket * const l2b 1996 = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); 1997 KASSERTMSG(l2b != NULL, "%#lx", va); 1998 pt_entry_t * const ptep 1999 = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 2000 const pt_entry_t opte = *ptep; 2001 pt_entry_t npte = (opte & ~L2_S_CACHE_MASK) 2002 | pte_l2_s_cache_mode; 2003 2004 if (l2pte_valid_p(opte)) { 2005 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, 2006 pv->pv_flags); 2007 } 2008 2009 l2pte_set(ptep, npte, opte); 2010 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 2011 } 2012 } 2013 } 2014 #endif 2015 2016 #ifdef PMAP_CACHE_VIPT 2017 static void 2018 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va) 2019 { 2020 #ifndef ARM_MMU_EXTENDED 2021 struct pv_entry *pv; 2022 vaddr_t tst_mask; 2023 bool bad_alias; 2024 const u_int 2025 rw_mappings = md->urw_mappings + md->krw_mappings, 2026 ro_mappings = md->uro_mappings + md->kro_mappings; 2027 2028 /* do we need to do anything? */ 2029 if (arm_cache_prefer_mask == 0) 2030 return; 2031 2032 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n", 2033 md, pm, va)); 2034 2035 KASSERT(!va || pm); 2036 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2037 2038 /* Already a conflict? */ 2039 if (__predict_false(md->pvh_attrs & PVF_NC)) { 2040 /* just an add, things are already non-cached */ 2041 KASSERT(!(md->pvh_attrs & PVF_DIRTY)); 2042 KASSERT(!(md->pvh_attrs & PVF_MULTCLR)); 2043 bad_alias = false; 2044 if (va) { 2045 PMAPCOUNT(vac_color_none); 2046 bad_alias = true; 2047 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2048 goto fixup; 2049 } 2050 pv = SLIST_FIRST(&md->pvh_list); 2051 /* the list can't be empty because it would be cachable */ 2052 if (md->pvh_attrs & PVF_KMPAGE) { 2053 tst_mask = md->pvh_attrs; 2054 } else { 2055 KASSERT(pv); 2056 tst_mask = pv->pv_va; 2057 pv = SLIST_NEXT(pv, pv_link); 2058 } 2059 /* 2060 * Only check for a bad alias if we have writable mappings. 2061 */ 2062 tst_mask &= arm_cache_prefer_mask; 2063 if (rw_mappings > 0) { 2064 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) { 2065 /* if there's a bad alias, stop checking. */ 2066 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) 2067 bad_alias = true; 2068 } 2069 md->pvh_attrs |= PVF_WRITE; 2070 if (!bad_alias) 2071 md->pvh_attrs |= PVF_DIRTY; 2072 } else { 2073 /* 2074 * We have only read-only mappings. Let's see if there 2075 * are multiple colors in use or if we mapped a KMPAGE. 2076 * If the latter, we have a bad alias. If the former, 2077 * we need to remember that. 2078 */ 2079 for (; pv; pv = SLIST_NEXT(pv, pv_link)) { 2080 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) { 2081 if (md->pvh_attrs & PVF_KMPAGE) 2082 bad_alias = true; 2083 break; 2084 } 2085 } 2086 md->pvh_attrs &= ~PVF_WRITE; 2087 /* 2088 * No KMPAGE and we exited early, so we must have 2089 * multiple color mappings. 2090 */ 2091 if (!bad_alias && pv != NULL) 2092 md->pvh_attrs |= PVF_MULTCLR; 2093 } 2094 2095 /* If no conflicting colors, set everything back to cached */ 2096 if (!bad_alias) { 2097 #ifdef DEBUG 2098 if ((md->pvh_attrs & PVF_WRITE) 2099 || ro_mappings < 2) { 2100 SLIST_FOREACH(pv, &md->pvh_list, pv_link) 2101 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0); 2102 } 2103 #endif 2104 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC; 2105 md->pvh_attrs |= tst_mask | PVF_COLORED; 2106 /* 2107 * Restore DIRTY bit if page is modified 2108 */ 2109 if (md->pvh_attrs & PVF_DMOD) 2110 md->pvh_attrs |= PVF_DIRTY; 2111 PMAPCOUNT(vac_color_restore); 2112 } else { 2113 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL); 2114 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL); 2115 } 2116 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2117 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2118 } else if (!va) { 2119 KASSERT(pmap_is_page_colored_p(md)); 2120 KASSERT(!(md->pvh_attrs & PVF_WRITE) 2121 || (md->pvh_attrs & PVF_DIRTY)); 2122 if (rw_mappings == 0) { 2123 md->pvh_attrs &= ~PVF_WRITE; 2124 if (ro_mappings == 1 2125 && (md->pvh_attrs & PVF_MULTCLR)) { 2126 /* 2127 * If this is the last readonly mapping 2128 * but it doesn't match the current color 2129 * for the page, change the current color 2130 * to match this last readonly mapping. 2131 */ 2132 pv = SLIST_FIRST(&md->pvh_list); 2133 tst_mask = (md->pvh_attrs ^ pv->pv_va) 2134 & arm_cache_prefer_mask; 2135 if (tst_mask) { 2136 md->pvh_attrs ^= tst_mask; 2137 PMAPCOUNT(vac_color_change); 2138 } 2139 } 2140 } 2141 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2142 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2143 return; 2144 } else if (!pmap_is_page_colored_p(md)) { 2145 /* not colored so we just use its color */ 2146 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY)); 2147 KASSERT(!(md->pvh_attrs & PVF_MULTCLR)); 2148 PMAPCOUNT(vac_color_new); 2149 md->pvh_attrs &= PAGE_SIZE - 1; 2150 md->pvh_attrs |= PVF_COLORED 2151 | (va & arm_cache_prefer_mask) 2152 | (rw_mappings > 0 ? PVF_WRITE : 0); 2153 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2154 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2155 return; 2156 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) { 2157 bad_alias = false; 2158 if (rw_mappings > 0) { 2159 /* 2160 * We now have writeable mappings and if we have 2161 * readonly mappings in more than once color, we have 2162 * an aliasing problem. Regardless mark the page as 2163 * writeable. 2164 */ 2165 if (md->pvh_attrs & PVF_MULTCLR) { 2166 if (ro_mappings < 2) { 2167 /* 2168 * If we only have less than two 2169 * read-only mappings, just flush the 2170 * non-primary colors from the cache. 2171 */ 2172 pmap_flush_page(md, pa, 2173 PMAP_FLUSH_SECONDARY); 2174 } else { 2175 bad_alias = true; 2176 } 2177 } 2178 md->pvh_attrs |= PVF_WRITE; 2179 } 2180 /* If no conflicting colors, set everything back to cached */ 2181 if (!bad_alias) { 2182 #ifdef DEBUG 2183 if (rw_mappings > 0 2184 || (md->pvh_attrs & PMAP_KMPAGE)) { 2185 tst_mask = md->pvh_attrs & arm_cache_prefer_mask; 2186 SLIST_FOREACH(pv, &md->pvh_list, pv_link) 2187 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0); 2188 } 2189 #endif 2190 if (SLIST_EMPTY(&md->pvh_list)) 2191 PMAPCOUNT(vac_color_reuse); 2192 else 2193 PMAPCOUNT(vac_color_ok); 2194 2195 /* matching color, just return */ 2196 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2197 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2198 return; 2199 } 2200 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL); 2201 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL); 2202 2203 /* color conflict. evict from cache. */ 2204 2205 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY); 2206 md->pvh_attrs &= ~PVF_COLORED; 2207 md->pvh_attrs |= PVF_NC; 2208 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2209 KASSERT(!(md->pvh_attrs & PVF_MULTCLR)); 2210 PMAPCOUNT(vac_color_erase); 2211 } else if (rw_mappings == 0 2212 && (md->pvh_attrs & PVF_KMPAGE) == 0) { 2213 KASSERT((md->pvh_attrs & PVF_WRITE) == 0); 2214 2215 /* 2216 * If the page has dirty cache lines, clean it. 2217 */ 2218 if (md->pvh_attrs & PVF_DIRTY) 2219 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY); 2220 2221 /* 2222 * If this is the first remapping (we know that there are no 2223 * writeable mappings), then this is a simple color change. 2224 * Otherwise this is a seconary r/o mapping, which means 2225 * we don't have to do anything. 2226 */ 2227 if (ro_mappings == 1) { 2228 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0); 2229 md->pvh_attrs &= PAGE_SIZE - 1; 2230 md->pvh_attrs |= (va & arm_cache_prefer_mask); 2231 PMAPCOUNT(vac_color_change); 2232 } else { 2233 PMAPCOUNT(vac_color_blind); 2234 } 2235 md->pvh_attrs |= PVF_MULTCLR; 2236 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2237 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2238 return; 2239 } else { 2240 if (rw_mappings > 0) 2241 md->pvh_attrs |= PVF_WRITE; 2242 2243 /* color conflict. evict from cache. */ 2244 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY); 2245 2246 /* the list can't be empty because this was a enter/modify */ 2247 pv = SLIST_FIRST(&md->pvh_list); 2248 if ((md->pvh_attrs & PVF_KMPAGE) == 0) { 2249 KASSERT(pv); 2250 /* 2251 * If there's only one mapped page, change color to the 2252 * page's new color and return. Restore the DIRTY bit 2253 * that was erased by pmap_flush_page. 2254 */ 2255 if (SLIST_NEXT(pv, pv_link) == NULL) { 2256 md->pvh_attrs &= PAGE_SIZE - 1; 2257 md->pvh_attrs |= (va & arm_cache_prefer_mask); 2258 if (md->pvh_attrs & PVF_DMOD) 2259 md->pvh_attrs |= PVF_DIRTY; 2260 PMAPCOUNT(vac_color_change); 2261 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2262 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2263 KASSERT(!(md->pvh_attrs & PVF_MULTCLR)); 2264 return; 2265 } 2266 } 2267 bad_alias = true; 2268 md->pvh_attrs &= ~PVF_COLORED; 2269 md->pvh_attrs |= PVF_NC; 2270 PMAPCOUNT(vac_color_erase); 2271 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 2272 } 2273 2274 fixup: 2275 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE)); 2276 2277 /* 2278 * Turn cacheing on/off for all pages. 2279 */ 2280 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 2281 struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap, 2282 pv->pv_va); 2283 KASSERTMSG(l2b != NULL, "%#lx", va); 2284 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 2285 const pt_entry_t opte = *ptep; 2286 pt_entry_t npte = opte & ~L2_S_CACHE_MASK; 2287 if (bad_alias) { 2288 pv->pv_flags |= PVF_NC; 2289 } else { 2290 pv->pv_flags &= ~PVF_NC; 2291 npte |= pte_l2_s_cache_mode; 2292 } 2293 2294 if (opte == npte) /* only update is there's a change */ 2295 continue; 2296 2297 if (l2pte_valid_p(opte)) { 2298 pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags); 2299 } 2300 2301 l2pte_set(ptep, npte, opte); 2302 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 2303 } 2304 #endif /* !ARM_MMU_EXTENDED */ 2305 } 2306 #endif /* PMAP_CACHE_VIPT */ 2307 2308 2309 /* 2310 * Modify pte bits for all ptes corresponding to the given physical address. 2311 * We use `maskbits' rather than `clearbits' because we're always passing 2312 * constants and the latter would require an extra inversion at run-time. 2313 */ 2314 static void 2315 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits) 2316 { 2317 struct pv_entry *pv; 2318 #ifdef PMAP_CACHE_VIPT 2319 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs); 2320 bool need_syncicache = false; 2321 #ifdef ARM_MMU_EXTENDED 2322 const u_int execbits = (maskbits & PVF_EXEC) ? L2_XS_XN : 0; 2323 #else 2324 const u_int execbits = 0; 2325 bool need_vac_me_harder = false; 2326 #endif 2327 #else 2328 const u_int execbits = 0; 2329 #endif 2330 2331 NPDEBUG(PDB_BITS, 2332 printf("pmap_clearbit: md %p mask 0x%x\n", 2333 md, maskbits)); 2334 2335 #ifdef PMAP_CACHE_VIPT 2336 /* 2337 * If we might want to sync the I-cache and we've modified it, 2338 * then we know we definitely need to sync or discard it. 2339 */ 2340 if (want_syncicache) { 2341 if (md->pvh_attrs & PVF_MOD) { 2342 need_syncicache = true; 2343 } 2344 } 2345 #endif 2346 KASSERT(pmap_page_locked_p(md)); 2347 2348 /* 2349 * Clear saved attributes (modify, reference) 2350 */ 2351 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF)); 2352 2353 if (SLIST_EMPTY(&md->pvh_list)) { 2354 #if defined(PMAP_CACHE_VIPT) 2355 if (need_syncicache) { 2356 /* 2357 * No one has it mapped, so just discard it. The next 2358 * exec remapping will cause it to be synced. 2359 */ 2360 md->pvh_attrs &= ~PVF_EXEC; 2361 PMAPCOUNT(exec_discarded_clearbit); 2362 } 2363 #endif 2364 return; 2365 } 2366 2367 /* 2368 * Loop over all current mappings setting/clearing as appropos 2369 */ 2370 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 2371 pmap_t pm = pv->pv_pmap; 2372 const vaddr_t va = pv->pv_va; 2373 const u_int oflags = pv->pv_flags; 2374 #ifndef ARM_MMU_EXTENDED 2375 /* 2376 * Kernel entries are unmanaged and as such not to be changed. 2377 */ 2378 if (PV_IS_KENTRY_P(oflags)) 2379 continue; 2380 #endif 2381 pv->pv_flags &= ~maskbits; 2382 2383 pmap_release_page_lock(md); 2384 pmap_acquire_pmap_lock(pm); 2385 2386 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va); 2387 if (l2b == NULL) { 2388 pmap_release_pmap_lock(pm); 2389 pmap_acquire_page_lock(md); 2390 continue; 2391 } 2392 KASSERTMSG(l2b != NULL, "%#lx", va); 2393 2394 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 2395 const pt_entry_t opte = *ptep; 2396 pt_entry_t npte = opte | execbits; 2397 2398 #ifdef ARM_MMU_EXTENDED 2399 KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG)); 2400 #endif 2401 2402 NPDEBUG(PDB_BITS, 2403 printf( "%s: pv %p, pm %p, va 0x%08lx, flag 0x%x\n", 2404 __func__, pv, pm, va, oflags)); 2405 2406 if (maskbits & (PVF_WRITE|PVF_MOD)) { 2407 #ifdef PMAP_CACHE_VIVT 2408 if ((oflags & PVF_NC)) { 2409 /* 2410 * Entry is not cacheable: 2411 * 2412 * Don't turn caching on again if this is a 2413 * modified emulation. This would be 2414 * inconsitent with the settings created by 2415 * pmap_vac_me_harder(). Otherwise, it's safe 2416 * to re-enable cacheing. 2417 * 2418 * There's no need to call pmap_vac_me_harder() 2419 * here: all pages are losing their write 2420 * permission. 2421 */ 2422 if (maskbits & PVF_WRITE) { 2423 npte |= pte_l2_s_cache_mode; 2424 pv->pv_flags &= ~PVF_NC; 2425 } 2426 } else if (l2pte_writable_p(opte)) { 2427 /* 2428 * Entry is writable/cacheable: check if pmap 2429 * is current if it is flush it, otherwise it 2430 * won't be in the cache 2431 */ 2432 pmap_cache_wbinv_page(pm, va, 2433 (maskbits & PVF_REF) != 0, 2434 oflags|PVF_WRITE); 2435 } 2436 #endif 2437 2438 /* make the pte read only */ 2439 npte = l2pte_set_readonly(npte); 2440 2441 pmap_acquire_page_lock(md); 2442 #ifdef MULTIPROCESSOR 2443 pv = pmap_find_pv(md, pm, va); 2444 #endif 2445 if (pv != NULL && (maskbits & oflags & PVF_WRITE)) { 2446 /* 2447 * Keep alias accounting up to date 2448 */ 2449 if (pm == pmap_kernel()) { 2450 md->krw_mappings--; 2451 md->kro_mappings++; 2452 } else { 2453 md->urw_mappings--; 2454 md->uro_mappings++; 2455 } 2456 #ifdef PMAP_CACHE_VIPT 2457 if (arm_cache_prefer_mask != 0) { 2458 if (md->urw_mappings + md->krw_mappings == 0) { 2459 md->pvh_attrs &= ~PVF_WRITE; 2460 } else { 2461 PMAP_VALIDATE_MD_PAGE(md); 2462 } 2463 } 2464 if (want_syncicache) 2465 need_syncicache = true; 2466 #ifndef ARM_MMU_EXTENDED 2467 need_vac_me_harder = true; 2468 #endif 2469 #endif /* PMAP_CACHE_VIPT */ 2470 } 2471 pmap_release_page_lock(md); 2472 } 2473 2474 if (maskbits & PVF_REF) { 2475 if (true 2476 #ifndef ARM_MMU_EXTENDED 2477 && (oflags & PVF_NC) == 0 2478 #endif 2479 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0 2480 && l2pte_valid_p(npte)) { 2481 #ifdef PMAP_CACHE_VIVT 2482 /* 2483 * Check npte here; we may have already 2484 * done the wbinv above, and the validity 2485 * of the PTE is the same for opte and 2486 * npte. 2487 */ 2488 pmap_cache_wbinv_page(pm, va, true, oflags); 2489 #endif 2490 } 2491 2492 /* 2493 * Make the PTE invalid so that we will take a 2494 * page fault the next time the mapping is 2495 * referenced. 2496 */ 2497 npte &= ~L2_TYPE_MASK; 2498 npte |= L2_TYPE_INV; 2499 } 2500 2501 if (npte != opte) { 2502 l2pte_reset(ptep); 2503 PTE_SYNC(ptep); 2504 2505 /* Flush the TLB entry if a current pmap. */ 2506 pmap_tlb_flush_SE(pm, va, oflags); 2507 2508 l2pte_set(ptep, npte, 0); 2509 PTE_SYNC(ptep); 2510 } 2511 2512 pmap_release_pmap_lock(pm); 2513 pmap_acquire_page_lock(md); 2514 2515 NPDEBUG(PDB_BITS, 2516 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n", 2517 pm, va, opte, npte)); 2518 } 2519 2520 #if defined(PMAP_CACHE_VIPT) 2521 /* 2522 * If we need to sync the I-cache and we haven't done it yet, do it. 2523 */ 2524 if (need_syncicache) { 2525 pmap_release_page_lock(md); 2526 pmap_syncicache_page(md, pa); 2527 pmap_acquire_page_lock(md); 2528 PMAPCOUNT(exec_synced_clearbit); 2529 } 2530 #ifndef ARM_MMU_EXTENDED 2531 /* 2532 * If we are changing this to read-only, we need to call vac_me_harder 2533 * so we can change all the read-only pages to cacheable. We pretend 2534 * this as a page deletion. 2535 */ 2536 if (need_vac_me_harder) { 2537 if (md->pvh_attrs & PVF_NC) 2538 pmap_vac_me_harder(md, pa, NULL, 0); 2539 } 2540 #endif /* !ARM_MMU_EXTENDED */ 2541 #endif /* PMAP_CACHE_VIPT */ 2542 } 2543 2544 /* 2545 * pmap_clean_page() 2546 * 2547 * This is a local function used to work out the best strategy to clean 2548 * a single page referenced by its entry in the PV table. It's used by 2549 * pmap_copy_page, pmap_zero_page and maybe some others later on. 2550 * 2551 * Its policy is effectively: 2552 * o If there are no mappings, we don't bother doing anything with the cache. 2553 * o If there is one mapping, we clean just that page. 2554 * o If there are multiple mappings, we clean the entire cache. 2555 * 2556 * So that some functions can be further optimised, it returns 0 if it didn't 2557 * clean the entire cache, or 1 if it did. 2558 * 2559 * XXX One bug in this routine is that if the pv_entry has a single page 2560 * mapped at 0x00000000 a whole cache clean will be performed rather than 2561 * just the 1 page. Since this should not occur in everyday use and if it does 2562 * it will just result in not the most efficient clean for the page. 2563 */ 2564 #ifdef PMAP_CACHE_VIVT 2565 static bool 2566 pmap_clean_page(struct vm_page_md *md, bool is_src) 2567 { 2568 struct pv_entry *pv; 2569 pmap_t pm_to_clean = NULL; 2570 bool cache_needs_cleaning = false; 2571 vaddr_t page_to_clean = 0; 2572 u_int flags = 0; 2573 2574 /* 2575 * Since we flush the cache each time we change to a different 2576 * user vmspace, we only need to flush the page if it is in the 2577 * current pmap. 2578 */ 2579 KASSERT(pmap_page_locked_p(md)); 2580 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 2581 if (pmap_is_current(pv->pv_pmap)) { 2582 flags |= pv->pv_flags; 2583 /* 2584 * The page is mapped non-cacheable in 2585 * this map. No need to flush the cache. 2586 */ 2587 if (pv->pv_flags & PVF_NC) { 2588 #ifdef DIAGNOSTIC 2589 KASSERT(!cache_needs_cleaning); 2590 #endif 2591 break; 2592 } else if (is_src && (pv->pv_flags & PVF_WRITE) == 0) 2593 continue; 2594 if (cache_needs_cleaning) { 2595 page_to_clean = 0; 2596 break; 2597 } else { 2598 page_to_clean = pv->pv_va; 2599 pm_to_clean = pv->pv_pmap; 2600 } 2601 cache_needs_cleaning = true; 2602 } 2603 } 2604 2605 if (page_to_clean) { 2606 pmap_cache_wbinv_page(pm_to_clean, page_to_clean, 2607 !is_src, flags | PVF_REF); 2608 } else if (cache_needs_cleaning) { 2609 pmap_t const pm = curproc->p_vmspace->vm_map.pmap; 2610 2611 pmap_cache_wbinv_all(pm, flags); 2612 return true; 2613 } 2614 return false; 2615 } 2616 #endif 2617 2618 #ifdef PMAP_CACHE_VIPT 2619 /* 2620 * Sync a page with the I-cache. Since this is a VIPT, we must pick the 2621 * right cache alias to make sure we flush the right stuff. 2622 */ 2623 void 2624 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa) 2625 { 2626 pmap_t kpm = pmap_kernel(); 2627 const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT 2628 ? PAGE_SIZE 2629 : arm_pcache.icache_way_size; 2630 2631 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n", 2632 md, md->pvh_attrs)); 2633 /* 2634 * No need to clean the page if it's non-cached. 2635 */ 2636 #ifndef ARM_MMU_EXTENDED 2637 if (md->pvh_attrs & PVF_NC) 2638 return; 2639 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED); 2640 #endif 2641 2642 pt_entry_t * const ptep = cpu_cdst_pte(0); 2643 const vaddr_t dstp = cpu_cdstp(0); 2644 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 2645 if (way_size <= PAGE_SIZE) { 2646 bool ok = false; 2647 vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp); 2648 if (ok) { 2649 cpu_icache_sync_range(vdstp, way_size); 2650 return; 2651 } 2652 } 2653 #endif 2654 2655 /* 2656 * We don't worry about the color of the exec page, we map the 2657 * same page to pages in the way and then do the icache_sync on 2658 * the entire way making sure we are cleaned. 2659 */ 2660 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode 2661 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE); 2662 2663 for (size_t i = 0, j = 0; i < way_size; 2664 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) { 2665 l2pte_reset(ptep + j); 2666 PTE_SYNC(ptep + j); 2667 2668 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC); 2669 /* 2670 * Set up a PTE with to flush these cache lines. 2671 */ 2672 l2pte_set(ptep + j, npte, 0); 2673 } 2674 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE); 2675 2676 /* 2677 * Flush it. 2678 */ 2679 cpu_icache_sync_range(dstp, way_size); 2680 2681 for (size_t i = 0, j = 0; i < way_size; 2682 i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) { 2683 /* 2684 * Unmap the page(s). 2685 */ 2686 l2pte_reset(ptep + j); 2687 pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC); 2688 } 2689 PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE); 2690 2691 md->pvh_attrs |= PVF_EXEC; 2692 PMAPCOUNT(exec_synced); 2693 } 2694 2695 #ifndef ARM_MMU_EXTENDED 2696 void 2697 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush) 2698 { 2699 vsize_t va_offset, end_va; 2700 bool wbinv_p; 2701 2702 if (arm_cache_prefer_mask == 0) 2703 return; 2704 2705 switch (flush) { 2706 case PMAP_FLUSH_PRIMARY: 2707 if (md->pvh_attrs & PVF_MULTCLR) { 2708 va_offset = 0; 2709 end_va = arm_cache_prefer_mask; 2710 md->pvh_attrs &= ~PVF_MULTCLR; 2711 PMAPCOUNT(vac_flush_lots); 2712 } else { 2713 va_offset = md->pvh_attrs & arm_cache_prefer_mask; 2714 end_va = va_offset; 2715 PMAPCOUNT(vac_flush_one); 2716 } 2717 /* 2718 * Mark that the page is no longer dirty. 2719 */ 2720 md->pvh_attrs &= ~PVF_DIRTY; 2721 wbinv_p = true; 2722 break; 2723 case PMAP_FLUSH_SECONDARY: 2724 va_offset = 0; 2725 end_va = arm_cache_prefer_mask; 2726 wbinv_p = true; 2727 md->pvh_attrs &= ~PVF_MULTCLR; 2728 PMAPCOUNT(vac_flush_lots); 2729 break; 2730 case PMAP_CLEAN_PRIMARY: 2731 va_offset = md->pvh_attrs & arm_cache_prefer_mask; 2732 end_va = va_offset; 2733 wbinv_p = false; 2734 /* 2735 * Mark that the page is no longer dirty. 2736 */ 2737 if ((md->pvh_attrs & PVF_DMOD) == 0) 2738 md->pvh_attrs &= ~PVF_DIRTY; 2739 PMAPCOUNT(vac_clean_one); 2740 break; 2741 default: 2742 return; 2743 } 2744 2745 KASSERT(!(md->pvh_attrs & PVF_NC)); 2746 2747 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n", 2748 md, md->pvh_attrs)); 2749 2750 const size_t scache_line_size = arm_scache.dcache_line_size; 2751 2752 for (; va_offset <= end_va; va_offset += PAGE_SIZE) { 2753 pt_entry_t * const ptep = cpu_cdst_pte(va_offset); 2754 const vaddr_t dstp = cpu_cdstp(va_offset); 2755 const pt_entry_t opte = *ptep; 2756 2757 if (flush == PMAP_FLUSH_SECONDARY 2758 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask)) 2759 continue; 2760 2761 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC); 2762 /* 2763 * Set up a PTE with the right coloring to flush 2764 * existing cache entries. 2765 */ 2766 const pt_entry_t npte = L2_S_PROTO 2767 | pa 2768 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) 2769 | pte_l2_s_cache_mode; 2770 l2pte_set(ptep, npte, opte); 2771 PTE_SYNC(ptep); 2772 2773 /* 2774 * Flush it. Make sure to flush secondary cache too since 2775 * bus_dma will ignore uncached pages. 2776 */ 2777 if (scache_line_size != 0) { 2778 cpu_dcache_wb_range(dstp, PAGE_SIZE); 2779 if (wbinv_p) { 2780 cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE); 2781 cpu_dcache_inv_range(dstp, PAGE_SIZE); 2782 } else { 2783 cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE); 2784 } 2785 } else { 2786 if (wbinv_p) { 2787 cpu_dcache_wbinv_range(dstp, PAGE_SIZE); 2788 } else { 2789 cpu_dcache_wb_range(dstp, PAGE_SIZE); 2790 } 2791 } 2792 2793 /* 2794 * Restore the page table entry since we might have interrupted 2795 * pmap_zero_page or pmap_copy_page which was already using 2796 * this pte. 2797 */ 2798 if (opte) { 2799 l2pte_set(ptep, opte, npte); 2800 } else { 2801 l2pte_reset(ptep); 2802 } 2803 PTE_SYNC(ptep); 2804 pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC); 2805 } 2806 } 2807 #endif /* ARM_MMU_EXTENDED */ 2808 #endif /* PMAP_CACHE_VIPT */ 2809 2810 /* 2811 * Routine: pmap_page_remove 2812 * Function: 2813 * Removes this physical page from 2814 * all physical maps in which it resides. 2815 * Reflects back modify bits to the pager. 2816 */ 2817 static void 2818 pmap_page_remove(struct vm_page_md *md, paddr_t pa) 2819 { 2820 struct l2_bucket *l2b; 2821 struct pv_entry *pv; 2822 pt_entry_t *ptep; 2823 #ifndef ARM_MMU_EXTENDED 2824 bool flush = false; 2825 #endif 2826 u_int flags = 0; 2827 2828 NPDEBUG(PDB_FOLLOW, 2829 printf("pmap_page_remove: md %p (0x%08lx)\n", md, 2830 pa)); 2831 2832 struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list); 2833 pmap_acquire_page_lock(md); 2834 if (*pvp == NULL) { 2835 #ifdef PMAP_CACHE_VIPT 2836 /* 2837 * We *know* the page contents are about to be replaced. 2838 * Discard the exec contents 2839 */ 2840 if (PV_IS_EXEC_P(md->pvh_attrs)) 2841 PMAPCOUNT(exec_discarded_page_protect); 2842 md->pvh_attrs &= ~PVF_EXEC; 2843 PMAP_VALIDATE_MD_PAGE(md); 2844 #endif 2845 pmap_release_page_lock(md); 2846 return; 2847 } 2848 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 2849 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md)); 2850 #endif 2851 2852 /* 2853 * Clear alias counts 2854 */ 2855 #ifdef PMAP_CACHE_VIVT 2856 md->k_mappings = 0; 2857 #endif 2858 md->urw_mappings = md->uro_mappings = 0; 2859 2860 #ifdef PMAP_CACHE_VIVT 2861 pmap_clean_page(md, false); 2862 #endif 2863 2864 while ((pv = *pvp) != NULL) { 2865 pmap_t pm = pv->pv_pmap; 2866 #ifndef ARM_MMU_EXTENDED 2867 if (flush == false && pmap_is_current(pm)) 2868 flush = true; 2869 #endif 2870 2871 if (pm == pmap_kernel()) { 2872 #ifdef PMAP_CACHE_VIPT 2873 /* 2874 * If this was unmanaged mapping, it must be preserved. 2875 * Move it back on the list and advance the end-of-list 2876 * pointer. 2877 */ 2878 if (PV_IS_KENTRY_P(pv->pv_flags)) { 2879 *pvp = pv; 2880 pvp = &SLIST_NEXT(pv, pv_link); 2881 continue; 2882 } 2883 if (pv->pv_flags & PVF_WRITE) 2884 md->krw_mappings--; 2885 else 2886 md->kro_mappings--; 2887 #endif 2888 PMAPCOUNT(kernel_unmappings); 2889 } 2890 *pvp = SLIST_NEXT(pv, pv_link); /* remove from list */ 2891 PMAPCOUNT(unmappings); 2892 2893 pmap_release_page_lock(md); 2894 pmap_acquire_pmap_lock(pm); 2895 2896 l2b = pmap_get_l2_bucket(pm, pv->pv_va); 2897 KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va); 2898 2899 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 2900 2901 /* 2902 * Update statistics 2903 */ 2904 --pm->pm_stats.resident_count; 2905 2906 /* Wired bit */ 2907 if (pv->pv_flags & PVF_WIRED) 2908 --pm->pm_stats.wired_count; 2909 2910 flags |= pv->pv_flags; 2911 2912 /* 2913 * Invalidate the PTEs. 2914 */ 2915 l2pte_reset(ptep); 2916 PTE_SYNC_CURRENT(pm, ptep); 2917 2918 #ifdef ARM_MMU_EXTENDED 2919 pmap_tlb_invalidate_addr(pm, pv->pv_va); 2920 #endif 2921 2922 pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE); 2923 2924 pmap_release_pmap_lock(pm); 2925 2926 pool_put(&pmap_pv_pool, pv); 2927 pmap_acquire_page_lock(md); 2928 #ifdef MULTIPROCESSOR 2929 /* 2930 * Restart of the beginning of the list. 2931 */ 2932 pvp = &SLIST_FIRST(&md->pvh_list); 2933 #endif 2934 } 2935 /* 2936 * if we reach the end of the list and there are still mappings, they 2937 * might be able to be cached now. And they must be kernel mappings. 2938 */ 2939 if (!SLIST_EMPTY(&md->pvh_list)) { 2940 pmap_vac_me_harder(md, pa, pmap_kernel(), 0); 2941 } 2942 2943 #ifdef PMAP_CACHE_VIPT 2944 /* 2945 * Its EXEC cache is now gone. 2946 */ 2947 if (PV_IS_EXEC_P(md->pvh_attrs)) 2948 PMAPCOUNT(exec_discarded_page_protect); 2949 md->pvh_attrs &= ~PVF_EXEC; 2950 KASSERT(md->urw_mappings == 0); 2951 KASSERT(md->uro_mappings == 0); 2952 #ifndef ARM_MMU_EXTENDED 2953 if (arm_cache_prefer_mask != 0) { 2954 if (md->krw_mappings == 0) 2955 md->pvh_attrs &= ~PVF_WRITE; 2956 PMAP_VALIDATE_MD_PAGE(md); 2957 } 2958 #endif /* ARM_MMU_EXTENDED */ 2959 #endif /* PMAP_CACHE_VIPT */ 2960 pmap_release_page_lock(md); 2961 2962 #ifndef ARM_MMU_EXTENDED 2963 if (flush) { 2964 /* 2965 * Note: We can't use pmap_tlb_flush{I,D}() here since that 2966 * would need a subsequent call to pmap_update() to ensure 2967 * curpm->pm_cstate.cs_all is reset. Our callers are not 2968 * required to do that (see pmap(9)), so we can't modify 2969 * the current pmap's state. 2970 */ 2971 if (PV_BEEN_EXECD(flags)) 2972 cpu_tlb_flushID(); 2973 else 2974 cpu_tlb_flushD(); 2975 } 2976 cpu_cpwait(); 2977 #endif /* ARM_MMU_EXTENDED */ 2978 } 2979 2980 /* 2981 * pmap_t pmap_create(void) 2982 * 2983 * Create a new pmap structure from scratch. 2984 */ 2985 pmap_t 2986 pmap_create(void) 2987 { 2988 pmap_t pm; 2989 2990 pm = pool_cache_get(&pmap_cache, PR_WAITOK); 2991 2992 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE); 2993 uvm_obj_init(&pm->pm_obj, NULL, false, 1); 2994 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock); 2995 2996 pm->pm_stats.wired_count = 0; 2997 pm->pm_stats.resident_count = 1; 2998 #ifdef ARM_MMU_EXTENDED 2999 #ifdef MULTIPROCESSOR 3000 kcpuset_create(&pm->pm_active, true); 3001 kcpuset_create(&pm->pm_onproc, true); 3002 #endif 3003 #else 3004 pm->pm_cstate.cs_all = 0; 3005 #endif 3006 pmap_alloc_l1(pm); 3007 3008 /* 3009 * Note: The pool cache ensures that the pm_l2[] array is already 3010 * initialised to zero. 3011 */ 3012 3013 pmap_pinit(pm); 3014 3015 return (pm); 3016 } 3017 3018 u_int 3019 arm32_mmap_flags(paddr_t pa) 3020 { 3021 /* 3022 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff 3023 * and we're using the upper bits in page numbers to pass flags around 3024 * so we might as well use the same bits 3025 */ 3026 return (u_int)pa & PMAP_MD_MASK; 3027 } 3028 /* 3029 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, 3030 * u_int flags) 3031 * 3032 * Insert the given physical page (p) at 3033 * the specified virtual address (v) in the 3034 * target physical map with the protection requested. 3035 * 3036 * NB: This is the only routine which MAY NOT lazy-evaluate 3037 * or lose information. That is, this routine must actually 3038 * insert this page into the given map NOW. 3039 */ 3040 int 3041 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 3042 { 3043 struct l2_bucket *l2b; 3044 struct vm_page *pg, *opg; 3045 u_int nflags; 3046 u_int oflags; 3047 const bool kpm_p = (pm == pmap_kernel()); 3048 #ifdef ARM_HAS_VBAR 3049 const bool vector_page_p = false; 3050 #else 3051 const bool vector_page_p = (va == vector_page); 3052 #endif 3053 3054 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 3055 3056 UVMHIST_LOG(maphist, " (pm %#jx va %#jx pa %#jx prot %#jx", 3057 (uintptr_t)pm, va, pa, prot); 3058 UVMHIST_LOG(maphist, " flag %#jx", flags, 0, 0, 0); 3059 3060 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0); 3061 KDASSERT(((va | pa) & PGOFSET) == 0); 3062 3063 /* 3064 * Get a pointer to the page. Later on in this function, we 3065 * test for a managed page by checking pg != NULL. 3066 */ 3067 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL; 3068 3069 nflags = 0; 3070 if (prot & VM_PROT_WRITE) 3071 nflags |= PVF_WRITE; 3072 if (prot & VM_PROT_EXECUTE) 3073 nflags |= PVF_EXEC; 3074 if (flags & PMAP_WIRED) 3075 nflags |= PVF_WIRED; 3076 3077 pmap_acquire_pmap_lock(pm); 3078 3079 /* 3080 * Fetch the L2 bucket which maps this page, allocating one if 3081 * necessary for user pmaps. 3082 */ 3083 if (kpm_p) { 3084 l2b = pmap_get_l2_bucket(pm, va); 3085 } else { 3086 l2b = pmap_alloc_l2_bucket(pm, va); 3087 } 3088 if (l2b == NULL) { 3089 if (flags & PMAP_CANFAIL) { 3090 pmap_release_pmap_lock(pm); 3091 return (ENOMEM); 3092 } 3093 panic("pmap_enter: failed to allocate L2 bucket"); 3094 } 3095 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)]; 3096 const pt_entry_t opte = *ptep; 3097 pt_entry_t npte = pa; 3098 oflags = 0; 3099 3100 if (opte) { 3101 /* 3102 * There is already a mapping at this address. 3103 * If the physical address is different, lookup the 3104 * vm_page. 3105 */ 3106 if (l2pte_pa(opte) != pa) { 3107 KASSERT(!pmap_pv_tracked(pa)); 3108 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 3109 } else 3110 opg = pg; 3111 } else 3112 opg = NULL; 3113 3114 struct pmap_page *pp = pmap_pv_tracked(pa); 3115 3116 if (pg || pp) { 3117 KASSERT((pg != NULL) != (pp != NULL)); 3118 struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) : 3119 PMAP_PAGE_TO_MD(pp); 3120 3121 /* 3122 * This is to be a managed mapping. 3123 */ 3124 pmap_acquire_page_lock(md); 3125 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) { 3126 /* 3127 * - The access type indicates that we don't need 3128 * to do referenced emulation. 3129 * OR 3130 * - The physical page has already been referenced 3131 * so no need to re-do referenced emulation here. 3132 */ 3133 npte |= l2pte_set_readonly(L2_S_PROTO); 3134 3135 nflags |= PVF_REF; 3136 3137 if ((prot & VM_PROT_WRITE) != 0 && 3138 ((flags & VM_PROT_WRITE) != 0 || 3139 (md->pvh_attrs & PVF_MOD) != 0)) { 3140 /* 3141 * This is a writable mapping, and the 3142 * page's mod state indicates it has 3143 * already been modified. Make it 3144 * writable from the outset. 3145 */ 3146 npte = l2pte_set_writable(npte); 3147 nflags |= PVF_MOD; 3148 } 3149 3150 #ifdef ARM_MMU_EXTENDED 3151 /* 3152 * If the page has been cleaned, then the pvh_attrs 3153 * will have PVF_EXEC set, so mark it execute so we 3154 * don't get an access fault when trying to execute 3155 * from it. 3156 */ 3157 if (md->pvh_attrs & nflags & PVF_EXEC) { 3158 npte &= ~L2_XS_XN; 3159 } 3160 #endif 3161 } else { 3162 /* 3163 * Need to do page referenced emulation. 3164 */ 3165 npte |= L2_TYPE_INV; 3166 } 3167 3168 if (flags & ARM32_MMAP_WRITECOMBINE) { 3169 npte |= pte_l2_s_wc_mode; 3170 } else 3171 npte |= pte_l2_s_cache_mode; 3172 3173 if (pg != NULL && pg == opg) { 3174 /* 3175 * We're changing the attrs of an existing mapping. 3176 */ 3177 oflags = pmap_modify_pv(md, pa, pm, va, 3178 PVF_WRITE | PVF_EXEC | PVF_WIRED | 3179 PVF_MOD | PVF_REF, nflags); 3180 3181 #ifdef PMAP_CACHE_VIVT 3182 /* 3183 * We may need to flush the cache if we're 3184 * doing rw-ro... 3185 */ 3186 if (pm->pm_cstate.cs_cache_d && 3187 (oflags & PVF_NC) == 0 && 3188 l2pte_writable_p(opte) && 3189 (prot & VM_PROT_WRITE) == 0) 3190 cpu_dcache_wb_range(va, PAGE_SIZE); 3191 #endif 3192 } else { 3193 struct pv_entry *pv; 3194 /* 3195 * New mapping, or changing the backing page 3196 * of an existing mapping. 3197 */ 3198 if (opg) { 3199 struct vm_page_md *omd = VM_PAGE_TO_MD(opg); 3200 paddr_t opa = VM_PAGE_TO_PHYS(opg); 3201 3202 /* 3203 * Replacing an existing mapping with a new one. 3204 * It is part of our managed memory so we 3205 * must remove it from the PV list 3206 */ 3207 pv = pmap_remove_pv(omd, opa, pm, va); 3208 pmap_vac_me_harder(omd, opa, pm, 0); 3209 oflags = pv->pv_flags; 3210 3211 #ifdef PMAP_CACHE_VIVT 3212 /* 3213 * If the old mapping was valid (ref/mod 3214 * emulation creates 'invalid' mappings 3215 * initially) then make sure to frob 3216 * the cache. 3217 */ 3218 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) { 3219 pmap_cache_wbinv_page(pm, va, true, 3220 oflags); 3221 } 3222 #endif 3223 } else { 3224 pmap_release_page_lock(md); 3225 pv = pool_get(&pmap_pv_pool, PR_NOWAIT); 3226 if (pv == NULL) { 3227 pmap_release_pmap_lock(pm); 3228 if ((flags & PMAP_CANFAIL) == 0) 3229 panic("pmap_enter: " 3230 "no pv entries"); 3231 3232 pmap_free_l2_bucket(pm, l2b, 0); 3233 UVMHIST_LOG(maphist, " <-- done (ENOMEM)", 3234 0, 0, 0, 0); 3235 return (ENOMEM); 3236 } 3237 pmap_acquire_page_lock(md); 3238 } 3239 3240 pmap_enter_pv(md, pa, pv, pm, va, nflags); 3241 } 3242 pmap_release_page_lock(md); 3243 } else { 3244 /* 3245 * We're mapping an unmanaged page. 3246 * These are always readable, and possibly writable, from 3247 * the get go as we don't need to track ref/mod status. 3248 */ 3249 npte |= l2pte_set_readonly(L2_S_PROTO); 3250 if (prot & VM_PROT_WRITE) 3251 npte = l2pte_set_writable(npte); 3252 3253 /* 3254 * Make sure the vector table is mapped cacheable 3255 */ 3256 if ((vector_page_p && !kpm_p) 3257 || (flags & ARM32_MMAP_CACHEABLE)) { 3258 npte |= pte_l2_s_cache_mode; 3259 #ifdef ARM_MMU_EXTENDED 3260 npte &= ~L2_XS_XN; /* and executable */ 3261 #endif 3262 } else if (flags & ARM32_MMAP_WRITECOMBINE) { 3263 npte |= pte_l2_s_wc_mode; 3264 } 3265 if (opg) { 3266 /* 3267 * Looks like there's an existing 'managed' mapping 3268 * at this address. 3269 */ 3270 struct vm_page_md *omd = VM_PAGE_TO_MD(opg); 3271 paddr_t opa = VM_PAGE_TO_PHYS(opg); 3272 3273 pmap_acquire_page_lock(omd); 3274 struct pv_entry *pv = pmap_remove_pv(omd, opa, pm, va); 3275 pmap_vac_me_harder(omd, opa, pm, 0); 3276 oflags = pv->pv_flags; 3277 pmap_release_page_lock(omd); 3278 3279 #ifdef PMAP_CACHE_VIVT 3280 if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) { 3281 pmap_cache_wbinv_page(pm, va, true, oflags); 3282 } 3283 #endif 3284 pool_put(&pmap_pv_pool, pv); 3285 } 3286 } 3287 3288 /* 3289 * Make sure userland mappings get the right permissions 3290 */ 3291 if (!vector_page_p && !kpm_p) { 3292 npte |= L2_S_PROT_U; 3293 #ifdef ARM_MMU_EXTENDED 3294 npte |= L2_XS_nG; /* user pages are not global */ 3295 #endif 3296 } 3297 3298 /* 3299 * Keep the stats up to date 3300 */ 3301 if (opte == 0) { 3302 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE; 3303 pm->pm_stats.resident_count++; 3304 } 3305 3306 UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0); 3307 3308 #if defined(ARM_MMU_EXTENDED) 3309 /* 3310 * If exec protection was requested but the page hasn't been synced, 3311 * sync it now and allow execution from it. 3312 */ 3313 if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) { 3314 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 3315 npte &= ~L2_XS_XN; 3316 pmap_syncicache_page(md, pa); 3317 PMAPCOUNT(exec_synced_map); 3318 } 3319 #endif 3320 /* 3321 * If this is just a wiring change, the two PTEs will be 3322 * identical, so there's no need to update the page table. 3323 */ 3324 if (npte != opte) { 3325 l2pte_reset(ptep); 3326 PTE_SYNC(ptep); 3327 if (l2pte_valid_p(opte)) { 3328 pmap_tlb_flush_SE(pm, va, oflags); 3329 } 3330 l2pte_set(ptep, npte, 0); 3331 PTE_SYNC(ptep); 3332 #ifndef ARM_MMU_EXTENDED 3333 bool is_cached = pmap_is_cached(pm); 3334 if (is_cached) { 3335 /* 3336 * We only need to frob the cache/tlb if this pmap 3337 * is current 3338 */ 3339 if (!vector_page_p && l2pte_valid_p(npte)) { 3340 /* 3341 * This mapping is likely to be accessed as 3342 * soon as we return to userland. Fix up the 3343 * L1 entry to avoid taking another 3344 * page/domain fault. 3345 */ 3346 pd_entry_t *pdep = pmap_l1_kva(pm) 3347 + l1pte_index(va); 3348 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa 3349 | L1_C_DOM(pmap_domain(pm)); 3350 if (*pdep != pde) { 3351 l1pte_setone(pdep, pde); 3352 PDE_SYNC(pdep); 3353 } 3354 } 3355 } 3356 #endif /* !ARM_MMU_EXTENDED */ 3357 3358 #ifndef ARM_MMU_EXTENDED 3359 UVMHIST_LOG(maphist, " is_cached %jd cs 0x%08jx", 3360 is_cached, pm->pm_cstate.cs_all, 0, 0); 3361 3362 if (pg != NULL) { 3363 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 3364 3365 pmap_acquire_page_lock(md); 3366 pmap_vac_me_harder(md, pa, pm, va); 3367 pmap_release_page_lock(md); 3368 } 3369 #endif 3370 } 3371 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC) 3372 if (pg) { 3373 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 3374 3375 pmap_acquire_page_lock(md); 3376 #ifndef ARM_MMU_EXTENDED 3377 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 3378 #endif 3379 PMAP_VALIDATE_MD_PAGE(md); 3380 pmap_release_page_lock(md); 3381 } 3382 #endif 3383 3384 pmap_release_pmap_lock(pm); 3385 3386 return (0); 3387 } 3388 3389 /* 3390 * pmap_remove() 3391 * 3392 * pmap_remove is responsible for nuking a number of mappings for a range 3393 * of virtual address space in the current pmap. To do this efficiently 3394 * is interesting, because in a number of cases a wide virtual address 3395 * range may be supplied that contains few actual mappings. So, the 3396 * optimisations are: 3397 * 1. Skip over hunks of address space for which no L1 or L2 entry exists. 3398 * 2. Build up a list of pages we've hit, up to a maximum, so we can 3399 * maybe do just a partial cache clean. This path of execution is 3400 * complicated by the fact that the cache must be flushed _before_ 3401 * the PTE is nuked, being a VAC :-) 3402 * 3. If we're called after UVM calls pmap_remove_all(), we can defer 3403 * all invalidations until pmap_update(), since pmap_remove_all() has 3404 * already flushed the cache. 3405 * 4. Maybe later fast-case a single page, but I don't think this is 3406 * going to make _that_ much difference overall. 3407 */ 3408 3409 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3 3410 3411 void 3412 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva) 3413 { 3414 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 3415 UVMHIST_LOG(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)", 3416 (uintptr_t)pm, sva, eva, 0); 3417 3418 /* 3419 * we lock in the pmap => pv_head direction 3420 */ 3421 pmap_acquire_pmap_lock(pm); 3422 3423 #ifndef ARM_MMU_EXTENDED 3424 u_int cleanlist_idx, total, cnt; 3425 struct { 3426 vaddr_t va; 3427 pt_entry_t *ptep; 3428 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE]; 3429 3430 if (pm->pm_remove_all || !pmap_is_cached(pm)) { 3431 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1; 3432 if (pm->pm_cstate.cs_tlb == 0) 3433 pm->pm_remove_all = true; 3434 } else 3435 cleanlist_idx = 0; 3436 total = 0; 3437 #endif 3438 3439 while (sva < eva) { 3440 /* 3441 * Do one L2 bucket's worth at a time. 3442 */ 3443 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva); 3444 if (next_bucket > eva) 3445 next_bucket = eva; 3446 3447 struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva); 3448 if (l2b == NULL) { 3449 sva = next_bucket; 3450 continue; 3451 } 3452 3453 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)]; 3454 u_int mappings = 0; 3455 3456 for (;sva < next_bucket; 3457 sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) { 3458 pt_entry_t opte = *ptep; 3459 3460 if (opte == 0) { 3461 /* Nothing here, move along */ 3462 continue; 3463 } 3464 3465 u_int flags = PVF_REF; 3466 paddr_t pa = l2pte_pa(opte); 3467 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); 3468 3469 /* 3470 * Update flags. In a number of circumstances, 3471 * we could cluster a lot of these and do a 3472 * number of sequential pages in one go. 3473 */ 3474 if (pg != NULL) { 3475 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 3476 struct pv_entry *pv; 3477 3478 pmap_acquire_page_lock(md); 3479 pv = pmap_remove_pv(md, pa, pm, sva); 3480 pmap_vac_me_harder(md, pa, pm, 0); 3481 pmap_release_page_lock(md); 3482 if (pv != NULL) { 3483 if (pm->pm_remove_all == false) { 3484 flags = pv->pv_flags; 3485 } 3486 pool_put(&pmap_pv_pool, pv); 3487 } 3488 } 3489 mappings += PAGE_SIZE / L2_S_SIZE; 3490 3491 if (!l2pte_valid_p(opte)) { 3492 /* 3493 * Ref/Mod emulation is still active for this 3494 * mapping, therefore it is has not yet been 3495 * accessed. No need to frob the cache/tlb. 3496 */ 3497 l2pte_reset(ptep); 3498 PTE_SYNC_CURRENT(pm, ptep); 3499 continue; 3500 } 3501 3502 #ifdef ARM_MMU_EXTENDED 3503 l2pte_reset(ptep); 3504 PTE_SYNC(ptep); 3505 if (__predict_false(pm->pm_remove_all == false)) { 3506 pmap_tlb_flush_SE(pm, sva, flags); 3507 } 3508 #else 3509 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) { 3510 /* Add to the clean list. */ 3511 cleanlist[cleanlist_idx].ptep = ptep; 3512 cleanlist[cleanlist_idx].va = 3513 sva | (flags & PVF_EXEC); 3514 cleanlist_idx++; 3515 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) { 3516 /* Nuke everything if needed. */ 3517 #ifdef PMAP_CACHE_VIVT 3518 pmap_cache_wbinv_all(pm, PVF_EXEC); 3519 #endif 3520 /* 3521 * Roll back the previous PTE list, 3522 * and zero out the current PTE. 3523 */ 3524 for (cnt = 0; 3525 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) { 3526 l2pte_reset(cleanlist[cnt].ptep); 3527 PTE_SYNC(cleanlist[cnt].ptep); 3528 } 3529 l2pte_reset(ptep); 3530 PTE_SYNC(ptep); 3531 cleanlist_idx++; 3532 pm->pm_remove_all = true; 3533 } else { 3534 l2pte_reset(ptep); 3535 PTE_SYNC(ptep); 3536 if (pm->pm_remove_all == false) { 3537 pmap_tlb_flush_SE(pm, sva, flags); 3538 } 3539 } 3540 #endif 3541 } 3542 3543 #ifndef ARM_MMU_EXTENDED 3544 /* 3545 * Deal with any left overs 3546 */ 3547 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) { 3548 total += cleanlist_idx; 3549 for (cnt = 0; cnt < cleanlist_idx; cnt++) { 3550 l2pte_reset(cleanlist[cnt].ptep); 3551 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep); 3552 vaddr_t va = cleanlist[cnt].va; 3553 if (pm->pm_cstate.cs_all != 0) { 3554 vaddr_t clva = va & ~PAGE_MASK; 3555 u_int flags = va & PVF_EXEC; 3556 #ifdef PMAP_CACHE_VIVT 3557 pmap_cache_wbinv_page(pm, clva, true, 3558 PVF_REF | PVF_WRITE | flags); 3559 #endif 3560 pmap_tlb_flush_SE(pm, clva, 3561 PVF_REF | flags); 3562 } 3563 } 3564 3565 /* 3566 * If it looks like we're removing a whole bunch 3567 * of mappings, it's faster to just write-back 3568 * the whole cache now and defer TLB flushes until 3569 * pmap_update() is called. 3570 */ 3571 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE) 3572 cleanlist_idx = 0; 3573 else { 3574 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1; 3575 #ifdef PMAP_CACHE_VIVT 3576 pmap_cache_wbinv_all(pm, PVF_EXEC); 3577 #endif 3578 pm->pm_remove_all = true; 3579 } 3580 } 3581 #endif /* ARM_MMU_EXTENDED */ 3582 3583 pmap_free_l2_bucket(pm, l2b, mappings); 3584 pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE); 3585 } 3586 3587 pmap_release_pmap_lock(pm); 3588 } 3589 3590 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3591 static struct pv_entry * 3592 pmap_kremove_pg(struct vm_page *pg, vaddr_t va) 3593 { 3594 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 3595 paddr_t pa = VM_PAGE_TO_PHYS(pg); 3596 struct pv_entry *pv; 3597 3598 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC)); 3599 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0); 3600 KASSERT(pmap_page_locked_p(md)); 3601 3602 pv = pmap_remove_pv(md, pa, pmap_kernel(), va); 3603 KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va); 3604 KASSERT(PV_IS_KENTRY_P(pv->pv_flags)); 3605 3606 /* 3607 * If we are removing a writeable mapping to a cached exec page, 3608 * if it's the last mapping then clear it execness other sync 3609 * the page to the icache. 3610 */ 3611 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC 3612 && (pv->pv_flags & PVF_WRITE) != 0) { 3613 if (SLIST_EMPTY(&md->pvh_list)) { 3614 md->pvh_attrs &= ~PVF_EXEC; 3615 PMAPCOUNT(exec_discarded_kremove); 3616 } else { 3617 pmap_syncicache_page(md, pa); 3618 PMAPCOUNT(exec_synced_kremove); 3619 } 3620 } 3621 pmap_vac_me_harder(md, pa, pmap_kernel(), 0); 3622 3623 return pv; 3624 } 3625 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */ 3626 3627 /* 3628 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping 3629 * 3630 * We assume there is already sufficient KVM space available 3631 * to do this, as we can't allocate L2 descriptor tables/metadata 3632 * from here. 3633 */ 3634 void 3635 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 3636 { 3637 #ifdef PMAP_CACHE_VIVT 3638 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL; 3639 #endif 3640 #ifdef PMAP_CACHE_VIPT 3641 struct vm_page *pg = PHYS_TO_VM_PAGE(pa); 3642 struct vm_page *opg; 3643 #ifndef ARM_MMU_EXTENDED 3644 struct pv_entry *pv = NULL; 3645 #endif 3646 #endif 3647 struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL; 3648 3649 UVMHIST_FUNC(__func__); 3650 3651 if (pmap_initialized) { 3652 UVMHIST_CALLED(maphist); 3653 UVMHIST_LOG(maphist, " (va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", 3654 va, pa, prot, flags); 3655 } 3656 3657 pmap_t kpm = pmap_kernel(); 3658 pmap_acquire_pmap_lock(kpm); 3659 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va); 3660 const size_t l1slot __diagused = l1pte_index(va); 3661 KASSERTMSG(l2b != NULL, 3662 "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p", 3663 va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)], 3664 kpm->pm_l2[L2_IDX(l1slot)] 3665 ? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)] 3666 : NULL, 3667 kpm->pm_l2[L2_IDX(l1slot)] 3668 ? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva 3669 : NULL); 3670 KASSERT(l2b->l2b_kva != NULL); 3671 3672 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 3673 const pt_entry_t opte = *ptep; 3674 3675 if (opte == 0) { 3676 PMAPCOUNT(kenter_mappings); 3677 l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE; 3678 } else { 3679 PMAPCOUNT(kenter_remappings); 3680 #ifdef PMAP_CACHE_VIPT 3681 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 3682 #if !defined(ARM_MMU_EXTENDED) || defined(DIAGNOSTIC) 3683 struct vm_page_md *omd __diagused = VM_PAGE_TO_MD(opg); 3684 #endif 3685 if (opg && arm_cache_prefer_mask != 0) { 3686 KASSERT(opg != pg); 3687 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0); 3688 KASSERT((flags & PMAP_KMPAGE) == 0); 3689 #ifndef ARM_MMU_EXTENDED 3690 pmap_acquire_page_lock(omd); 3691 pv = pmap_kremove_pg(opg, va); 3692 pmap_release_page_lock(omd); 3693 #endif 3694 } 3695 #endif 3696 if (l2pte_valid_p(opte)) { 3697 l2pte_reset(ptep); 3698 PTE_SYNC(ptep); 3699 #ifdef PMAP_CACHE_VIVT 3700 cpu_dcache_wbinv_range(va, PAGE_SIZE); 3701 #endif 3702 cpu_tlb_flushD_SE(va); 3703 cpu_cpwait(); 3704 } 3705 } 3706 pmap_release_pmap_lock(kpm); 3707 pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot); 3708 3709 if (flags & PMAP_PTE) { 3710 KASSERT((flags & PMAP_CACHE_MASK) == 0); 3711 if (!(flags & PMAP_NOCACHE)) 3712 npte |= pte_l2_s_cache_mode_pt; 3713 } else { 3714 switch (flags & PMAP_CACHE_MASK) { 3715 case PMAP_NOCACHE: 3716 break; 3717 case PMAP_WRITE_COMBINE: 3718 npte |= pte_l2_s_wc_mode; 3719 break; 3720 default: 3721 npte |= pte_l2_s_cache_mode; 3722 break; 3723 } 3724 } 3725 #ifdef ARM_MMU_EXTENDED 3726 if (prot & VM_PROT_EXECUTE) 3727 npte &= ~L2_XS_XN; 3728 #endif 3729 l2pte_set(ptep, npte, 0); 3730 PTE_SYNC(ptep); 3731 3732 if (pg) { 3733 if (flags & PMAP_KMPAGE) { 3734 KASSERT(md->urw_mappings == 0); 3735 KASSERT(md->uro_mappings == 0); 3736 KASSERT(md->krw_mappings == 0); 3737 KASSERT(md->kro_mappings == 0); 3738 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3739 KASSERT(pv == NULL); 3740 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0); 3741 KASSERT((md->pvh_attrs & PVF_NC) == 0); 3742 /* if there is a color conflict, evict from cache. */ 3743 if (pmap_is_page_colored_p(md) 3744 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) { 3745 PMAPCOUNT(vac_color_change); 3746 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY); 3747 } else if (md->pvh_attrs & PVF_MULTCLR) { 3748 /* 3749 * If this page has multiple colors, expunge 3750 * them. 3751 */ 3752 PMAPCOUNT(vac_flush_lots2); 3753 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY); 3754 } 3755 /* 3756 * Since this is a KMPAGE, there can be no contention 3757 * for this page so don't lock it. 3758 */ 3759 md->pvh_attrs &= PAGE_SIZE - 1; 3760 md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY 3761 | (va & arm_cache_prefer_mask); 3762 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */ 3763 md->pvh_attrs |= PVF_KMPAGE; 3764 #endif 3765 atomic_inc_32(&pmap_kmpages); 3766 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3767 } else if (arm_cache_prefer_mask != 0) { 3768 if (pv == NULL) { 3769 pv = pool_get(&pmap_pv_pool, PR_NOWAIT); 3770 KASSERT(pv != NULL); 3771 } 3772 pmap_acquire_page_lock(md); 3773 pmap_enter_pv(md, pa, pv, pmap_kernel(), va, 3774 PVF_WIRED | PVF_KENTRY 3775 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0)); 3776 if ((prot & VM_PROT_WRITE) 3777 && !(md->pvh_attrs & PVF_NC)) 3778 md->pvh_attrs |= PVF_DIRTY; 3779 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC))); 3780 pmap_vac_me_harder(md, pa, pmap_kernel(), va); 3781 pmap_release_page_lock(md); 3782 #endif 3783 } 3784 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3785 } else { 3786 if (pv != NULL) 3787 pool_put(&pmap_pv_pool, pv); 3788 #endif 3789 } 3790 if (pmap_initialized) { 3791 UVMHIST_LOG(maphist, " <-- done (ptep %#jx: %#jx -> %#jx)", 3792 (uintptr_t)ptep, opte, npte, 0); 3793 } 3794 3795 } 3796 3797 void 3798 pmap_kremove(vaddr_t va, vsize_t len) 3799 { 3800 #ifdef UVMHIST 3801 u_int total_mappings = 0; 3802 #endif 3803 3804 PMAPCOUNT(kenter_unmappings); 3805 3806 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 3807 3808 UVMHIST_LOG(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0); 3809 3810 const vaddr_t eva = va + len; 3811 3812 pmap_acquire_pmap_lock(pmap_kernel()); 3813 3814 while (va < eva) { 3815 vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va); 3816 if (next_bucket > eva) 3817 next_bucket = eva; 3818 3819 pmap_t kpm = pmap_kernel(); 3820 struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va); 3821 KDASSERT(l2b != NULL); 3822 3823 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)]; 3824 pt_entry_t *ptep = sptep; 3825 u_int mappings = 0; 3826 3827 while (va < next_bucket) { 3828 const pt_entry_t opte = *ptep; 3829 struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 3830 if (opg != NULL) { 3831 struct vm_page_md *omd = VM_PAGE_TO_MD(opg); 3832 3833 if (omd->pvh_attrs & PVF_KMPAGE) { 3834 KASSERT(omd->urw_mappings == 0); 3835 KASSERT(omd->uro_mappings == 0); 3836 KASSERT(omd->krw_mappings == 0); 3837 KASSERT(omd->kro_mappings == 0); 3838 omd->pvh_attrs &= ~PVF_KMPAGE; 3839 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3840 if (arm_cache_prefer_mask != 0) { 3841 omd->pvh_attrs &= ~PVF_WRITE; 3842 } 3843 #endif 3844 atomic_dec_32(&pmap_kmpages); 3845 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 3846 } else if (arm_cache_prefer_mask != 0) { 3847 pmap_acquire_page_lock(omd); 3848 pool_put(&pmap_pv_pool, 3849 pmap_kremove_pg(opg, va)); 3850 pmap_release_page_lock(omd); 3851 #endif 3852 } 3853 } 3854 if (l2pte_valid_p(opte)) { 3855 l2pte_reset(ptep); 3856 PTE_SYNC(ptep); 3857 #ifdef PMAP_CACHE_VIVT 3858 cpu_dcache_wbinv_range(va, PAGE_SIZE); 3859 #endif 3860 cpu_tlb_flushD_SE(va); 3861 3862 mappings += PAGE_SIZE / L2_S_SIZE; 3863 } 3864 va += PAGE_SIZE; 3865 ptep += PAGE_SIZE / L2_S_SIZE; 3866 } 3867 KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u", 3868 mappings, l2b->l2b_occupancy); 3869 l2b->l2b_occupancy -= mappings; 3870 //PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep)); 3871 #ifdef UVMHIST 3872 total_mappings += mappings; 3873 #endif 3874 } 3875 pmap_release_pmap_lock(pmap_kernel()); 3876 cpu_cpwait(); 3877 UVMHIST_LOG(maphist, " <--- done (%ju mappings removed)", 3878 total_mappings, 0, 0, 0); 3879 } 3880 3881 bool 3882 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap) 3883 { 3884 3885 return pmap_extract_coherency(pm, va, pap, NULL); 3886 } 3887 3888 bool 3889 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp) 3890 { 3891 struct l2_dtable *l2; 3892 pd_entry_t *pdep, pde; 3893 pt_entry_t *ptep, pte; 3894 paddr_t pa; 3895 u_int l1slot; 3896 bool coherent; 3897 3898 pmap_acquire_pmap_lock(pm); 3899 3900 l1slot = l1pte_index(va); 3901 pdep = pmap_l1_kva(pm) + l1slot; 3902 pde = *pdep; 3903 3904 if (l1pte_section_p(pde)) { 3905 /* 3906 * These should only happen for pmap_kernel() 3907 */ 3908 KDASSERT(pm == pmap_kernel()); 3909 pmap_release_pmap_lock(pm); 3910 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 3911 if (l1pte_supersection_p(pde)) { 3912 pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET); 3913 } else 3914 #endif 3915 pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET); 3916 coherent = (pde & L1_S_CACHE_MASK) == 0; 3917 } else { 3918 /* 3919 * Note that we can't rely on the validity of the L1 3920 * descriptor as an indication that a mapping exists. 3921 * We have to look it up in the L2 dtable. 3922 */ 3923 l2 = pm->pm_l2[L2_IDX(l1slot)]; 3924 3925 if (l2 == NULL || 3926 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) { 3927 pmap_release_pmap_lock(pm); 3928 return false; 3929 } 3930 3931 pte = ptep[l2pte_index(va)]; 3932 pmap_release_pmap_lock(pm); 3933 3934 if (pte == 0) 3935 return false; 3936 3937 switch (pte & L2_TYPE_MASK) { 3938 case L2_TYPE_L: 3939 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET); 3940 coherent = (pte & L2_L_CACHE_MASK) == 0; 3941 break; 3942 3943 default: 3944 pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK); 3945 coherent = (pte & L2_S_CACHE_MASK) == 0; 3946 break; 3947 } 3948 } 3949 3950 if (pap != NULL) 3951 *pap = pa; 3952 3953 if (coherentp != NULL) 3954 *coherentp = (pm == pmap_kernel() && coherent); 3955 3956 return true; 3957 } 3958 3959 /* 3960 * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps 3961 * that map it 3962 */ 3963 3964 static void 3965 pmap_pv_remove(paddr_t pa) 3966 { 3967 struct pmap_page *pp; 3968 3969 pp = pmap_pv_tracked(pa); 3970 if (pp == NULL) 3971 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR, 3972 pa); 3973 3974 struct vm_page_md *md = PMAP_PAGE_TO_MD(pp); 3975 pmap_page_remove(md, pa); 3976 } 3977 3978 void 3979 pmap_pv_protect(paddr_t pa, vm_prot_t prot) 3980 { 3981 3982 /* the only case is remove at the moment */ 3983 KASSERT(prot == VM_PROT_NONE); 3984 pmap_pv_remove(pa); 3985 } 3986 3987 void 3988 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 3989 { 3990 struct l2_bucket *l2b; 3991 vaddr_t next_bucket; 3992 3993 NPDEBUG(PDB_PROTECT, 3994 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n", 3995 pm, sva, eva, prot)); 3996 3997 if ((prot & VM_PROT_READ) == 0) { 3998 pmap_remove(pm, sva, eva); 3999 return; 4000 } 4001 4002 if (prot & VM_PROT_WRITE) { 4003 /* 4004 * If this is a read->write transition, just ignore it and let 4005 * uvm_fault() take care of it later. 4006 */ 4007 return; 4008 } 4009 4010 pmap_acquire_pmap_lock(pm); 4011 4012 #ifndef ARM_MMU_EXTENDED 4013 const bool flush = eva - sva >= PAGE_SIZE * 4; 4014 u_int flags = 0; 4015 #endif 4016 u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC); 4017 4018 while (sva < eva) { 4019 next_bucket = L2_NEXT_BUCKET_VA(sva); 4020 if (next_bucket > eva) 4021 next_bucket = eva; 4022 4023 l2b = pmap_get_l2_bucket(pm, sva); 4024 if (l2b == NULL) { 4025 sva = next_bucket; 4026 continue; 4027 } 4028 4029 pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)]; 4030 4031 while (sva < next_bucket) { 4032 const pt_entry_t opte = *ptep; 4033 if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) { 4034 struct vm_page *pg; 4035 #ifndef ARM_MMU_EXTENDED 4036 u_int f; 4037 #endif 4038 4039 #ifdef PMAP_CACHE_VIVT 4040 /* 4041 * OK, at this point, we know we're doing 4042 * write-protect operation. If the pmap is 4043 * active, write-back the page. 4044 */ 4045 pmap_cache_wbinv_page(pm, sva, false, 4046 PVF_REF | PVF_WRITE); 4047 #endif 4048 4049 pg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 4050 pt_entry_t npte = l2pte_set_readonly(opte); 4051 l2pte_reset(ptep); 4052 PTE_SYNC(ptep); 4053 #ifdef ARM_MMU_EXTENDED 4054 pmap_tlb_flush_SE(pm, sva, PVF_REF); 4055 #endif 4056 l2pte_set(ptep, npte, 0); 4057 PTE_SYNC(ptep); 4058 4059 if (pg != NULL) { 4060 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4061 paddr_t pa = VM_PAGE_TO_PHYS(pg); 4062 4063 pmap_acquire_page_lock(md); 4064 #ifndef ARM_MMU_EXTENDED 4065 f = 4066 #endif 4067 pmap_modify_pv(md, pa, pm, sva, 4068 clr_mask, 0); 4069 pmap_vac_me_harder(md, pa, pm, sva); 4070 pmap_release_page_lock(md); 4071 #ifndef ARM_MMU_EXTENDED 4072 } else { 4073 f = PVF_REF | PVF_EXEC; 4074 } 4075 4076 if (flush) { 4077 flags |= f; 4078 } else { 4079 pmap_tlb_flush_SE(pm, sva, f); 4080 #endif 4081 } 4082 } 4083 4084 sva += PAGE_SIZE; 4085 ptep += PAGE_SIZE / L2_S_SIZE; 4086 } 4087 } 4088 4089 #ifndef ARM_MMU_EXTENDED 4090 if (flush) { 4091 if (PV_BEEN_EXECD(flags)) { 4092 pmap_tlb_flushID(pm); 4093 } else if (PV_BEEN_REFD(flags)) { 4094 pmap_tlb_flushD(pm); 4095 } 4096 } 4097 #endif 4098 4099 pmap_release_pmap_lock(pm); 4100 } 4101 4102 void 4103 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva) 4104 { 4105 struct l2_bucket *l2b; 4106 pt_entry_t *ptep; 4107 vaddr_t next_bucket; 4108 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva; 4109 4110 NPDEBUG(PDB_EXEC, 4111 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n", 4112 pm, sva, eva)); 4113 4114 pmap_acquire_pmap_lock(pm); 4115 4116 while (sva < eva) { 4117 next_bucket = L2_NEXT_BUCKET_VA(sva); 4118 if (next_bucket > eva) 4119 next_bucket = eva; 4120 4121 l2b = pmap_get_l2_bucket(pm, sva); 4122 if (l2b == NULL) { 4123 sva = next_bucket; 4124 continue; 4125 } 4126 4127 for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; 4128 sva < next_bucket; 4129 sva += page_size, 4130 ptep += PAGE_SIZE / L2_S_SIZE, 4131 page_size = PAGE_SIZE) { 4132 if (l2pte_valid_p(*ptep)) { 4133 cpu_icache_sync_range(sva, 4134 min(page_size, eva - sva)); 4135 } 4136 } 4137 } 4138 4139 pmap_release_pmap_lock(pm); 4140 } 4141 4142 void 4143 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 4144 { 4145 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4146 paddr_t pa = VM_PAGE_TO_PHYS(pg); 4147 4148 NPDEBUG(PDB_PROTECT, 4149 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n", 4150 md, pa, prot)); 4151 4152 switch(prot) { 4153 case VM_PROT_READ|VM_PROT_WRITE: 4154 #if defined(ARM_MMU_EXTENDED) 4155 pmap_acquire_page_lock(md); 4156 pmap_clearbit(md, pa, PVF_EXEC); 4157 pmap_release_page_lock(md); 4158 break; 4159 #endif 4160 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE: 4161 break; 4162 4163 case VM_PROT_READ: 4164 #if defined(ARM_MMU_EXTENDED) 4165 pmap_acquire_page_lock(md); 4166 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC); 4167 pmap_release_page_lock(md); 4168 break; 4169 #endif 4170 case VM_PROT_READ|VM_PROT_EXECUTE: 4171 pmap_acquire_page_lock(md); 4172 pmap_clearbit(md, pa, PVF_WRITE); 4173 pmap_release_page_lock(md); 4174 break; 4175 4176 default: 4177 pmap_page_remove(md, pa); 4178 break; 4179 } 4180 } 4181 4182 /* 4183 * pmap_clear_modify: 4184 * 4185 * Clear the "modified" attribute for a page. 4186 */ 4187 bool 4188 pmap_clear_modify(struct vm_page *pg) 4189 { 4190 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4191 paddr_t pa = VM_PAGE_TO_PHYS(pg); 4192 bool rv; 4193 4194 pmap_acquire_page_lock(md); 4195 4196 if (md->pvh_attrs & PVF_MOD) { 4197 rv = true; 4198 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 4199 /* 4200 * If we are going to clear the modified bit and there are 4201 * no other modified bits set, flush the page to memory and 4202 * mark it clean. 4203 */ 4204 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD) 4205 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY); 4206 #endif 4207 pmap_clearbit(md, pa, PVF_MOD); 4208 } else { 4209 rv = false; 4210 } 4211 pmap_release_page_lock(md); 4212 4213 return rv; 4214 } 4215 4216 /* 4217 * pmap_clear_reference: 4218 * 4219 * Clear the "referenced" attribute for a page. 4220 */ 4221 bool 4222 pmap_clear_reference(struct vm_page *pg) 4223 { 4224 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4225 paddr_t pa = VM_PAGE_TO_PHYS(pg); 4226 bool rv; 4227 4228 pmap_acquire_page_lock(md); 4229 4230 if (md->pvh_attrs & PVF_REF) { 4231 rv = true; 4232 pmap_clearbit(md, pa, PVF_REF); 4233 } else { 4234 rv = false; 4235 } 4236 pmap_release_page_lock(md); 4237 4238 return rv; 4239 } 4240 4241 /* 4242 * pmap_is_modified: 4243 * 4244 * Test if a page has the "modified" attribute. 4245 */ 4246 /* See <arm/arm32/pmap.h> */ 4247 4248 /* 4249 * pmap_is_referenced: 4250 * 4251 * Test if a page has the "referenced" attribute. 4252 */ 4253 /* See <arm/arm32/pmap.h> */ 4254 4255 #if defined(ARM_MMU_EXTENDED) && 0 4256 int 4257 pmap_prefetchabt_fixup(void *v) 4258 { 4259 struct trapframe * const tf = v; 4260 vaddr_t va = trunc_page(tf->tf_pc); 4261 int rv = ABORT_FIXUP_FAILED; 4262 4263 if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS) 4264 return rv; 4265 4266 kpreempt_disable(); 4267 pmap_t pm = curcpu()->ci_pmap_cur; 4268 const size_t l1slot = l1pte_index(va); 4269 struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)]; 4270 if (l2 == NULL) 4271 goto out; 4272 4273 struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)]; 4274 if (l2b->l2b_kva == NULL) 4275 goto out; 4276 4277 /* 4278 * Check the PTE itself. 4279 */ 4280 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 4281 const pt_entry_t opte = *ptep; 4282 if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0) 4283 goto out; 4284 4285 paddr_t pa = l2pte_pa(opte); 4286 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); 4287 KASSERT(pg != NULL); 4288 4289 struct vm_page_md * const md = VM_PAGE_TO_MD(pg); 4290 4291 pmap_acquire_page_lock(md); 4292 struct pv_entry * const pv = pmap_find_pv(md, pm, va); 4293 KASSERT(pv != NULL); 4294 4295 if (PV_IS_EXEC_P(pv->pv_flags)) { 4296 l2pte_reset(ptep); 4297 PTE_SYNC(ptep); 4298 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF); 4299 if (!PV_IS_EXEC_P(md->pvh_attrs)) { 4300 pmap_syncicache_page(md, pa); 4301 } 4302 rv = ABORT_FIXUP_RETURN; 4303 l2pte_set(ptep, opte & ~L2_XS_XN, 0); 4304 PTE_SYNC(ptep); 4305 } 4306 pmap_release_page_lock(md); 4307 4308 out: 4309 kpreempt_enable(); 4310 return rv; 4311 } 4312 #endif 4313 4314 int 4315 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user) 4316 { 4317 struct l2_dtable *l2; 4318 struct l2_bucket *l2b; 4319 paddr_t pa; 4320 const size_t l1slot = l1pte_index(va); 4321 int rv = 0; 4322 4323 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 4324 4325 va = trunc_page(va); 4326 4327 KASSERT(!user || (pm != pmap_kernel())); 4328 4329 UVMHIST_LOG(maphist, " (pm=%#jx, va=%#jx, ftype=%#jx, user=%jd)", 4330 (uintptr_t)pm, va, ftype, user); 4331 #ifdef ARM_MMU_EXTENDED 4332 UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx", 4333 (uintptr_t)cpu_tlb_info(curcpu()), 4334 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())), 4335 (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0); 4336 #endif 4337 4338 pmap_acquire_pmap_lock(pm); 4339 4340 /* 4341 * If there is no l2_dtable for this address, then the process 4342 * has no business accessing it. 4343 * 4344 * Note: This will catch userland processes trying to access 4345 * kernel addresses. 4346 */ 4347 l2 = pm->pm_l2[L2_IDX(l1slot)]; 4348 if (l2 == NULL) { 4349 UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0); 4350 goto out; 4351 } 4352 4353 /* 4354 * Likewise if there is no L2 descriptor table 4355 */ 4356 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)]; 4357 if (l2b->l2b_kva == NULL) { 4358 UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)", 4359 l1slot, 0, 0, 0); 4360 goto out; 4361 } 4362 4363 /* 4364 * Check the PTE itself. 4365 */ 4366 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 4367 pt_entry_t const opte = *ptep; 4368 if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) { 4369 UVMHIST_LOG(maphist, " <-- done (empty pde for l1slot %#jx)", 4370 l1slot, 0, 0, 0); 4371 goto out; 4372 } 4373 4374 #ifndef ARM_HAS_VBAR 4375 /* 4376 * Catch a userland access to the vector page mapped at 0x0 4377 */ 4378 if (user && (opte & L2_S_PROT_U) == 0) { 4379 UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0); 4380 goto out; 4381 } 4382 #endif 4383 4384 pa = l2pte_pa(opte); 4385 4386 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) { 4387 /* 4388 * This looks like a good candidate for "page modified" 4389 * emulation... 4390 */ 4391 struct pv_entry *pv; 4392 struct vm_page *pg; 4393 4394 /* Extract the physical address of the page */ 4395 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) { 4396 UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0); 4397 goto out; 4398 } 4399 4400 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4401 4402 /* Get the current flags for this page. */ 4403 pmap_acquire_page_lock(md); 4404 pv = pmap_find_pv(md, pm, va); 4405 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) { 4406 pmap_release_page_lock(md); 4407 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0); 4408 goto out; 4409 } 4410 4411 /* 4412 * Do the flags say this page is writable? If not then it 4413 * is a genuine write fault. If yes then the write fault is 4414 * our fault as we did not reflect the write access in the 4415 * PTE. Now we know a write has occurred we can correct this 4416 * and also set the modified bit 4417 */ 4418 if ((pv->pv_flags & PVF_WRITE) == 0) { 4419 pmap_release_page_lock(md); 4420 goto out; 4421 } 4422 4423 md->pvh_attrs |= PVF_REF | PVF_MOD; 4424 pv->pv_flags |= PVF_REF | PVF_MOD; 4425 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 4426 /* 4427 * If there are cacheable mappings for this page, mark it dirty. 4428 */ 4429 if ((md->pvh_attrs & PVF_NC) == 0) 4430 md->pvh_attrs |= PVF_DIRTY; 4431 #endif 4432 #ifdef ARM_MMU_EXTENDED 4433 if (md->pvh_attrs & PVF_EXEC) { 4434 md->pvh_attrs &= ~PVF_EXEC; 4435 PMAPCOUNT(exec_discarded_modfixup); 4436 } 4437 #endif 4438 pmap_release_page_lock(md); 4439 4440 /* 4441 * Re-enable write permissions for the page. No need to call 4442 * pmap_vac_me_harder(), since this is just a 4443 * modified-emulation fault, and the PVF_WRITE bit isn't 4444 * changing. We've already set the cacheable bits based on 4445 * the assumption that we can write to this page. 4446 */ 4447 const pt_entry_t npte = 4448 l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO) 4449 #ifdef ARM_MMU_EXTENDED 4450 | (pm != pmap_kernel() ? L2_XS_nG : 0) 4451 #endif 4452 | 0; 4453 l2pte_reset(ptep); 4454 PTE_SYNC(ptep); 4455 pmap_tlb_flush_SE(pm, va, 4456 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF); 4457 l2pte_set(ptep, npte, 0); 4458 PTE_SYNC(ptep); 4459 PMAPCOUNT(fixup_mod); 4460 rv = 1; 4461 UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte " 4462 "from %#jx to %#jx)", opte, npte, 0, 0); 4463 } else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) { 4464 /* 4465 * This looks like a good candidate for "page referenced" 4466 * emulation. 4467 */ 4468 struct vm_page *pg; 4469 4470 /* Extract the physical address of the page */ 4471 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) { 4472 UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0); 4473 goto out; 4474 } 4475 4476 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4477 4478 /* Get the current flags for this page. */ 4479 pmap_acquire_page_lock(md); 4480 struct pv_entry *pv = pmap_find_pv(md, pm, va); 4481 if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) { 4482 pmap_release_page_lock(md); 4483 UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0); 4484 goto out; 4485 } 4486 4487 md->pvh_attrs |= PVF_REF; 4488 pv->pv_flags |= PVF_REF; 4489 4490 pt_entry_t npte = 4491 l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO); 4492 #ifdef ARM_MMU_EXTENDED 4493 if (pm != pmap_kernel()) { 4494 npte |= L2_XS_nG; 4495 } 4496 /* 4497 * If we got called from prefetch abort, then ftype will have 4498 * VM_PROT_EXECUTE set. Now see if we have no-execute set in 4499 * the PTE. 4500 */ 4501 if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) { 4502 /* 4503 * Is this a mapping of an executable page? 4504 */ 4505 if ((pv->pv_flags & PVF_EXEC) == 0) { 4506 pmap_release_page_lock(md); 4507 UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)", 4508 0, 0, 0, 0); 4509 goto out; 4510 } 4511 /* 4512 * If we haven't synced the page, do so now. 4513 */ 4514 if ((md->pvh_attrs & PVF_EXEC) == 0) { 4515 UVMHIST_LOG(maphist, " ref emul: syncicache " 4516 "page #%#jx", pa, 0, 0, 0); 4517 pmap_syncicache_page(md, pa); 4518 PMAPCOUNT(fixup_exec); 4519 } 4520 npte &= ~L2_XS_XN; 4521 } 4522 #endif /* ARM_MMU_EXTENDED */ 4523 pmap_release_page_lock(md); 4524 l2pte_reset(ptep); 4525 PTE_SYNC(ptep); 4526 pmap_tlb_flush_SE(pm, va, 4527 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF); 4528 l2pte_set(ptep, npte, 0); 4529 PTE_SYNC(ptep); 4530 PMAPCOUNT(fixup_ref); 4531 rv = 1; 4532 UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from " 4533 "%#jx to %#jx)", opte, npte, 0, 0); 4534 #ifdef ARM_MMU_EXTENDED 4535 } else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) { 4536 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); 4537 if (pg == NULL) { 4538 UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0); 4539 goto out; 4540 } 4541 4542 struct vm_page_md * const md = VM_PAGE_TO_MD(pg); 4543 4544 /* Get the current flags for this page. */ 4545 pmap_acquire_page_lock(md); 4546 struct pv_entry * const pv = pmap_find_pv(md, pm, va); 4547 if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) { 4548 pmap_release_page_lock(md); 4549 UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0); 4550 goto out; 4551 } 4552 4553 /* 4554 * If we haven't synced the page, do so now. 4555 */ 4556 if ((md->pvh_attrs & PVF_EXEC) == 0) { 4557 UVMHIST_LOG(maphist, "syncicache page #%#jx", 4558 pa, 0, 0, 0); 4559 pmap_syncicache_page(md, pa); 4560 } 4561 pmap_release_page_lock(md); 4562 /* 4563 * Turn off no-execute. 4564 */ 4565 KASSERT(opte & L2_XS_nG); 4566 l2pte_reset(ptep); 4567 PTE_SYNC(ptep); 4568 pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF); 4569 l2pte_set(ptep, opte & ~L2_XS_XN, 0); 4570 PTE_SYNC(ptep); 4571 rv = 1; 4572 PMAPCOUNT(fixup_exec); 4573 UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx", 4574 opte, opte & ~L2_XS_XN, 0, 0); 4575 #endif 4576 } 4577 4578 #ifndef ARM_MMU_EXTENDED 4579 /* 4580 * We know there is a valid mapping here, so simply 4581 * fix up the L1 if necessary. 4582 */ 4583 pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot; 4584 pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm)); 4585 if (*pdep != pde) { 4586 l1pte_setone(pdep, pde); 4587 PDE_SYNC(pdep); 4588 rv = 1; 4589 PMAPCOUNT(fixup_pdes); 4590 } 4591 #endif 4592 4593 #ifdef CPU_SA110 4594 /* 4595 * There are bugs in the rev K SA110. This is a check for one 4596 * of them. 4597 */ 4598 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 && 4599 curcpu()->ci_arm_cpurev < 3) { 4600 /* Always current pmap */ 4601 if (l2pte_valid_p(opte)) { 4602 extern int kernel_debug; 4603 if (kernel_debug & 1) { 4604 struct proc *p = curlwp->l_proc; 4605 printf("prefetch_abort: page is already " 4606 "mapped - pte=%p *pte=%08x\n", ptep, opte); 4607 printf("prefetch_abort: pc=%08lx proc=%p " 4608 "process=%s\n", va, p, p->p_comm); 4609 printf("prefetch_abort: far=%08x fs=%x\n", 4610 cpu_faultaddress(), cpu_faultstatus()); 4611 } 4612 #ifdef DDB 4613 if (kernel_debug & 2) 4614 Debugger(); 4615 #endif 4616 rv = 1; 4617 } 4618 } 4619 #endif /* CPU_SA110 */ 4620 4621 #ifndef ARM_MMU_EXTENDED 4622 /* 4623 * If 'rv == 0' at this point, it generally indicates that there is a 4624 * stale TLB entry for the faulting address. That might be due to a 4625 * wrong setting of pmap_needs_pte_sync. So set it and retry. 4626 */ 4627 if (rv == 0 4628 && pm->pm_l1->l1_domain_use_count == 1 4629 && pmap_needs_pte_sync == 0) { 4630 pmap_needs_pte_sync = 1; 4631 PTE_SYNC(ptep); 4632 PMAPCOUNT(fixup_ptesync); 4633 rv = 1; 4634 } 4635 #endif 4636 4637 #ifndef MULTIPROCESSOR 4638 #if defined(DEBUG) || 1 4639 /* 4640 * If 'rv == 0' at this point, it generally indicates that there is a 4641 * stale TLB entry for the faulting address. This happens when two or 4642 * more processes are sharing an L1. Since we don't flush the TLB on 4643 * a context switch between such processes, we can take domain faults 4644 * for mappings which exist at the same VA in both processes. EVEN IF 4645 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for 4646 * example. 4647 * 4648 * This is extremely likely to happen if pmap_enter() updated the L1 4649 * entry for a recently entered mapping. In this case, the TLB is 4650 * flushed for the new mapping, but there may still be TLB entries for 4651 * other mappings belonging to other processes in the 1MB range 4652 * covered by the L1 entry. 4653 * 4654 * Since 'rv == 0', we know that the L1 already contains the correct 4655 * value, so the fault must be due to a stale TLB entry. 4656 * 4657 * Since we always need to flush the TLB anyway in the case where we 4658 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with 4659 * stale TLB entries dynamically. 4660 * 4661 * However, the above condition can ONLY happen if the current L1 is 4662 * being shared. If it happens when the L1 is unshared, it indicates 4663 * that other parts of the pmap are not doing their job WRT managing 4664 * the TLB. 4665 */ 4666 if (rv == 0 4667 #ifndef ARM_MMU_EXTENDED 4668 && pm->pm_l1->l1_domain_use_count == 1 4669 #endif 4670 && true) { 4671 #ifdef DEBUG 4672 extern int last_fault_code; 4673 #else 4674 int last_fault_code = ftype & VM_PROT_EXECUTE 4675 ? armreg_ifsr_read() 4676 : armreg_dfsr_read(); 4677 #endif 4678 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n", 4679 pm, va, ftype); 4680 printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n", 4681 l2, l2b, ptep, opte); 4682 4683 #ifndef ARM_MMU_EXTENDED 4684 printf("fixup: pdep %p, pde %#x, fsr %#x\n", 4685 pdep, pde, last_fault_code); 4686 #else 4687 printf("fixup: pdep %p, pde %#x, ttbcr %#x\n", 4688 &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot], 4689 armreg_ttbcr_read()); 4690 printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n", 4691 last_fault_code, curcpu()->ci_pmap_cur, 4692 curcpu()->ci_pmap_asid_cur, 4693 armreg_contextidr_read(), armreg_dacr_read()); 4694 #ifdef _ARM_ARCH_7 4695 if (ftype & VM_PROT_WRITE) 4696 armreg_ats1cuw_write(va); 4697 else 4698 armreg_ats1cur_write(va); 4699 arm_isb(); 4700 printf("fixup: par %#x\n", armreg_par_read()); 4701 #endif 4702 #endif 4703 #ifdef DDB 4704 extern int kernel_debug; 4705 4706 if (kernel_debug & 2) { 4707 pmap_release_pmap_lock(pm); 4708 #ifdef UVMHIST 4709 KERNHIST_DUMP(maphist); 4710 #endif 4711 cpu_Debugger(); 4712 pmap_acquire_pmap_lock(pm); 4713 } 4714 #endif 4715 } 4716 #endif 4717 #endif 4718 4719 #ifndef ARM_MMU_EXTENDED 4720 /* Flush the TLB in the shared L1 case - see comment above */ 4721 pmap_tlb_flush_SE(pm, va, 4722 (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF); 4723 #endif 4724 4725 rv = 1; 4726 4727 out: 4728 pmap_release_pmap_lock(pm); 4729 4730 return (rv); 4731 } 4732 4733 /* 4734 * Routine: pmap_procwr 4735 * 4736 * Function: 4737 * Synchronize caches corresponding to [addr, addr+len) in p. 4738 * 4739 */ 4740 void 4741 pmap_procwr(struct proc *p, vaddr_t va, int len) 4742 { 4743 #ifndef ARM_MMU_EXTENDED 4744 4745 /* We only need to do anything if it is the current process. */ 4746 if (p == curproc) 4747 cpu_icache_sync_range(va, len); 4748 #endif 4749 } 4750 4751 /* 4752 * Routine: pmap_unwire 4753 * Function: Clear the wired attribute for a map/virtual-address pair. 4754 * 4755 * In/out conditions: 4756 * The mapping must already exist in the pmap. 4757 */ 4758 void 4759 pmap_unwire(pmap_t pm, vaddr_t va) 4760 { 4761 struct l2_bucket *l2b; 4762 pt_entry_t *ptep, pte; 4763 struct vm_page *pg; 4764 paddr_t pa; 4765 4766 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va)); 4767 4768 pmap_acquire_pmap_lock(pm); 4769 4770 l2b = pmap_get_l2_bucket(pm, va); 4771 KDASSERT(l2b != NULL); 4772 4773 ptep = &l2b->l2b_kva[l2pte_index(va)]; 4774 pte = *ptep; 4775 4776 /* Extract the physical address of the page */ 4777 pa = l2pte_pa(pte); 4778 4779 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) { 4780 /* Update the wired bit in the pv entry for this page. */ 4781 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 4782 4783 pmap_acquire_page_lock(md); 4784 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0); 4785 pmap_release_page_lock(md); 4786 } 4787 4788 pmap_release_pmap_lock(pm); 4789 } 4790 4791 #ifdef ARM_MMU_EXTENDED 4792 void 4793 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l) 4794 { 4795 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 4796 4797 /* 4798 * Assume that TTBR1 has only global mappings and TTBR0 only 4799 * has non-global mappings. To prevent speculation from doing 4800 * evil things we disable translation table walks using TTBR0 4801 * before setting the CONTEXTIDR (ASID) or new TTBR0 value. 4802 * Once both are set, table walks are reenabled. 4803 */ 4804 const uint32_t old_ttbcr = armreg_ttbcr_read(); 4805 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0); 4806 arm_isb(); 4807 4808 pmap_tlb_asid_acquire(pm, l); 4809 4810 struct cpu_info * const ci = curcpu(); 4811 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci)); 4812 4813 cpu_setttb(pm->pm_l1_pa, pai->pai_asid); 4814 /* 4815 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0 4816 * have been updated. 4817 */ 4818 arm_isb(); 4819 4820 if (pm != pmap_kernel()) { 4821 armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0); 4822 } 4823 cpu_cpwait(); 4824 4825 UVMHIST_LOG(maphist, " pm %#jx pm->pm_l1_pa %08jx asid %ju... done", 4826 (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0); 4827 4828 KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u", 4829 ci->ci_pmap_asid_cur, pai->pai_asid); 4830 ci->ci_pmap_cur = pm; 4831 } 4832 4833 void 4834 pmap_md_pdetab_deactivate(pmap_t pm) 4835 { 4836 4837 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 4838 4839 kpreempt_disable(); 4840 struct cpu_info * const ci = curcpu(); 4841 /* 4842 * Disable translation table walks from TTBR0 while no pmap has been 4843 * activated. 4844 */ 4845 const uint32_t old_ttbcr = armreg_ttbcr_read(); 4846 armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0); 4847 arm_isb(); 4848 pmap_tlb_asid_deactivate(pm); 4849 cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID); 4850 arm_isb(); 4851 4852 ci->ci_pmap_cur = pmap_kernel(); 4853 KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u", 4854 ci->ci_pmap_asid_cur); 4855 kpreempt_enable(); 4856 } 4857 #endif 4858 4859 void 4860 pmap_activate(struct lwp *l) 4861 { 4862 extern int block_userspace_access; 4863 pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap; 4864 4865 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 4866 4867 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)npm, 4868 0, 0); 4869 4870 struct cpu_info * const ci = curcpu(); 4871 4872 /* 4873 * If activating a non-current lwp or the current lwp is 4874 * already active, just return. 4875 */ 4876 if (false 4877 || l != curlwp 4878 #ifdef ARM_MMU_EXTENDED 4879 || (ci->ci_pmap_cur == npm && 4880 (npm == pmap_kernel() 4881 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */)) 4882 #else 4883 || npm->pm_activated == true 4884 #endif 4885 || false) { 4886 UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp, 4887 (uintptr_t)l, 0, 0); 4888 return; 4889 } 4890 4891 #ifndef ARM_MMU_EXTENDED 4892 const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) 4893 | (DOMAIN_CLIENT << (pmap_domain(npm) * 2)); 4894 4895 /* 4896 * If TTB and DACR are unchanged, short-circuit all the 4897 * TLB/cache management stuff. 4898 */ 4899 pmap_t opm = ci->ci_lastlwp 4900 ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap 4901 : NULL; 4902 if (opm != NULL) { 4903 uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) 4904 | (DOMAIN_CLIENT << (pmap_domain(opm) * 2)); 4905 4906 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr) 4907 goto all_done; 4908 } 4909 #endif /* !ARM_MMU_EXTENDED */ 4910 4911 PMAPCOUNT(activations); 4912 block_userspace_access = 1; 4913 4914 #ifndef ARM_MMU_EXTENDED 4915 /* 4916 * If switching to a user vmspace which is different to the 4917 * most recent one, and the most recent one is potentially 4918 * live in the cache, we must write-back and invalidate the 4919 * entire cache. 4920 */ 4921 pmap_t rpm = ci->ci_pmap_lastuser; 4922 4923 /* 4924 * XXXSCW: There's a corner case here which can leave turds in the 4925 * cache as reported in kern/41058. They're probably left over during 4926 * tear-down and switching away from an exiting process. Until the root 4927 * cause is identified and fixed, zap the cache when switching pmaps. 4928 * This will result in a few unnecessary cache flushes, but that's 4929 * better than silently corrupting data. 4930 */ 4931 #if 0 4932 if (npm != pmap_kernel() && rpm && npm != rpm && 4933 rpm->pm_cstate.cs_cache) { 4934 rpm->pm_cstate.cs_cache = 0; 4935 #ifdef PMAP_CACHE_VIVT 4936 cpu_idcache_wbinv_all(); 4937 #endif 4938 } 4939 #else 4940 if (rpm) { 4941 rpm->pm_cstate.cs_cache = 0; 4942 if (npm == pmap_kernel()) 4943 ci->ci_pmap_lastuser = NULL; 4944 #ifdef PMAP_CACHE_VIVT 4945 cpu_idcache_wbinv_all(); 4946 #endif 4947 } 4948 #endif 4949 4950 /* No interrupts while we frob the TTB/DACR */ 4951 uint32_t oldirqstate = disable_interrupts(IF32_bits); 4952 #endif /* !ARM_MMU_EXTENDED */ 4953 4954 #ifndef ARM_HAS_VBAR 4955 /* 4956 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1 4957 * entry corresponding to 'vector_page' in the incoming L1 table 4958 * before switching to it otherwise subsequent interrupts/exceptions 4959 * (including domain faults!) will jump into hyperspace. 4960 */ 4961 if (npm->pm_pl1vec != NULL) { 4962 cpu_tlb_flushID_SE((u_int)vector_page); 4963 cpu_cpwait(); 4964 *npm->pm_pl1vec = npm->pm_l1vec; 4965 PTE_SYNC(npm->pm_pl1vec); 4966 } 4967 #endif 4968 4969 #ifdef ARM_MMU_EXTENDED 4970 pmap_md_pdetab_activate(npm, l); 4971 #else 4972 cpu_domains(ndacr); 4973 if (npm == pmap_kernel() || npm == rpm) { 4974 /* 4975 * Switching to a kernel thread, or back to the 4976 * same user vmspace as before... Simply update 4977 * the TTB (no TLB flush required) 4978 */ 4979 cpu_setttb(npm->pm_l1->l1_physaddr, false); 4980 cpu_cpwait(); 4981 } else { 4982 /* 4983 * Otherwise, update TTB and flush TLB 4984 */ 4985 cpu_context_switch(npm->pm_l1->l1_physaddr); 4986 if (rpm != NULL) 4987 rpm->pm_cstate.cs_tlb = 0; 4988 } 4989 4990 restore_interrupts(oldirqstate); 4991 #endif /* ARM_MMU_EXTENDED */ 4992 4993 block_userspace_access = 0; 4994 4995 #ifndef ARM_MMU_EXTENDED 4996 all_done: 4997 /* 4998 * The new pmap is resident. Make sure it's marked 4999 * as resident in the cache/TLB. 5000 */ 5001 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 5002 if (npm != pmap_kernel()) 5003 ci->ci_pmap_lastuser = npm; 5004 5005 /* The old pmap is not longer active */ 5006 if (opm != npm) { 5007 if (opm != NULL) 5008 opm->pm_activated = false; 5009 5010 /* But the new one is */ 5011 npm->pm_activated = true; 5012 } 5013 ci->ci_pmap_cur = npm; 5014 #endif 5015 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 5016 } 5017 5018 void 5019 pmap_deactivate(struct lwp *l) 5020 { 5021 pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap; 5022 5023 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 5024 5025 UVMHIST_LOG(maphist, "(l=%#jx) pm=%#jx", (uintptr_t)l, (uintptr_t)pm, 5026 0, 0); 5027 5028 #ifdef ARM_MMU_EXTENDED 5029 pmap_md_pdetab_deactivate(pm); 5030 #else 5031 /* 5032 * If the process is exiting, make sure pmap_activate() does 5033 * a full MMU context-switch and cache flush, which we might 5034 * otherwise skip. See PR port-arm/38950. 5035 */ 5036 if (l->l_proc->p_sflag & PS_WEXIT) 5037 curcpu()->ci_lastlwp = NULL; 5038 5039 pm->pm_activated = false; 5040 #endif 5041 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 5042 } 5043 5044 void 5045 pmap_update(pmap_t pm) 5046 { 5047 5048 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 5049 5050 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm, 5051 pm->pm_remove_all, 0, 0); 5052 5053 #ifndef ARM_MMU_EXTENDED 5054 if (pm->pm_remove_all) { 5055 /* 5056 * Finish up the pmap_remove_all() optimisation by flushing 5057 * the TLB. 5058 */ 5059 pmap_tlb_flushID(pm); 5060 pm->pm_remove_all = false; 5061 } 5062 5063 if (pmap_is_current(pm)) { 5064 /* 5065 * If we're dealing with a current userland pmap, move its L1 5066 * to the end of the LRU. 5067 */ 5068 if (pm != pmap_kernel()) 5069 pmap_use_l1(pm); 5070 5071 /* 5072 * We can assume we're done with frobbing the cache/tlb for 5073 * now. Make sure any future pmap ops don't skip cache/tlb 5074 * flushes. 5075 */ 5076 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 5077 } 5078 #else 5079 5080 kpreempt_disable(); 5081 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 5082 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0); 5083 if (pending && pmap_tlb_shootdown_bystanders(pmap)) { 5084 PMAP_COUNT(shootdown_ipis); 5085 } 5086 #endif 5087 5088 /* 5089 * If pmap_remove_all was called, we deactivated ourselves and released 5090 * our ASID. Now we have to reactivate ourselves. 5091 */ 5092 if (__predict_false(pm->pm_remove_all)) { 5093 pm->pm_remove_all = false; 5094 5095 KASSERT(pm != pmap_kernel()); 5096 pmap_md_pdetab_activate(pm, curlwp); 5097 } 5098 5099 if (arm_has_mpext_p) 5100 armreg_bpiallis_write(0); 5101 else 5102 armreg_bpiall_write(0); 5103 5104 kpreempt_enable(); 5105 5106 KASSERTMSG(pm == pmap_kernel() 5107 || curcpu()->ci_pmap_cur != pm 5108 || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur, 5109 "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm, 5110 pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name, 5111 curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur); 5112 #endif 5113 5114 PMAPCOUNT(updates); 5115 5116 /* 5117 * make sure TLB/cache operations have completed. 5118 */ 5119 cpu_cpwait(); 5120 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 5121 } 5122 5123 void 5124 pmap_remove_all(pmap_t pm) 5125 { 5126 5127 /* 5128 * The vmspace described by this pmap is about to be torn down. 5129 * Until pmap_update() is called, UVM will only make calls 5130 * to pmap_remove(). We can make life much simpler by flushing 5131 * the cache now, and deferring TLB invalidation to pmap_update(). 5132 */ 5133 #ifdef PMAP_CACHE_VIVT 5134 pmap_cache_wbinv_all(pm, PVF_EXEC); 5135 #endif 5136 #ifdef ARM_MMU_EXTENDED 5137 #ifdef MULTIPROCESSOR 5138 struct cpu_info * const ci = curcpu(); 5139 // This should be the last CPU with this pmap onproc 5140 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); 5141 if (kcpuset_isset(pm->pm_onproc, cpu_index(ci))) 5142 #endif 5143 pmap_tlb_asid_deactivate(pm); 5144 #ifdef MULTIPROCESSOR 5145 KASSERT(kcpuset_iszero(pm->pm_onproc)); 5146 #endif 5147 5148 pmap_tlb_asid_release_all(pm); 5149 #endif 5150 pm->pm_remove_all = true; 5151 } 5152 5153 /* 5154 * Retire the given physical map from service. 5155 * Should only be called if the map contains no valid mappings. 5156 */ 5157 void 5158 pmap_destroy(pmap_t pm) 5159 { 5160 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 5161 5162 u_int count; 5163 5164 if (pm == NULL) 5165 return; 5166 5167 UVMHIST_LOG(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm, 5168 pm->pm_remove_all, 0, 0); 5169 5170 if (pm->pm_remove_all) { 5171 #ifdef ARM_MMU_EXTENDED 5172 pmap_tlb_asid_release_all(pm); 5173 #else 5174 pmap_tlb_flushID(pm); 5175 #endif 5176 pm->pm_remove_all = false; 5177 } 5178 5179 /* 5180 * Drop reference count 5181 */ 5182 mutex_enter(pm->pm_lock); 5183 count = --pm->pm_obj.uo_refs; 5184 mutex_exit(pm->pm_lock); 5185 if (count > 0) { 5186 #ifndef ARM_MMU_EXTENDED 5187 if (pmap_is_current(pm)) { 5188 if (pm != pmap_kernel()) 5189 pmap_use_l1(pm); 5190 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 5191 } 5192 #endif 5193 return; 5194 } 5195 5196 /* 5197 * reference count is zero, free pmap resources and then free pmap. 5198 */ 5199 5200 #ifndef ARM_HAS_VBAR 5201 if (vector_page < KERNEL_BASE) { 5202 KDASSERT(!pmap_is_current(pm)); 5203 5204 /* Remove the vector page mapping */ 5205 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE); 5206 pmap_update(pm); 5207 } 5208 #endif 5209 5210 pmap_free_l1(pm); 5211 5212 #ifdef ARM_MMU_EXTENDED 5213 #ifdef MULTIPROCESSOR 5214 kcpuset_destroy(pm->pm_active); 5215 kcpuset_destroy(pm->pm_onproc); 5216 #endif 5217 #else 5218 struct cpu_info * const ci = curcpu(); 5219 if (ci->ci_pmap_lastuser == pm) 5220 ci->ci_pmap_lastuser = NULL; 5221 #endif 5222 5223 uvm_obj_destroy(&pm->pm_obj, false); 5224 mutex_destroy(&pm->pm_obj_lock); 5225 pool_cache_put(&pmap_cache, pm); 5226 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 5227 } 5228 5229 5230 /* 5231 * void pmap_reference(pmap_t pm) 5232 * 5233 * Add a reference to the specified pmap. 5234 */ 5235 void 5236 pmap_reference(pmap_t pm) 5237 { 5238 5239 if (pm == NULL) 5240 return; 5241 5242 #ifndef ARM_MMU_EXTENDED 5243 pmap_use_l1(pm); 5244 #endif 5245 5246 mutex_enter(pm->pm_lock); 5247 pm->pm_obj.uo_refs++; 5248 mutex_exit(pm->pm_lock); 5249 } 5250 5251 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 5252 5253 static struct evcnt pmap_prefer_nochange_ev = 5254 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange"); 5255 static struct evcnt pmap_prefer_change_ev = 5256 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change"); 5257 5258 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev); 5259 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev); 5260 5261 void 5262 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td) 5263 { 5264 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1); 5265 vaddr_t va = *vap; 5266 vaddr_t diff = (hint - va) & mask; 5267 if (diff == 0) { 5268 pmap_prefer_nochange_ev.ev_count++; 5269 } else { 5270 pmap_prefer_change_ev.ev_count++; 5271 if (__predict_false(td)) 5272 va -= mask + 1; 5273 *vap = va + diff; 5274 } 5275 } 5276 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */ 5277 5278 /* 5279 * pmap_zero_page() 5280 * 5281 * Zero a given physical page by mapping it at a page hook point. 5282 * In doing the zero page op, the page we zero is mapped cachable, as with 5283 * StrongARM accesses to non-cached pages are non-burst making writing 5284 * _any_ bulk data very slow. 5285 */ 5286 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 5287 void 5288 pmap_zero_page_generic(paddr_t pa) 5289 { 5290 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 5291 struct vm_page *pg = PHYS_TO_VM_PAGE(pa); 5292 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 5293 #endif 5294 #if defined(PMAP_CACHE_VIPT) 5295 /* Choose the last page color it had, if any */ 5296 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask; 5297 #else 5298 const vsize_t va_offset = 0; 5299 #endif 5300 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 5301 /* 5302 * Is this page mapped at its natural color? 5303 * If we have all of memory mapped, then just convert PA to VA. 5304 */ 5305 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT 5306 || va_offset == (pa & arm_cache_prefer_mask); 5307 const vaddr_t vdstp = okcolor 5308 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset)) 5309 : cpu_cdstp(va_offset); 5310 #else 5311 const bool okcolor = false; 5312 const vaddr_t vdstp = cpu_cdstp(va_offset); 5313 #endif 5314 pt_entry_t * const ptep = cpu_cdst_pte(va_offset); 5315 5316 5317 #ifdef DEBUG 5318 if (!SLIST_EMPTY(&md->pvh_list)) 5319 panic("pmap_zero_page: page has mappings"); 5320 #endif 5321 5322 KDASSERT((pa & PGOFSET) == 0); 5323 5324 if (!okcolor) { 5325 /* 5326 * Hook in the page, zero it, and purge the cache for that 5327 * zeroed page. Invalidate the TLB as needed. 5328 */ 5329 const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode 5330 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE); 5331 l2pte_set(ptep, npte, 0); 5332 PTE_SYNC(ptep); 5333 cpu_tlb_flushD_SE(vdstp); 5334 cpu_cpwait(); 5335 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \ 5336 && !defined(ARM_MMU_EXTENDED) 5337 /* 5338 * If we are direct-mapped and our color isn't ok, then before 5339 * we bzero the page invalidate its contents from the cache and 5340 * reset the color to its natural color. 5341 */ 5342 cpu_dcache_inv_range(vdstp, PAGE_SIZE); 5343 md->pvh_attrs &= ~arm_cache_prefer_mask; 5344 md->pvh_attrs |= (pa & arm_cache_prefer_mask); 5345 #endif 5346 } 5347 bzero_page(vdstp); 5348 if (!okcolor) { 5349 /* 5350 * Unmap the page. 5351 */ 5352 l2pte_reset(ptep); 5353 PTE_SYNC(ptep); 5354 cpu_tlb_flushD_SE(vdstp); 5355 #ifdef PMAP_CACHE_VIVT 5356 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE); 5357 #endif 5358 } 5359 #ifdef PMAP_CACHE_VIPT 5360 /* 5361 * This page is now cache resident so it now has a page color. 5362 * Any contents have been obliterated so clear the EXEC flag. 5363 */ 5364 #ifndef ARM_MMU_EXTENDED 5365 if (!pmap_is_page_colored_p(md)) { 5366 PMAPCOUNT(vac_color_new); 5367 md->pvh_attrs |= PVF_COLORED; 5368 } 5369 md->pvh_attrs |= PVF_DIRTY; 5370 #endif 5371 if (PV_IS_EXEC_P(md->pvh_attrs)) { 5372 md->pvh_attrs &= ~PVF_EXEC; 5373 PMAPCOUNT(exec_discarded_zero); 5374 } 5375 #endif 5376 } 5377 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 5378 5379 #if ARM_MMU_XSCALE == 1 5380 void 5381 pmap_zero_page_xscale(paddr_t pa) 5382 { 5383 #ifdef DEBUG 5384 struct vm_page *pg = PHYS_TO_VM_PAGE(pa); 5385 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 5386 5387 if (!SLIST_EMPTY(&md->pvh_list)) 5388 panic("pmap_zero_page: page has mappings"); 5389 #endif 5390 5391 KDASSERT((pa & PGOFSET) == 0); 5392 5393 /* 5394 * Hook in the page, zero it, and purge the cache for that 5395 * zeroed page. Invalidate the TLB as needed. 5396 */ 5397 5398 pt_entry_t npte = L2_S_PROTO | pa | 5399 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | 5400 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 5401 l2pte_set(cdst_pte, npte, 0); 5402 PTE_SYNC(cdst_pte); 5403 cpu_tlb_flushD_SE(cdstp); 5404 cpu_cpwait(); 5405 bzero_page(cdstp); 5406 xscale_cache_clean_minidata(); 5407 l2pte_reset(cdst_pte); 5408 PTE_SYNC(cdst_pte); 5409 } 5410 #endif /* ARM_MMU_XSCALE == 1 */ 5411 5412 /* pmap_pageidlezero() 5413 * 5414 * The same as above, except that we assume that the page is not 5415 * mapped. This means we never have to flush the cache first. Called 5416 * from the idle loop. 5417 */ 5418 bool 5419 pmap_pageidlezero(paddr_t pa) 5420 { 5421 bool rv = true; 5422 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 5423 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); 5424 struct vm_page_md *md = VM_PAGE_TO_MD(pg); 5425 #endif 5426 #ifdef PMAP_CACHE_VIPT 5427 /* Choose the last page color it had, if any */ 5428 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask; 5429 #else 5430 const vsize_t va_offset = 0; 5431 #endif 5432 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 5433 bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT 5434 || va_offset == (pa & arm_cache_prefer_mask); 5435 const vaddr_t vdstp = okcolor 5436 ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset)) 5437 : cpu_cdstp(va_offset); 5438 #else 5439 const bool okcolor = false; 5440 const vaddr_t vdstp = cpu_cdstp(va_offset); 5441 #endif 5442 pt_entry_t * const ptep = cpu_cdst_pte(va_offset); 5443 5444 5445 #ifdef DEBUG 5446 if (!SLIST_EMPTY(&md->pvh_list)) 5447 panic("pmap_pageidlezero: page has mappings"); 5448 #endif 5449 5450 KDASSERT((pa & PGOFSET) == 0); 5451 5452 if (!okcolor) { 5453 /* 5454 * Hook in the page, zero it, and purge the cache for that 5455 * zeroed page. Invalidate the TLB as needed. 5456 */ 5457 const pt_entry_t npte = L2_S_PROTO | pa | 5458 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; 5459 l2pte_set(ptep, npte, 0); 5460 PTE_SYNC(ptep); 5461 cpu_tlb_flushD_SE(vdstp); 5462 cpu_cpwait(); 5463 } 5464 5465 uint64_t *ptr = (uint64_t *)vdstp; 5466 for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) { 5467 if (sched_curcpu_runnable_p() != 0) { 5468 /* 5469 * A process has become ready. Abort now, 5470 * so we don't keep it waiting while we 5471 * do slow memory access to finish this 5472 * page. 5473 */ 5474 rv = false; 5475 break; 5476 } 5477 *ptr++ = 0; 5478 } 5479 5480 #ifdef PMAP_CACHE_VIVT 5481 if (rv) 5482 /* 5483 * if we aborted we'll rezero this page again later so don't 5484 * purge it unless we finished it 5485 */ 5486 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE); 5487 #elif defined(PMAP_CACHE_VIPT) 5488 /* 5489 * This page is now cache resident so it now has a page color. 5490 * Any contents have been obliterated so clear the EXEC flag. 5491 */ 5492 #ifndef ARM_MMU_EXTENDED 5493 if (!pmap_is_page_colored_p(md)) { 5494 PMAPCOUNT(vac_color_new); 5495 md->pvh_attrs |= PVF_COLORED; 5496 } 5497 #endif 5498 if (PV_IS_EXEC_P(md->pvh_attrs)) { 5499 md->pvh_attrs &= ~PVF_EXEC; 5500 PMAPCOUNT(exec_discarded_zero); 5501 } 5502 #endif 5503 /* 5504 * Unmap the page. 5505 */ 5506 if (!okcolor) { 5507 l2pte_reset(ptep); 5508 PTE_SYNC(ptep); 5509 cpu_tlb_flushD_SE(vdstp); 5510 } 5511 5512 return rv; 5513 } 5514 5515 /* 5516 * pmap_copy_page() 5517 * 5518 * Copy one physical page into another, by mapping the pages into 5519 * hook points. The same comment regarding cachability as in 5520 * pmap_zero_page also applies here. 5521 */ 5522 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 5523 void 5524 pmap_copy_page_generic(paddr_t src, paddr_t dst) 5525 { 5526 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src); 5527 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg); 5528 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 5529 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst); 5530 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg); 5531 #endif 5532 #ifdef PMAP_CACHE_VIPT 5533 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask; 5534 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask; 5535 #else 5536 const vsize_t src_va_offset = 0; 5537 const vsize_t dst_va_offset = 0; 5538 #endif 5539 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) 5540 /* 5541 * Is this page mapped at its natural color? 5542 * If we have all of memory mapped, then just convert PA to VA. 5543 */ 5544 bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT 5545 || src_va_offset == (src & arm_cache_prefer_mask); 5546 bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT 5547 || dst_va_offset == (dst & arm_cache_prefer_mask); 5548 const vaddr_t vsrcp = src_okcolor 5549 ? pmap_direct_mapped_phys(src, &src_okcolor, 5550 cpu_csrcp(src_va_offset)) 5551 : cpu_csrcp(src_va_offset); 5552 const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor, 5553 cpu_cdstp(dst_va_offset)); 5554 #else 5555 const bool src_okcolor = false; 5556 const bool dst_okcolor = false; 5557 const vaddr_t vsrcp = cpu_csrcp(src_va_offset); 5558 const vaddr_t vdstp = cpu_cdstp(dst_va_offset); 5559 #endif 5560 pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset); 5561 pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset); 5562 5563 #ifdef DEBUG 5564 if (!SLIST_EMPTY(&dst_md->pvh_list)) 5565 panic("pmap_copy_page: dst page has mappings"); 5566 #endif 5567 5568 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 5569 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC)); 5570 #endif 5571 KDASSERT((src & PGOFSET) == 0); 5572 KDASSERT((dst & PGOFSET) == 0); 5573 5574 /* 5575 * Clean the source page. Hold the source page's lock for 5576 * the duration of the copy so that no other mappings can 5577 * be created while we have a potentially aliased mapping. 5578 */ 5579 #ifdef PMAP_CACHE_VIVT 5580 pmap_acquire_page_lock(src_md); 5581 (void) pmap_clean_page(src_md, true); 5582 pmap_release_page_lock(src_md); 5583 #endif 5584 5585 /* 5586 * Map the pages into the page hook points, copy them, and purge 5587 * the cache for the appropriate page. Invalidate the TLB 5588 * as required. 5589 */ 5590 if (!src_okcolor) { 5591 const pt_entry_t nsrc_pte = L2_S_PROTO 5592 | src 5593 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 5594 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode) 5595 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED) 5596 | pte_l2_s_cache_mode 5597 #endif 5598 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ); 5599 l2pte_set(src_ptep, nsrc_pte, 0); 5600 PTE_SYNC(src_ptep); 5601 cpu_tlb_flushD_SE(vsrcp); 5602 cpu_cpwait(); 5603 } 5604 if (!dst_okcolor) { 5605 const pt_entry_t ndst_pte = L2_S_PROTO | dst | 5606 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; 5607 l2pte_set(dst_ptep, ndst_pte, 0); 5608 PTE_SYNC(dst_ptep); 5609 cpu_tlb_flushD_SE(vdstp); 5610 cpu_cpwait(); 5611 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) 5612 /* 5613 * If we are direct-mapped and our color isn't ok, then before 5614 * we bcopy to the new page invalidate its contents from the 5615 * cache and reset its color to its natural color. 5616 */ 5617 cpu_dcache_inv_range(vdstp, PAGE_SIZE); 5618 dst_md->pvh_attrs &= ~arm_cache_prefer_mask; 5619 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask); 5620 #endif 5621 } 5622 bcopy_page(vsrcp, vdstp); 5623 #ifdef PMAP_CACHE_VIVT 5624 cpu_dcache_inv_range(vsrcp, PAGE_SIZE); 5625 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE); 5626 #endif 5627 /* 5628 * Unmap the pages. 5629 */ 5630 if (!src_okcolor) { 5631 l2pte_reset(src_ptep); 5632 PTE_SYNC(src_ptep); 5633 cpu_tlb_flushD_SE(vsrcp); 5634 cpu_cpwait(); 5635 } 5636 if (!dst_okcolor) { 5637 l2pte_reset(dst_ptep); 5638 PTE_SYNC(dst_ptep); 5639 cpu_tlb_flushD_SE(vdstp); 5640 cpu_cpwait(); 5641 } 5642 #ifdef PMAP_CACHE_VIPT 5643 /* 5644 * Now that the destination page is in the cache, mark it as colored. 5645 * If this was an exec page, discard it. 5646 */ 5647 pmap_acquire_page_lock(dst_md); 5648 #ifndef ARM_MMU_EXTENDED 5649 if (arm_pcache.cache_type == CACHE_TYPE_PIPT) { 5650 dst_md->pvh_attrs &= ~arm_cache_prefer_mask; 5651 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask); 5652 } 5653 if (!pmap_is_page_colored_p(dst_md)) { 5654 PMAPCOUNT(vac_color_new); 5655 dst_md->pvh_attrs |= PVF_COLORED; 5656 } 5657 dst_md->pvh_attrs |= PVF_DIRTY; 5658 #endif 5659 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) { 5660 dst_md->pvh_attrs &= ~PVF_EXEC; 5661 PMAPCOUNT(exec_discarded_copy); 5662 } 5663 pmap_release_page_lock(dst_md); 5664 #endif 5665 } 5666 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 5667 5668 #if ARM_MMU_XSCALE == 1 5669 void 5670 pmap_copy_page_xscale(paddr_t src, paddr_t dst) 5671 { 5672 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src); 5673 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg); 5674 #ifdef DEBUG 5675 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst)); 5676 5677 if (!SLIST_EMPTY(&dst_md->pvh_list)) 5678 panic("pmap_copy_page: dst page has mappings"); 5679 #endif 5680 5681 KDASSERT((src & PGOFSET) == 0); 5682 KDASSERT((dst & PGOFSET) == 0); 5683 5684 /* 5685 * Clean the source page. Hold the source page's lock for 5686 * the duration of the copy so that no other mappings can 5687 * be created while we have a potentially aliased mapping. 5688 */ 5689 #ifdef PMAP_CACHE_VIVT 5690 pmap_acquire_page_lock(src_md); 5691 (void) pmap_clean_page(src_md, true); 5692 pmap_release_page_lock(src_md); 5693 #endif 5694 5695 /* 5696 * Map the pages into the page hook points, copy them, and purge 5697 * the cache for the appropriate page. Invalidate the TLB 5698 * as required. 5699 */ 5700 const pt_entry_t nsrc_pte = L2_S_PROTO | src 5701 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) 5702 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 5703 l2pte_set(csrc_pte, nsrc_pte, 0); 5704 PTE_SYNC(csrc_pte); 5705 5706 const pt_entry_t ndst_pte = L2_S_PROTO | dst 5707 | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) 5708 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 5709 l2pte_set(cdst_pte, ndst_pte, 0); 5710 PTE_SYNC(cdst_pte); 5711 5712 cpu_tlb_flushD_SE(csrcp); 5713 cpu_tlb_flushD_SE(cdstp); 5714 cpu_cpwait(); 5715 bcopy_page(csrcp, cdstp); 5716 xscale_cache_clean_minidata(); 5717 l2pte_reset(csrc_pte); 5718 l2pte_reset(cdst_pte); 5719 PTE_SYNC(csrc_pte); 5720 PTE_SYNC(cdst_pte); 5721 } 5722 #endif /* ARM_MMU_XSCALE == 1 */ 5723 5724 /* 5725 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end) 5726 * 5727 * Return the start and end addresses of the kernel's virtual space. 5728 * These values are setup in pmap_bootstrap and are updated as pages 5729 * are allocated. 5730 */ 5731 void 5732 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 5733 { 5734 *start = virtual_avail; 5735 *end = virtual_end; 5736 } 5737 5738 /* 5739 * Helper function for pmap_grow_l2_bucket() 5740 */ 5741 static inline int 5742 pmap_grow_map(vaddr_t va, paddr_t *pap) 5743 { 5744 paddr_t pa; 5745 5746 if (uvm.page_init_done == false) { 5747 #ifdef PMAP_STEAL_MEMORY 5748 pv_addr_t pv; 5749 pmap_boot_pagealloc(PAGE_SIZE, 5750 #ifdef PMAP_CACHE_VIPT 5751 arm_cache_prefer_mask, 5752 va & arm_cache_prefer_mask, 5753 #else 5754 0, 0, 5755 #endif 5756 &pv); 5757 pa = pv.pv_pa; 5758 #else 5759 if (uvm_page_physget(&pa) == false) 5760 return (1); 5761 #endif /* PMAP_STEAL_MEMORY */ 5762 } else { 5763 struct vm_page *pg; 5764 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 5765 if (pg == NULL) 5766 return (1); 5767 pa = VM_PAGE_TO_PHYS(pg); 5768 /* 5769 * This new page must not have any mappings. Enter it via 5770 * pmap_kenter_pa and let that routine do the hard work. 5771 */ 5772 struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg); 5773 KASSERT(SLIST_EMPTY(&md->pvh_list)); 5774 pmap_kenter_pa(va, pa, 5775 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE); 5776 } 5777 5778 if (pap) 5779 *pap = pa; 5780 5781 PMAPCOUNT(pt_mappings); 5782 #ifdef DEBUG 5783 struct l2_bucket * const l2b = pmap_get_l2_bucket(pmap_kernel(), va); 5784 KDASSERT(l2b != NULL); 5785 5786 pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)]; 5787 const pt_entry_t opte = *ptep; 5788 KDASSERT((opte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt); 5789 #endif 5790 memset((void *)va, 0, PAGE_SIZE); 5791 return (0); 5792 } 5793 5794 /* 5795 * This is the same as pmap_alloc_l2_bucket(), except that it is only 5796 * used by pmap_growkernel(). 5797 */ 5798 static inline struct l2_bucket * 5799 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va) 5800 { 5801 struct l2_dtable *l2; 5802 struct l2_bucket *l2b; 5803 u_short l1slot; 5804 vaddr_t nva; 5805 5806 l1slot = l1pte_index(va); 5807 5808 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) { 5809 /* 5810 * No mapping at this address, as there is 5811 * no entry in the L1 table. 5812 * Need to allocate a new l2_dtable. 5813 */ 5814 nva = pmap_kernel_l2dtable_kva; 5815 if ((nva & PGOFSET) == 0) { 5816 /* 5817 * Need to allocate a backing page 5818 */ 5819 if (pmap_grow_map(nva, NULL)) 5820 return (NULL); 5821 } 5822 5823 l2 = (struct l2_dtable *)nva; 5824 nva += sizeof(struct l2_dtable); 5825 5826 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) { 5827 /* 5828 * The new l2_dtable straddles a page boundary. 5829 * Map in another page to cover it. 5830 */ 5831 if (pmap_grow_map(nva, NULL)) 5832 return (NULL); 5833 } 5834 5835 pmap_kernel_l2dtable_kva = nva; 5836 5837 /* 5838 * Link it into the parent pmap 5839 */ 5840 pm->pm_l2[L2_IDX(l1slot)] = l2; 5841 } 5842 5843 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)]; 5844 5845 /* 5846 * Fetch pointer to the L2 page table associated with the address. 5847 */ 5848 if (l2b->l2b_kva == NULL) { 5849 pt_entry_t *ptep; 5850 5851 /* 5852 * No L2 page table has been allocated. Chances are, this 5853 * is because we just allocated the l2_dtable, above. 5854 */ 5855 nva = pmap_kernel_l2ptp_kva; 5856 ptep = (pt_entry_t *)nva; 5857 if ((nva & PGOFSET) == 0) { 5858 /* 5859 * Need to allocate a backing page 5860 */ 5861 if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys)) 5862 return (NULL); 5863 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t)); 5864 } 5865 5866 l2->l2_occupancy++; 5867 l2b->l2b_kva = ptep; 5868 l2b->l2b_l1slot = l1slot; 5869 l2b->l2b_pa = pmap_kernel_l2ptp_phys; 5870 5871 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL; 5872 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL; 5873 } 5874 5875 return (l2b); 5876 } 5877 5878 vaddr_t 5879 pmap_growkernel(vaddr_t maxkvaddr) 5880 { 5881 pmap_t kpm = pmap_kernel(); 5882 #ifndef ARM_MMU_EXTENDED 5883 struct l1_ttable *l1; 5884 #endif 5885 int s; 5886 5887 if (maxkvaddr <= pmap_curmaxkvaddr) 5888 goto out; /* we are OK */ 5889 5890 NPDEBUG(PDB_GROWKERN, 5891 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n", 5892 pmap_curmaxkvaddr, maxkvaddr)); 5893 5894 KDASSERT(maxkvaddr <= virtual_end); 5895 5896 /* 5897 * whoops! we need to add kernel PTPs 5898 */ 5899 5900 s = splhigh(); /* to be safe */ 5901 mutex_enter(kpm->pm_lock); 5902 5903 /* Map 1MB at a time */ 5904 size_t l1slot = l1pte_index(pmap_curmaxkvaddr); 5905 #ifdef ARM_MMU_EXTENDED 5906 pd_entry_t * const spdep = &kpm->pm_l1[l1slot]; 5907 pd_entry_t *pdep = spdep; 5908 #endif 5909 for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE, 5910 #ifdef ARM_MMU_EXTENDED 5911 pdep++, 5912 #endif 5913 l1slot++) { 5914 struct l2_bucket *l2b = 5915 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr); 5916 KASSERT(l2b != NULL); 5917 5918 const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa 5919 | L1_C_DOM(PMAP_DOMAIN_KERNEL); 5920 #ifdef ARM_MMU_EXTENDED 5921 l1pte_setone(pdep, npde); 5922 #else 5923 /* Distribute new L1 entry to all other L1s */ 5924 SLIST_FOREACH(l1, &l1_list, l1_link) { 5925 pd_entry_t * const pdep = &l1->l1_kva[l1slot]; 5926 l1pte_setone(pdep, npde); 5927 PDE_SYNC(pdep); 5928 } 5929 #endif 5930 } 5931 #ifdef ARM_MMU_EXTENDED 5932 PDE_SYNC_RANGE(spdep, pdep - spdep); 5933 #endif 5934 5935 #ifdef PMAP_CACHE_VIVT 5936 /* 5937 * flush out the cache, expensive but growkernel will happen so 5938 * rarely 5939 */ 5940 cpu_dcache_wbinv_all(); 5941 cpu_tlb_flushD(); 5942 cpu_cpwait(); 5943 #endif 5944 5945 mutex_exit(kpm->pm_lock); 5946 splx(s); 5947 5948 out: 5949 return (pmap_curmaxkvaddr); 5950 } 5951 5952 /************************ Utility routines ****************************/ 5953 5954 #ifndef ARM_HAS_VBAR 5955 /* 5956 * vector_page_setprot: 5957 * 5958 * Manipulate the protection of the vector page. 5959 */ 5960 void 5961 vector_page_setprot(int prot) 5962 { 5963 struct l2_bucket *l2b; 5964 pt_entry_t *ptep; 5965 5966 #if defined(CPU_ARMV7) || defined(CPU_ARM11) 5967 /* 5968 * If we are using VBAR to use the vectors in the kernel, then it's 5969 * already mapped in the kernel text so no need to anything here. 5970 */ 5971 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) { 5972 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0); 5973 return; 5974 } 5975 #endif 5976 5977 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page); 5978 KASSERT(l2b != NULL); 5979 5980 ptep = &l2b->l2b_kva[l2pte_index(vector_page)]; 5981 5982 const pt_entry_t opte = *ptep; 5983 #ifdef ARM_MMU_EXTENDED 5984 const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN)) 5985 | L2_S_PROT(PTE_KERNEL, prot); 5986 #else 5987 const pt_entry_t npte = (opte & ~L2_S_PROT_MASK) 5988 | L2_S_PROT(PTE_KERNEL, prot); 5989 #endif 5990 l2pte_set(ptep, npte, opte); 5991 PTE_SYNC(ptep); 5992 cpu_tlb_flushD_SE(vector_page); 5993 cpu_cpwait(); 5994 } 5995 #endif 5996 5997 /* 5998 * Fetch pointers to the PDE/PTE for the given pmap/VA pair. 5999 * Returns true if the mapping exists, else false. 6000 * 6001 * NOTE: This function is only used by a couple of arm-specific modules. 6002 * It is not safe to take any pmap locks here, since we could be right 6003 * in the middle of debugging the pmap anyway... 6004 * 6005 * It is possible for this routine to return false even though a valid 6006 * mapping does exist. This is because we don't lock, so the metadata 6007 * state may be inconsistent. 6008 * 6009 * NOTE: We can return a NULL *ptp in the case where the L1 pde is 6010 * a "section" mapping. 6011 */ 6012 bool 6013 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp) 6014 { 6015 struct l2_dtable *l2; 6016 pd_entry_t *pdep, pde; 6017 pt_entry_t *ptep; 6018 u_short l1slot; 6019 6020 if (pm->pm_l1 == NULL) 6021 return false; 6022 6023 l1slot = l1pte_index(va); 6024 *pdp = pdep = pmap_l1_kva(pm) + l1slot; 6025 pde = *pdep; 6026 6027 if (l1pte_section_p(pde)) { 6028 *ptp = NULL; 6029 return true; 6030 } 6031 6032 l2 = pm->pm_l2[L2_IDX(l1slot)]; 6033 if (l2 == NULL || 6034 (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) { 6035 return false; 6036 } 6037 6038 *ptp = &ptep[l2pte_index(va)]; 6039 return true; 6040 } 6041 6042 bool 6043 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp) 6044 { 6045 6046 if (pm->pm_l1 == NULL) 6047 return false; 6048 6049 *pdp = pmap_l1_kva(pm) + l1pte_index(va); 6050 6051 return true; 6052 } 6053 6054 /************************ Bootstrapping routines ****************************/ 6055 6056 #ifndef ARM_MMU_EXTENDED 6057 static void 6058 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt) 6059 { 6060 int i; 6061 6062 l1->l1_kva = l1pt; 6063 l1->l1_domain_use_count = 0; 6064 l1->l1_domain_first = 0; 6065 6066 for (i = 0; i < PMAP_DOMAINS; i++) 6067 l1->l1_domain_free[i] = i + 1; 6068 6069 /* 6070 * Copy the kernel's L1 entries to each new L1. 6071 */ 6072 if (pmap_initialized) 6073 memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE); 6074 6075 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt, 6076 &l1->l1_physaddr) == false) 6077 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt); 6078 6079 SLIST_INSERT_HEAD(&l1_list, l1, l1_link); 6080 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 6081 } 6082 #endif /* !ARM_MMU_EXTENDED */ 6083 6084 /* 6085 * pmap_bootstrap() is called from the board-specific initarm() routine 6086 * once the kernel L1/L2 descriptors tables have been set up. 6087 * 6088 * This is a somewhat convoluted process since pmap bootstrap is, effectively, 6089 * spread over a number of disparate files/functions. 6090 * 6091 * We are passed the following parameters 6092 * - kernel_l1pt 6093 * This is a pointer to the base of the kernel's L1 translation table. 6094 * - vstart 6095 * 1MB-aligned start of managed kernel virtual memory. 6096 * - vend 6097 * 1MB-aligned end of managed kernel virtual memory. 6098 * 6099 * We use the first parameter to build the metadata (struct l1_ttable and 6100 * struct l2_dtable) necessary to track kernel mappings. 6101 */ 6102 #define PMAP_STATIC_L2_SIZE 16 6103 void 6104 pmap_bootstrap(vaddr_t vstart, vaddr_t vend) 6105 { 6106 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE]; 6107 #ifndef ARM_MMU_EXTENDED 6108 static struct l1_ttable static_l1; 6109 struct l1_ttable *l1 = &static_l1; 6110 #endif 6111 struct l2_dtable *l2; 6112 struct l2_bucket *l2b; 6113 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va; 6114 pmap_t pm = pmap_kernel(); 6115 pt_entry_t *ptep; 6116 paddr_t pa; 6117 vsize_t size; 6118 int nptes, l2idx, l2next = 0; 6119 6120 #ifdef ARM_MMU_EXTENDED 6121 KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt); 6122 KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt); 6123 #endif 6124 6125 #ifdef VERBOSE_INIT_ARM 6126 printf("kpm "); 6127 #endif 6128 /* 6129 * Initialise the kernel pmap object 6130 */ 6131 curcpu()->ci_pmap_cur = pm; 6132 #ifdef ARM_MMU_EXTENDED 6133 pm->pm_l1 = l1pt; 6134 pm->pm_l1_pa = kernel_l1pt.pv_pa; 6135 #ifdef VERBOSE_INIT_ARM 6136 printf("tlb0 "); 6137 #endif 6138 pmap_tlb_info_init(&pmap_tlb0_info); 6139 #ifdef MULTIPROCESSOR 6140 #ifdef VERBOSE_INIT_ARM 6141 printf("kcpusets "); 6142 #endif 6143 pm->pm_onproc = kcpuset_running; 6144 pm->pm_active = kcpuset_running; 6145 #endif 6146 #else 6147 pm->pm_l1 = l1; 6148 #endif 6149 6150 #ifdef VERBOSE_INIT_ARM 6151 printf("locks "); 6152 #endif 6153 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 6154 if (arm_cache_prefer_mask != 0) { 6155 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM); 6156 } else { 6157 #endif 6158 mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_NONE); 6159 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 6160 } 6161 #endif 6162 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE); 6163 uvm_obj_init(&pm->pm_obj, NULL, false, 1); 6164 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock); 6165 6166 #ifdef VERBOSE_INIT_ARM 6167 printf("l1pt "); 6168 #endif 6169 /* 6170 * Scan the L1 translation table created by initarm() and create 6171 * the required metadata for all valid mappings found in it. 6172 */ 6173 for (size_t l1slot = 0; 6174 l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t); 6175 l1slot++) { 6176 pd_entry_t pde = l1pt[l1slot]; 6177 6178 /* 6179 * We're only interested in Coarse mappings. 6180 * pmap_extract() can deal with section mappings without 6181 * recourse to checking L2 metadata. 6182 */ 6183 if ((pde & L1_TYPE_MASK) != L1_TYPE_C) 6184 continue; 6185 6186 /* 6187 * Lookup the KVA of this L2 descriptor table 6188 */ 6189 pa = l1pte_pa(pde); 6190 ptep = (pt_entry_t *)kernel_pt_lookup(pa); 6191 if (ptep == NULL) { 6192 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx", 6193 (u_int)l1slot << L1_S_SHIFT, pa); 6194 } 6195 6196 /* 6197 * Fetch the associated L2 metadata structure. 6198 * Allocate a new one if necessary. 6199 */ 6200 if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) { 6201 if (l2next == PMAP_STATIC_L2_SIZE) 6202 panic("pmap_bootstrap: out of static L2s"); 6203 pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++]; 6204 } 6205 6206 /* 6207 * One more L1 slot tracked... 6208 */ 6209 l2->l2_occupancy++; 6210 6211 /* 6212 * Fill in the details of the L2 descriptor in the 6213 * appropriate bucket. 6214 */ 6215 l2b = &l2->l2_bucket[L2_BUCKET(l1slot)]; 6216 l2b->l2b_kva = ptep; 6217 l2b->l2b_pa = pa; 6218 l2b->l2b_l1slot = l1slot; 6219 6220 /* 6221 * Establish an initial occupancy count for this descriptor 6222 */ 6223 for (l2idx = 0; 6224 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 6225 l2idx++) { 6226 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) { 6227 l2b->l2b_occupancy++; 6228 } 6229 } 6230 6231 /* 6232 * Make sure the descriptor itself has the correct cache mode. 6233 * If not, fix it, but whine about the problem. Port-meisters 6234 * should consider this a clue to fix up their initarm() 6235 * function. :) 6236 */ 6237 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) { 6238 printf("pmap_bootstrap: WARNING! wrong cache mode for " 6239 "L2 pte @ %p\n", ptep); 6240 } 6241 } 6242 6243 #ifdef VERBOSE_INIT_ARM 6244 printf("cache(l1pt) "); 6245 #endif 6246 /* 6247 * Ensure the primary (kernel) L1 has the correct cache mode for 6248 * a page table. Bitch if it is not correctly set. 6249 */ 6250 if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va, 6251 L1_TABLE_SIZE / L2_S_SIZE)) { 6252 printf("pmap_bootstrap: WARNING! wrong cache mode for " 6253 "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va); 6254 } 6255 6256 #ifdef PMAP_CACHE_VIVT 6257 cpu_dcache_wbinv_all(); 6258 cpu_tlb_flushID(); 6259 cpu_cpwait(); 6260 #endif 6261 6262 /* 6263 * now we allocate the "special" VAs which are used for tmp mappings 6264 * by the pmap (and other modules). we allocate the VAs by advancing 6265 * virtual_avail (note that there are no pages mapped at these VAs). 6266 * 6267 * Managed KVM space start from wherever initarm() tells us. 6268 */ 6269 virtual_avail = vstart; 6270 virtual_end = vend; 6271 6272 #ifdef VERBOSE_INIT_ARM 6273 printf("specials "); 6274 #endif 6275 #ifdef PMAP_CACHE_VIPT 6276 /* 6277 * If we have a VIPT cache, we need one page/pte per possible alias 6278 * page so we won't violate cache aliasing rules. 6279 */ 6280 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask; 6281 nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1; 6282 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE); 6283 if (arm_pcache.icache_type != CACHE_TYPE_PIPT 6284 && arm_pcache.icache_way_size > nptes * L2_S_SIZE) { 6285 nptes = arm_pcache.icache_way_size >> L2_S_SHIFT; 6286 nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE); 6287 } 6288 #else 6289 nptes = PAGE_SIZE / L2_S_SIZE; 6290 #endif 6291 #ifdef MULTIPROCESSOR 6292 cnptes = nptes; 6293 nptes *= arm_cpu_max; 6294 #endif 6295 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte); 6296 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes); 6297 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte); 6298 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes); 6299 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL); 6300 if (msgbufaddr == NULL) { 6301 pmap_alloc_specials(&virtual_avail, 6302 round_page(MSGBUFSIZE) / PAGE_SIZE, 6303 (void *)&msgbufaddr, NULL); 6304 } 6305 6306 /* 6307 * Allocate a range of kernel virtual address space to be used 6308 * for L2 descriptor tables and metadata allocation in 6309 * pmap_growkernel(). 6310 */ 6311 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE; 6312 pmap_alloc_specials(&virtual_avail, 6313 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE, 6314 &pmap_kernel_l2ptp_kva, NULL); 6315 6316 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE; 6317 pmap_alloc_specials(&virtual_avail, 6318 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE, 6319 &pmap_kernel_l2dtable_kva, NULL); 6320 6321 #ifndef ARM_MMU_EXTENDED 6322 /* 6323 * init the static-global locks and global pmap list. 6324 */ 6325 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM); 6326 6327 /* 6328 * We can now initialise the first L1's metadata. 6329 */ 6330 SLIST_INIT(&l1_list); 6331 TAILQ_INIT(&l1_lru_list); 6332 pmap_init_l1(l1, l1pt); 6333 #endif /* ARM_MMU_EXTENDED */ 6334 6335 #ifndef ARM_HAS_VBAR 6336 /* Set up vector page L1 details, if necessary */ 6337 if (vector_page < KERNEL_BASE) { 6338 pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page); 6339 l2b = pmap_get_l2_bucket(pm, vector_page); 6340 KDASSERT(l2b != NULL); 6341 pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO | 6342 L1_C_DOM(pmap_domain(pm)); 6343 } else 6344 pm->pm_pl1vec = NULL; 6345 #endif 6346 6347 #ifdef VERBOSE_INIT_ARM 6348 printf("pools "); 6349 #endif 6350 /* 6351 * Initialize the pmap cache 6352 */ 6353 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0, 6354 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL); 6355 6356 /* 6357 * Initialize the pv pool. 6358 */ 6359 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl", 6360 &pmap_bootstrap_pv_allocator, IPL_NONE); 6361 6362 /* 6363 * Initialize the L2 dtable pool and cache. 6364 */ 6365 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0, 6366 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL); 6367 6368 /* 6369 * Initialise the L2 descriptor table pool and cache 6370 */ 6371 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0, 6372 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE, 6373 pmap_l2ptp_ctor, NULL, NULL); 6374 6375 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE); 6376 6377 cpu_dcache_wbinv_all(); 6378 } 6379 6380 static bool 6381 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes) 6382 { 6383 #ifdef ARM_MMU_EXTENDED 6384 return false; 6385 #else 6386 if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt 6387 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt) 6388 return false; 6389 6390 const vaddr_t eva = va + nptes * PAGE_SIZE; 6391 int rv = 0; 6392 6393 while (va < eva) { 6394 /* 6395 * Make sure the descriptor itself has the correct cache mode 6396 */ 6397 pd_entry_t * const pdep = &kl1[l1pte_index(va)]; 6398 pd_entry_t pde = *pdep; 6399 6400 if (l1pte_section_p(pde)) { 6401 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0); 6402 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) { 6403 *pdep = (pde & ~L1_S_CACHE_MASK) | 6404 pte_l1_s_cache_mode_pt; 6405 PDE_SYNC(pdep); 6406 cpu_dcache_wbinv_range((vaddr_t)pdep, 6407 sizeof(*pdep)); 6408 rv = 1; 6409 } 6410 return rv; 6411 } 6412 vaddr_t pa = l1pte_pa(pde); 6413 pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa); 6414 if (ptep == NULL) 6415 panic("pmap_bootstrap: No PTP for va %#lx\n", va); 6416 6417 ptep += l2pte_index(va); 6418 const pt_entry_t opte = *ptep; 6419 if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { 6420 const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK) 6421 | pte_l2_s_cache_mode_pt; 6422 l2pte_set(ptep, npte, opte); 6423 PTE_SYNC(ptep); 6424 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep)); 6425 rv = 1; 6426 } 6427 va += PAGE_SIZE; 6428 } 6429 6430 return (rv); 6431 #endif 6432 } 6433 6434 static void 6435 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep) 6436 { 6437 vaddr_t va = *availp; 6438 struct l2_bucket *l2b; 6439 6440 if (ptep) { 6441 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 6442 if (l2b == NULL) 6443 panic("pmap_alloc_specials: no l2b for 0x%lx", va); 6444 6445 *ptep = &l2b->l2b_kva[l2pte_index(va)]; 6446 } 6447 6448 *vap = va; 6449 *availp = va + (PAGE_SIZE * pages); 6450 } 6451 6452 void 6453 pmap_init(void) 6454 { 6455 6456 /* 6457 * Set the available memory vars - These do not map to real memory 6458 * addresses and cannot as the physical memory is fragmented. 6459 * They are used by ps for %mem calculations. 6460 * One could argue whether this should be the entire memory or just 6461 * the memory that is useable in a user process. 6462 */ 6463 avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first())); 6464 avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last())); 6465 6466 /* 6467 * Now we need to free enough pv_entry structures to allow us to get 6468 * the kmem_map/kmem_object allocated and inited (done after this 6469 * function is finished). to do this we allocate one bootstrap page out 6470 * of kernel_map and use it to provide an initial pool of pv_entry 6471 * structures. we never free this page. 6472 */ 6473 pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2); 6474 6475 #ifdef ARM_MMU_EXTENDED 6476 pmap_tlb_info_evcnt_attach(&pmap_tlb0_info); 6477 #endif 6478 6479 pmap_initialized = true; 6480 } 6481 6482 static vaddr_t last_bootstrap_page = 0; 6483 static void *free_bootstrap_pages = NULL; 6484 6485 static void * 6486 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags) 6487 { 6488 extern void *pool_page_alloc(struct pool *, int); 6489 vaddr_t new_page; 6490 void *rv; 6491 6492 if (pmap_initialized) 6493 return (pool_page_alloc(pp, flags)); 6494 6495 if (free_bootstrap_pages) { 6496 rv = free_bootstrap_pages; 6497 free_bootstrap_pages = *((void **)rv); 6498 return (rv); 6499 } 6500 6501 KASSERT(kernel_map != NULL); 6502 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 6503 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT)); 6504 6505 KASSERT(new_page > last_bootstrap_page); 6506 last_bootstrap_page = new_page; 6507 return ((void *)new_page); 6508 } 6509 6510 static void 6511 pmap_bootstrap_pv_page_free(struct pool *pp, void *v) 6512 { 6513 extern void pool_page_free(struct pool *, void *); 6514 6515 if ((vaddr_t)v <= last_bootstrap_page) { 6516 *((void **)v) = free_bootstrap_pages; 6517 free_bootstrap_pages = v; 6518 return; 6519 } 6520 6521 if (pmap_initialized) { 6522 pool_page_free(pp, v); 6523 return; 6524 } 6525 } 6526 6527 /* 6528 * pmap_postinit() 6529 * 6530 * This routine is called after the vm and kmem subsystems have been 6531 * initialised. This allows the pmap code to perform any initialisation 6532 * that can only be done once the memory allocation is in place. 6533 */ 6534 void 6535 pmap_postinit(void) 6536 { 6537 #ifndef ARM_MMU_EXTENDED 6538 extern paddr_t physical_start, physical_end; 6539 struct l1_ttable *l1; 6540 struct pglist plist; 6541 struct vm_page *m; 6542 pd_entry_t *pdep; 6543 vaddr_t va, eva; 6544 u_int loop, needed; 6545 int error; 6546 #endif 6547 6548 pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4); 6549 pool_cache_setlowat(&pmap_l2dtable_cache, 6550 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2); 6551 6552 #ifndef ARM_MMU_EXTENDED 6553 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0); 6554 needed -= 1; 6555 6556 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP); 6557 6558 for (loop = 0; loop < needed; loop++, l1++) { 6559 /* Allocate a L1 page table */ 6560 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY); 6561 if (va == 0) 6562 panic("Cannot allocate L1 KVM"); 6563 6564 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, 6565 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1); 6566 if (error) 6567 panic("Cannot allocate L1 physical pages"); 6568 6569 m = TAILQ_FIRST(&plist); 6570 eva = va + L1_TABLE_SIZE; 6571 pdep = (pd_entry_t *)va; 6572 6573 while (m && va < eva) { 6574 paddr_t pa = VM_PAGE_TO_PHYS(m); 6575 6576 pmap_kenter_pa(va, pa, 6577 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE); 6578 6579 va += PAGE_SIZE; 6580 m = TAILQ_NEXT(m, pageq.queue); 6581 } 6582 6583 #ifdef DIAGNOSTIC 6584 if (m) 6585 panic("pmap_alloc_l1pt: pglist not empty"); 6586 #endif /* DIAGNOSTIC */ 6587 6588 pmap_init_l1(l1, pdep); 6589 } 6590 6591 #ifdef DEBUG 6592 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n", 6593 needed); 6594 #endif 6595 #endif /* !ARM_MMU_EXTENDED */ 6596 } 6597 6598 /* 6599 * Note that the following routines are used by board-specific initialisation 6600 * code to configure the initial kernel page tables. 6601 * 6602 */ 6603 6604 /* 6605 * This list exists for the benefit of pmap_map_chunk(). It keeps track 6606 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can 6607 * find them as necessary. 6608 * 6609 * Note that the data on this list MUST remain valid after initarm() returns, 6610 * as pmap_bootstrap() uses it to contruct L2 table metadata. 6611 */ 6612 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list); 6613 6614 static vaddr_t 6615 kernel_pt_lookup(paddr_t pa) 6616 { 6617 pv_addr_t *pv; 6618 6619 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) { 6620 if (pv->pv_pa == (pa & ~PGOFSET)) 6621 return (pv->pv_va | (pa & PGOFSET)); 6622 } 6623 return (0); 6624 } 6625 6626 /* 6627 * pmap_map_section: 6628 * 6629 * Create a single section mapping. 6630 */ 6631 void 6632 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache) 6633 { 6634 pd_entry_t * const pdep = (pd_entry_t *) l1pt; 6635 const size_t l1slot = l1pte_index(va); 6636 pd_entry_t fl; 6637 6638 KASSERT(((va | pa) & L1_S_OFFSET) == 0); 6639 6640 switch (cache) { 6641 case PTE_NOCACHE: 6642 default: 6643 fl = 0; 6644 break; 6645 6646 case PTE_CACHE: 6647 fl = pte_l1_s_cache_mode; 6648 break; 6649 6650 case PTE_PAGETABLE: 6651 fl = pte_l1_s_cache_mode_pt; 6652 break; 6653 } 6654 6655 const pd_entry_t npde = L1_S_PROTO | pa | 6656 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL); 6657 l1pte_setone(pdep + l1slot, npde); 6658 PDE_SYNC(pdep + l1slot); 6659 } 6660 6661 /* 6662 * pmap_map_entry: 6663 * 6664 * Create a single page mapping. 6665 */ 6666 void 6667 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache) 6668 { 6669 pd_entry_t * const pdep = (pd_entry_t *) l1pt; 6670 const size_t l1slot = l1pte_index(va); 6671 pt_entry_t npte; 6672 pt_entry_t *ptep; 6673 6674 KASSERT(((va | pa) & PGOFSET) == 0); 6675 6676 switch (cache) { 6677 case PTE_NOCACHE: 6678 default: 6679 npte = 0; 6680 break; 6681 6682 case PTE_CACHE: 6683 npte = pte_l2_s_cache_mode; 6684 break; 6685 6686 case PTE_PAGETABLE: 6687 npte = pte_l2_s_cache_mode_pt; 6688 break; 6689 } 6690 6691 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C) 6692 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va); 6693 6694 ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot])); 6695 if (ptep == NULL) 6696 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va); 6697 6698 npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot); 6699 #ifdef ARM_MMU_EXTENDED 6700 if (prot & VM_PROT_EXECUTE) { 6701 npte &= ~L2_XS_XN; 6702 } 6703 #endif 6704 ptep += l2pte_index(va); 6705 l2pte_set(ptep, npte, 0); 6706 PTE_SYNC(ptep); 6707 } 6708 6709 /* 6710 * pmap_link_l2pt: 6711 * 6712 * Link the L2 page table specified by "l2pv" into the L1 6713 * page table at the slot for "va". 6714 */ 6715 void 6716 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv) 6717 { 6718 pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va); 6719 6720 KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0); 6721 KASSERT((l2pv->pv_pa & PGOFSET) == 0); 6722 6723 const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO 6724 | l2pv->pv_pa; 6725 6726 l1pte_set(pdep, npde); 6727 PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE); 6728 6729 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list); 6730 } 6731 6732 /* 6733 * pmap_map_chunk: 6734 * 6735 * Map a chunk of memory using the most efficient mappings 6736 * possible (section, large page, small page) into the 6737 * provided L1 and L2 tables at the specified virtual address. 6738 */ 6739 vsize_t 6740 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size, 6741 int prot, int cache) 6742 { 6743 pd_entry_t * const pdep = (pd_entry_t *) l1pt; 6744 pt_entry_t f1, f2s, f2l; 6745 vsize_t resid; 6746 6747 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1); 6748 6749 if (l1pt == 0) 6750 panic("pmap_map_chunk: no L1 table provided"); 6751 6752 #ifdef VERBOSE_INIT_ARM 6753 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx " 6754 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache); 6755 #endif 6756 6757 switch (cache) { 6758 case PTE_NOCACHE: 6759 default: 6760 f1 = 0; 6761 f2l = 0; 6762 f2s = 0; 6763 break; 6764 6765 case PTE_CACHE: 6766 f1 = pte_l1_s_cache_mode; 6767 f2l = pte_l2_l_cache_mode; 6768 f2s = pte_l2_s_cache_mode; 6769 break; 6770 6771 case PTE_PAGETABLE: 6772 f1 = pte_l1_s_cache_mode_pt; 6773 f2l = pte_l2_l_cache_mode_pt; 6774 f2s = pte_l2_s_cache_mode_pt; 6775 break; 6776 } 6777 6778 size = resid; 6779 6780 while (resid > 0) { 6781 const size_t l1slot = l1pte_index(va); 6782 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 6783 /* See if we can use a supersection mapping. */ 6784 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) { 6785 /* Supersection are always domain 0 */ 6786 const pd_entry_t npde = L1_SS_PROTO | pa 6787 #ifdef ARM_MMU_EXTENDED 6788 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN) 6789 | (va & 0x80000000 ? 0 : L1_S_V6_nG) 6790 #endif 6791 | L1_S_PROT(PTE_KERNEL, prot) | f1; 6792 #ifdef VERBOSE_INIT_ARM 6793 printf("sS"); 6794 #endif 6795 l1pte_set(&pdep[l1slot], npde); 6796 PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE); 6797 va += L1_SS_SIZE; 6798 pa += L1_SS_SIZE; 6799 resid -= L1_SS_SIZE; 6800 continue; 6801 } 6802 #endif 6803 /* See if we can use a section mapping. */ 6804 if (L1_S_MAPPABLE_P(va, pa, resid)) { 6805 const pd_entry_t npde = L1_S_PROTO | pa 6806 #ifdef ARM_MMU_EXTENDED 6807 | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN) 6808 | (va & 0x80000000 ? 0 : L1_S_V6_nG) 6809 #endif 6810 | L1_S_PROT(PTE_KERNEL, prot) | f1 6811 | L1_S_DOM(PMAP_DOMAIN_KERNEL); 6812 #ifdef VERBOSE_INIT_ARM 6813 printf("S"); 6814 #endif 6815 l1pte_set(&pdep[l1slot], npde); 6816 PDE_SYNC(&pdep[l1slot]); 6817 va += L1_S_SIZE; 6818 pa += L1_S_SIZE; 6819 resid -= L1_S_SIZE; 6820 continue; 6821 } 6822 6823 /* 6824 * Ok, we're going to use an L2 table. Make sure 6825 * one is actually in the corresponding L1 slot 6826 * for the current VA. 6827 */ 6828 if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C) 6829 panic("%s: no L2 table for VA %#lx", __func__, va); 6830 6831 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot])); 6832 if (ptep == NULL) 6833 panic("%s: can't find L2 table for VA %#lx", __func__, 6834 va); 6835 6836 ptep += l2pte_index(va); 6837 6838 /* See if we can use a L2 large page mapping. */ 6839 if (L2_L_MAPPABLE_P(va, pa, resid)) { 6840 const pt_entry_t npte = L2_L_PROTO | pa 6841 #ifdef ARM_MMU_EXTENDED 6842 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN) 6843 | (va & 0x80000000 ? 0 : L2_XS_nG) 6844 #endif 6845 | L2_L_PROT(PTE_KERNEL, prot) | f2l; 6846 #ifdef VERBOSE_INIT_ARM 6847 printf("L"); 6848 #endif 6849 l2pte_set(ptep, npte, 0); 6850 PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE); 6851 va += L2_L_SIZE; 6852 pa += L2_L_SIZE; 6853 resid -= L2_L_SIZE; 6854 continue; 6855 } 6856 6857 #ifdef VERBOSE_INIT_ARM 6858 printf("P"); 6859 #endif 6860 /* Use a small page mapping. */ 6861 pt_entry_t npte = L2_S_PROTO | pa 6862 #ifdef ARM_MMU_EXTENDED 6863 | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN) 6864 | (va & 0x80000000 ? 0 : L2_XS_nG) 6865 #endif 6866 | L2_S_PROT(PTE_KERNEL, prot) | f2s; 6867 #ifdef ARM_MMU_EXTENDED 6868 npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0); 6869 #endif 6870 l2pte_set(ptep, npte, 0); 6871 PTE_SYNC(ptep); 6872 va += PAGE_SIZE; 6873 pa += PAGE_SIZE; 6874 resid -= PAGE_SIZE; 6875 } 6876 #ifdef VERBOSE_INIT_ARM 6877 printf("\n"); 6878 #endif 6879 return (size); 6880 } 6881 6882 /********************** Static device map routines ***************************/ 6883 6884 static const struct pmap_devmap *pmap_devmap_table; 6885 6886 /* 6887 * Register the devmap table. This is provided in case early console 6888 * initialization needs to register mappings created by bootstrap code 6889 * before pmap_devmap_bootstrap() is called. 6890 */ 6891 void 6892 pmap_devmap_register(const struct pmap_devmap *table) 6893 { 6894 6895 pmap_devmap_table = table; 6896 } 6897 6898 /* 6899 * Map all of the static regions in the devmap table, and remember 6900 * the devmap table so other parts of the kernel can look up entries 6901 * later. 6902 */ 6903 void 6904 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table) 6905 { 6906 int i; 6907 6908 pmap_devmap_table = table; 6909 6910 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 6911 #ifdef VERBOSE_INIT_ARM 6912 printf("devmap: %08lx -> %08lx @ %08lx\n", 6913 pmap_devmap_table[i].pd_pa, 6914 pmap_devmap_table[i].pd_pa + 6915 pmap_devmap_table[i].pd_size - 1, 6916 pmap_devmap_table[i].pd_va); 6917 #endif 6918 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va, 6919 pmap_devmap_table[i].pd_pa, 6920 pmap_devmap_table[i].pd_size, 6921 pmap_devmap_table[i].pd_prot, 6922 pmap_devmap_table[i].pd_cache); 6923 } 6924 } 6925 6926 const struct pmap_devmap * 6927 pmap_devmap_find_pa(paddr_t pa, psize_t size) 6928 { 6929 uint64_t endpa; 6930 int i; 6931 6932 if (pmap_devmap_table == NULL) 6933 return (NULL); 6934 6935 endpa = (uint64_t)pa + (uint64_t)(size - 1); 6936 6937 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 6938 if (pa >= pmap_devmap_table[i].pd_pa && 6939 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa + 6940 (uint64_t)(pmap_devmap_table[i].pd_size - 1)) 6941 return (&pmap_devmap_table[i]); 6942 } 6943 6944 return (NULL); 6945 } 6946 6947 const struct pmap_devmap * 6948 pmap_devmap_find_va(vaddr_t va, vsize_t size) 6949 { 6950 int i; 6951 6952 if (pmap_devmap_table == NULL) 6953 return (NULL); 6954 6955 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 6956 if (va >= pmap_devmap_table[i].pd_va && 6957 va + size - 1 <= pmap_devmap_table[i].pd_va + 6958 pmap_devmap_table[i].pd_size - 1) 6959 return (&pmap_devmap_table[i]); 6960 } 6961 6962 return (NULL); 6963 } 6964 6965 /********************** PTE initialization routines **************************/ 6966 6967 /* 6968 * These routines are called when the CPU type is identified to set up 6969 * the PTE prototypes, cache modes, etc. 6970 * 6971 * The variables are always here, just in case modules need to reference 6972 * them (though, they shouldn't). 6973 */ 6974 6975 pt_entry_t pte_l1_s_cache_mode; 6976 pt_entry_t pte_l1_s_wc_mode; 6977 pt_entry_t pte_l1_s_cache_mode_pt; 6978 pt_entry_t pte_l1_s_cache_mask; 6979 6980 pt_entry_t pte_l2_l_cache_mode; 6981 pt_entry_t pte_l2_l_wc_mode; 6982 pt_entry_t pte_l2_l_cache_mode_pt; 6983 pt_entry_t pte_l2_l_cache_mask; 6984 6985 pt_entry_t pte_l2_s_cache_mode; 6986 pt_entry_t pte_l2_s_wc_mode; 6987 pt_entry_t pte_l2_s_cache_mode_pt; 6988 pt_entry_t pte_l2_s_cache_mask; 6989 6990 pt_entry_t pte_l1_s_prot_u; 6991 pt_entry_t pte_l1_s_prot_w; 6992 pt_entry_t pte_l1_s_prot_ro; 6993 pt_entry_t pte_l1_s_prot_mask; 6994 6995 pt_entry_t pte_l2_s_prot_u; 6996 pt_entry_t pte_l2_s_prot_w; 6997 pt_entry_t pte_l2_s_prot_ro; 6998 pt_entry_t pte_l2_s_prot_mask; 6999 7000 pt_entry_t pte_l2_l_prot_u; 7001 pt_entry_t pte_l2_l_prot_w; 7002 pt_entry_t pte_l2_l_prot_ro; 7003 pt_entry_t pte_l2_l_prot_mask; 7004 7005 pt_entry_t pte_l1_ss_proto; 7006 pt_entry_t pte_l1_s_proto; 7007 pt_entry_t pte_l1_c_proto; 7008 pt_entry_t pte_l2_s_proto; 7009 7010 void (*pmap_copy_page_func)(paddr_t, paddr_t); 7011 void (*pmap_zero_page_func)(paddr_t); 7012 7013 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 7014 void 7015 pmap_pte_init_generic(void) 7016 { 7017 7018 pte_l1_s_cache_mode = L1_S_B|L1_S_C; 7019 pte_l1_s_wc_mode = L1_S_B; 7020 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic; 7021 7022 pte_l2_l_cache_mode = L2_B|L2_C; 7023 pte_l2_l_wc_mode = L2_B; 7024 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic; 7025 7026 pte_l2_s_cache_mode = L2_B|L2_C; 7027 pte_l2_s_wc_mode = L2_B; 7028 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic; 7029 7030 /* 7031 * If we have a write-through cache, set B and C. If 7032 * we have a write-back cache, then we assume setting 7033 * only C will make those pages write-through (except for those 7034 * Cortex CPUs which can read the L1 caches). 7035 */ 7036 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop 7037 #if ARM_MMU_V7 > 0 7038 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid) 7039 #endif 7040 #if ARM_MMU_V6 > 0 7041 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */ 7042 #endif 7043 || false) { 7044 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; 7045 pte_l2_l_cache_mode_pt = L2_B|L2_C; 7046 pte_l2_s_cache_mode_pt = L2_B|L2_C; 7047 } else { 7048 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */ 7049 pte_l2_l_cache_mode_pt = L2_C; /* write through */ 7050 pte_l2_s_cache_mode_pt = L2_C; /* write through */ 7051 } 7052 7053 pte_l1_s_prot_u = L1_S_PROT_U_generic; 7054 pte_l1_s_prot_w = L1_S_PROT_W_generic; 7055 pte_l1_s_prot_ro = L1_S_PROT_RO_generic; 7056 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic; 7057 7058 pte_l2_s_prot_u = L2_S_PROT_U_generic; 7059 pte_l2_s_prot_w = L2_S_PROT_W_generic; 7060 pte_l2_s_prot_ro = L2_S_PROT_RO_generic; 7061 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic; 7062 7063 pte_l2_l_prot_u = L2_L_PROT_U_generic; 7064 pte_l2_l_prot_w = L2_L_PROT_W_generic; 7065 pte_l2_l_prot_ro = L2_L_PROT_RO_generic; 7066 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic; 7067 7068 pte_l1_ss_proto = L1_SS_PROTO_generic; 7069 pte_l1_s_proto = L1_S_PROTO_generic; 7070 pte_l1_c_proto = L1_C_PROTO_generic; 7071 pte_l2_s_proto = L2_S_PROTO_generic; 7072 7073 pmap_copy_page_func = pmap_copy_page_generic; 7074 pmap_zero_page_func = pmap_zero_page_generic; 7075 } 7076 7077 #if defined(CPU_ARM8) 7078 void 7079 pmap_pte_init_arm8(void) 7080 { 7081 7082 /* 7083 * ARM8 is compatible with generic, but we need to use 7084 * the page tables uncached. 7085 */ 7086 pmap_pte_init_generic(); 7087 7088 pte_l1_s_cache_mode_pt = 0; 7089 pte_l2_l_cache_mode_pt = 0; 7090 pte_l2_s_cache_mode_pt = 0; 7091 } 7092 #endif /* CPU_ARM8 */ 7093 7094 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH) 7095 void 7096 pmap_pte_init_arm9(void) 7097 { 7098 7099 /* 7100 * ARM9 is compatible with generic, but we want to use 7101 * write-through caching for now. 7102 */ 7103 pmap_pte_init_generic(); 7104 7105 pte_l1_s_cache_mode = L1_S_C; 7106 pte_l2_l_cache_mode = L2_C; 7107 pte_l2_s_cache_mode = L2_C; 7108 7109 pte_l1_s_wc_mode = L1_S_B; 7110 pte_l2_l_wc_mode = L2_B; 7111 pte_l2_s_wc_mode = L2_B; 7112 7113 pte_l1_s_cache_mode_pt = L1_S_C; 7114 pte_l2_l_cache_mode_pt = L2_C; 7115 pte_l2_s_cache_mode_pt = L2_C; 7116 } 7117 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */ 7118 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 7119 7120 #if defined(CPU_ARM10) 7121 void 7122 pmap_pte_init_arm10(void) 7123 { 7124 7125 /* 7126 * ARM10 is compatible with generic, but we want to use 7127 * write-through caching for now. 7128 */ 7129 pmap_pte_init_generic(); 7130 7131 pte_l1_s_cache_mode = L1_S_B | L1_S_C; 7132 pte_l2_l_cache_mode = L2_B | L2_C; 7133 pte_l2_s_cache_mode = L2_B | L2_C; 7134 7135 pte_l1_s_cache_mode = L1_S_B; 7136 pte_l2_l_cache_mode = L2_B; 7137 pte_l2_s_cache_mode = L2_B; 7138 7139 pte_l1_s_cache_mode_pt = L1_S_C; 7140 pte_l2_l_cache_mode_pt = L2_C; 7141 pte_l2_s_cache_mode_pt = L2_C; 7142 7143 } 7144 #endif /* CPU_ARM10 */ 7145 7146 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH) 7147 void 7148 pmap_pte_init_arm11(void) 7149 { 7150 7151 /* 7152 * ARM11 is compatible with generic, but we want to use 7153 * write-through caching for now. 7154 */ 7155 pmap_pte_init_generic(); 7156 7157 pte_l1_s_cache_mode = L1_S_C; 7158 pte_l2_l_cache_mode = L2_C; 7159 pte_l2_s_cache_mode = L2_C; 7160 7161 pte_l1_s_wc_mode = L1_S_B; 7162 pte_l2_l_wc_mode = L2_B; 7163 pte_l2_s_wc_mode = L2_B; 7164 7165 pte_l1_s_cache_mode_pt = L1_S_C; 7166 pte_l2_l_cache_mode_pt = L2_C; 7167 pte_l2_s_cache_mode_pt = L2_C; 7168 } 7169 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */ 7170 7171 #if ARM_MMU_SA1 == 1 7172 void 7173 pmap_pte_init_sa1(void) 7174 { 7175 7176 /* 7177 * The StrongARM SA-1 cache does not have a write-through 7178 * mode. So, do the generic initialization, then reset 7179 * the page table cache mode to B=1,C=1, and note that 7180 * the PTEs need to be sync'd. 7181 */ 7182 pmap_pte_init_generic(); 7183 7184 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; 7185 pte_l2_l_cache_mode_pt = L2_B|L2_C; 7186 pte_l2_s_cache_mode_pt = L2_B|L2_C; 7187 7188 pmap_needs_pte_sync = 1; 7189 } 7190 #endif /* ARM_MMU_SA1 == 1*/ 7191 7192 #if ARM_MMU_XSCALE == 1 7193 #if (ARM_NMMUS > 1) 7194 static u_int xscale_use_minidata; 7195 #endif 7196 7197 void 7198 pmap_pte_init_xscale(void) 7199 { 7200 uint32_t auxctl; 7201 int write_through = 0; 7202 7203 pte_l1_s_cache_mode = L1_S_B|L1_S_C; 7204 pte_l1_s_wc_mode = L1_S_B; 7205 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale; 7206 7207 pte_l2_l_cache_mode = L2_B|L2_C; 7208 pte_l2_l_wc_mode = L2_B; 7209 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale; 7210 7211 pte_l2_s_cache_mode = L2_B|L2_C; 7212 pte_l2_s_wc_mode = L2_B; 7213 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale; 7214 7215 pte_l1_s_cache_mode_pt = L1_S_C; 7216 pte_l2_l_cache_mode_pt = L2_C; 7217 pte_l2_s_cache_mode_pt = L2_C; 7218 7219 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE 7220 /* 7221 * The XScale core has an enhanced mode where writes that 7222 * miss the cache cause a cache line to be allocated. This 7223 * is significantly faster than the traditional, write-through 7224 * behavior of this case. 7225 */ 7226 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X); 7227 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X); 7228 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X); 7229 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */ 7230 7231 #ifdef XSCALE_CACHE_WRITE_THROUGH 7232 /* 7233 * Some versions of the XScale core have various bugs in 7234 * their cache units, the work-around for which is to run 7235 * the cache in write-through mode. Unfortunately, this 7236 * has a major (negative) impact on performance. So, we 7237 * go ahead and run fast-and-loose, in the hopes that we 7238 * don't line up the planets in a way that will trip the 7239 * bugs. 7240 * 7241 * However, we give you the option to be slow-but-correct. 7242 */ 7243 write_through = 1; 7244 #elif defined(XSCALE_CACHE_WRITE_BACK) 7245 /* force write back cache mode */ 7246 write_through = 0; 7247 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270) 7248 /* 7249 * Intel PXA2[15]0 processors are known to have a bug in 7250 * write-back cache on revision 4 and earlier (stepping 7251 * A[01] and B[012]). Fixed for C0 and later. 7252 */ 7253 { 7254 uint32_t id, type; 7255 7256 id = cpufunc_id(); 7257 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK); 7258 7259 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) { 7260 if ((id & CPU_ID_REVISION_MASK) < 5) { 7261 /* write through for stepping A0-1 and B0-2 */ 7262 write_through = 1; 7263 } 7264 } 7265 } 7266 #endif /* XSCALE_CACHE_WRITE_THROUGH */ 7267 7268 if (write_through) { 7269 pte_l1_s_cache_mode = L1_S_C; 7270 pte_l2_l_cache_mode = L2_C; 7271 pte_l2_s_cache_mode = L2_C; 7272 } 7273 7274 #if (ARM_NMMUS > 1) 7275 xscale_use_minidata = 1; 7276 #endif 7277 7278 pte_l1_s_prot_u = L1_S_PROT_U_xscale; 7279 pte_l1_s_prot_w = L1_S_PROT_W_xscale; 7280 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale; 7281 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale; 7282 7283 pte_l2_s_prot_u = L2_S_PROT_U_xscale; 7284 pte_l2_s_prot_w = L2_S_PROT_W_xscale; 7285 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale; 7286 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale; 7287 7288 pte_l2_l_prot_u = L2_L_PROT_U_xscale; 7289 pte_l2_l_prot_w = L2_L_PROT_W_xscale; 7290 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale; 7291 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale; 7292 7293 pte_l1_ss_proto = L1_SS_PROTO_xscale; 7294 pte_l1_s_proto = L1_S_PROTO_xscale; 7295 pte_l1_c_proto = L1_C_PROTO_xscale; 7296 pte_l2_s_proto = L2_S_PROTO_xscale; 7297 7298 pmap_copy_page_func = pmap_copy_page_xscale; 7299 pmap_zero_page_func = pmap_zero_page_xscale; 7300 7301 /* 7302 * Disable ECC protection of page table access, for now. 7303 */ 7304 auxctl = armreg_auxctl_read(); 7305 auxctl &= ~XSCALE_AUXCTL_P; 7306 armreg_auxctl_write(auxctl); 7307 } 7308 7309 /* 7310 * xscale_setup_minidata: 7311 * 7312 * Set up the mini-data cache clean area. We require the 7313 * caller to allocate the right amount of physically and 7314 * virtually contiguous space. 7315 */ 7316 void 7317 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa) 7318 { 7319 extern vaddr_t xscale_minidata_clean_addr; 7320 extern vsize_t xscale_minidata_clean_size; /* already initialized */ 7321 pd_entry_t *pde = (pd_entry_t *) l1pt; 7322 vsize_t size; 7323 uint32_t auxctl; 7324 7325 xscale_minidata_clean_addr = va; 7326 7327 /* Round it to page size. */ 7328 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME; 7329 7330 for (; size != 0; 7331 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) { 7332 const size_t l1slot = l1pte_index(va); 7333 pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot])); 7334 if (ptep == NULL) 7335 panic("xscale_setup_minidata: can't find L2 table for " 7336 "VA 0x%08lx", va); 7337 7338 ptep += l2pte_index(va); 7339 pt_entry_t opte = *ptep; 7340 l2pte_set(ptep, 7341 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) 7342 | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte); 7343 } 7344 7345 /* 7346 * Configure the mini-data cache for write-back with 7347 * read/write-allocate. 7348 * 7349 * NOTE: In order to reconfigure the mini-data cache, we must 7350 * make sure it contains no valid data! In order to do that, 7351 * we must issue a global data cache invalidate command! 7352 * 7353 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED! 7354 * THIS IS VERY IMPORTANT! 7355 */ 7356 7357 /* Invalidate data and mini-data. */ 7358 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0)); 7359 auxctl = armreg_auxctl_read(); 7360 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA; 7361 armreg_auxctl_write(auxctl); 7362 } 7363 7364 /* 7365 * Change the PTEs for the specified kernel mappings such that they 7366 * will use the mini data cache instead of the main data cache. 7367 */ 7368 void 7369 pmap_uarea(vaddr_t va) 7370 { 7371 vaddr_t next_bucket, eva; 7372 7373 #if (ARM_NMMUS > 1) 7374 if (xscale_use_minidata == 0) 7375 return; 7376 #endif 7377 7378 eva = va + USPACE; 7379 7380 while (va < eva) { 7381 next_bucket = L2_NEXT_BUCKET_VA(va); 7382 if (next_bucket > eva) 7383 next_bucket = eva; 7384 7385 struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va); 7386 KDASSERT(l2b != NULL); 7387 7388 pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)]; 7389 pt_entry_t *ptep = sptep; 7390 7391 while (va < next_bucket) { 7392 const pt_entry_t opte = *ptep; 7393 if (!l2pte_minidata_p(opte)) { 7394 cpu_dcache_wbinv_range(va, PAGE_SIZE); 7395 cpu_tlb_flushD_SE(va); 7396 l2pte_set(ptep, opte & ~L2_B, opte); 7397 } 7398 ptep += PAGE_SIZE / L2_S_SIZE; 7399 va += PAGE_SIZE; 7400 } 7401 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep)); 7402 } 7403 cpu_cpwait(); 7404 } 7405 #endif /* ARM_MMU_XSCALE == 1 */ 7406 7407 7408 #if defined(CPU_ARM11MPCORE) 7409 7410 void 7411 pmap_pte_init_arm11mpcore(void) 7412 { 7413 7414 /* cache mode is controlled by 5 bits (B, C, TEX) */ 7415 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6; 7416 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6; 7417 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE) 7418 /* use extended small page (without APn, with TEX) */ 7419 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6; 7420 #else 7421 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c; 7422 #endif 7423 7424 /* write-back, write-allocate */ 7425 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01); 7426 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01); 7427 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE) 7428 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01); 7429 #else 7430 /* no TEX. read-allocate */ 7431 pte_l2_s_cache_mode = L2_C | L2_B; 7432 #endif 7433 /* 7434 * write-back, write-allocate for page tables. 7435 */ 7436 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01); 7437 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01); 7438 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE) 7439 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01); 7440 #else 7441 pte_l2_s_cache_mode_pt = L2_C | L2_B; 7442 #endif 7443 7444 pte_l1_s_prot_u = L1_S_PROT_U_armv6; 7445 pte_l1_s_prot_w = L1_S_PROT_W_armv6; 7446 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6; 7447 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6; 7448 7449 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE) 7450 pte_l2_s_prot_u = L2_S_PROT_U_armv6n; 7451 pte_l2_s_prot_w = L2_S_PROT_W_armv6n; 7452 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n; 7453 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n; 7454 7455 #else 7456 /* with AP[0..3] */ 7457 pte_l2_s_prot_u = L2_S_PROT_U_generic; 7458 pte_l2_s_prot_w = L2_S_PROT_W_generic; 7459 pte_l2_s_prot_ro = L2_S_PROT_RO_generic; 7460 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic; 7461 #endif 7462 7463 #ifdef ARM11MPCORE_COMPAT_MMU 7464 /* with AP[0..3] */ 7465 pte_l2_l_prot_u = L2_L_PROT_U_generic; 7466 pte_l2_l_prot_w = L2_L_PROT_W_generic; 7467 pte_l2_l_prot_ro = L2_L_PROT_RO_generic; 7468 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic; 7469 7470 pte_l1_ss_proto = L1_SS_PROTO_armv6; 7471 pte_l1_s_proto = L1_S_PROTO_armv6; 7472 pte_l1_c_proto = L1_C_PROTO_armv6; 7473 pte_l2_s_proto = L2_S_PROTO_armv6c; 7474 #else 7475 pte_l2_l_prot_u = L2_L_PROT_U_armv6n; 7476 pte_l2_l_prot_w = L2_L_PROT_W_armv6n; 7477 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n; 7478 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n; 7479 7480 pte_l1_ss_proto = L1_SS_PROTO_armv6; 7481 pte_l1_s_proto = L1_S_PROTO_armv6; 7482 pte_l1_c_proto = L1_C_PROTO_armv6; 7483 pte_l2_s_proto = L2_S_PROTO_armv6n; 7484 #endif 7485 7486 pmap_copy_page_func = pmap_copy_page_generic; 7487 pmap_zero_page_func = pmap_zero_page_generic; 7488 pmap_needs_pte_sync = 1; 7489 } 7490 #endif /* CPU_ARM11MPCORE */ 7491 7492 7493 #if ARM_MMU_V7 == 1 7494 void 7495 pmap_pte_init_armv7(void) 7496 { 7497 /* 7498 * The ARMv7-A MMU is mostly compatible with generic. If the 7499 * AP field is zero, that now means "no access" rather than 7500 * read-only. The prototypes are a little different because of 7501 * the XN bit. 7502 */ 7503 pmap_pte_init_generic(); 7504 7505 pmap_needs_pte_sync = 1; 7506 7507 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7; 7508 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7; 7509 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7; 7510 7511 /* 7512 * If the core support coherent walk then updates to translation tables 7513 * do not require a clean to the point of unification to ensure 7514 * visibility by subsequent translation table walks. That means we can 7515 * map everything shareable and cached and the right thing will happen. 7516 */ 7517 if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) { 7518 pmap_needs_pte_sync = 0; 7519 7520 /* 7521 * write-back, no write-allocate, shareable for normal pages. 7522 */ 7523 pte_l1_s_cache_mode |= L1_S_V6_S; 7524 pte_l2_l_cache_mode |= L2_XS_S; 7525 pte_l2_s_cache_mode |= L2_XS_S; 7526 } 7527 7528 /* 7529 * Page tables are just all other memory. We can use write-back since 7530 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache). 7531 */ 7532 pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode; 7533 pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode; 7534 pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode; 7535 7536 /* 7537 * Check the Memory Model Features to see if this CPU supports 7538 * the TLBIASID coproc op. 7539 */ 7540 if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) { 7541 arm_has_tlbiasid_p = true; 7542 } else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) { 7543 arm_has_tlbiasid_p = true; 7544 } 7545 7546 /* 7547 * Check the MPIDR to see if this CPU supports MP extensions. 7548 */ 7549 #ifdef MULTIPROCESSOR 7550 arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP; 7551 #else 7552 arm_has_mpext_p = false; 7553 #endif 7554 7555 pte_l1_s_prot_u = L1_S_PROT_U_armv7; 7556 pte_l1_s_prot_w = L1_S_PROT_W_armv7; 7557 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7; 7558 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7; 7559 7560 pte_l2_s_prot_u = L2_S_PROT_U_armv7; 7561 pte_l2_s_prot_w = L2_S_PROT_W_armv7; 7562 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7; 7563 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7; 7564 7565 pte_l2_l_prot_u = L2_L_PROT_U_armv7; 7566 pte_l2_l_prot_w = L2_L_PROT_W_armv7; 7567 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7; 7568 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7; 7569 7570 pte_l1_ss_proto = L1_SS_PROTO_armv7; 7571 pte_l1_s_proto = L1_S_PROTO_armv7; 7572 pte_l1_c_proto = L1_C_PROTO_armv7; 7573 pte_l2_s_proto = L2_S_PROTO_armv7; 7574 7575 } 7576 #endif /* ARM_MMU_V7 */ 7577 7578 /* 7579 * return the PA of the current L1 table, for use when handling a crash dump 7580 */ 7581 uint32_t 7582 pmap_kernel_L1_addr(void) 7583 { 7584 #ifdef ARM_MMU_EXTENDED 7585 return pmap_kernel()->pm_l1_pa; 7586 #else 7587 return pmap_kernel()->pm_l1->l1_physaddr; 7588 #endif 7589 } 7590 7591 #if defined(DDB) 7592 /* 7593 * A couple of ddb-callable functions for dumping pmaps 7594 */ 7595 void pmap_dump(pmap_t); 7596 7597 static pt_entry_t ncptes[64]; 7598 static void pmap_dump_ncpg(pmap_t); 7599 7600 void 7601 pmap_dump(pmap_t pm) 7602 { 7603 struct l2_dtable *l2; 7604 struct l2_bucket *l2b; 7605 pt_entry_t *ptep, pte; 7606 vaddr_t l2_va, l2b_va, va; 7607 int i, j, k, occ, rows = 0; 7608 7609 if (pm == pmap_kernel()) 7610 printf("pmap_kernel (%p): ", pm); 7611 else 7612 printf("user pmap (%p): ", pm); 7613 7614 #ifdef ARM_MMU_EXTENDED 7615 printf("l1 at %p\n", pmap_l1_kva(pm)); 7616 #else 7617 printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm)); 7618 #endif 7619 7620 l2_va = 0; 7621 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) { 7622 l2 = pm->pm_l2[i]; 7623 7624 if (l2 == NULL || l2->l2_occupancy == 0) 7625 continue; 7626 7627 l2b_va = l2_va; 7628 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) { 7629 l2b = &l2->l2_bucket[j]; 7630 7631 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL) 7632 continue; 7633 7634 ptep = l2b->l2b_kva; 7635 7636 for (k = 0; k < 256 && ptep[k] == 0; k++) 7637 ; 7638 7639 k &= ~63; 7640 occ = l2b->l2b_occupancy; 7641 va = l2b_va + (k * 4096); 7642 for (; k < 256; k++, va += 0x1000) { 7643 char ch = ' '; 7644 if ((k % 64) == 0) { 7645 if ((rows % 8) == 0) { 7646 printf( 7647 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n"); 7648 } 7649 printf("%08lx: ", va); 7650 } 7651 7652 ncptes[k & 63] = 0; 7653 pte = ptep[k]; 7654 if (pte == 0) { 7655 ch = '.'; 7656 } else { 7657 occ--; 7658 switch (pte & 0x0c) { 7659 case 0x00: 7660 ch = 'D'; /* No cache No buff */ 7661 break; 7662 case 0x04: 7663 ch = 'B'; /* No cache buff */ 7664 break; 7665 case 0x08: 7666 if (pte & 0x40) 7667 ch = 'm'; 7668 else 7669 ch = 'C'; /* Cache No buff */ 7670 break; 7671 case 0x0c: 7672 ch = 'F'; /* Cache Buff */ 7673 break; 7674 } 7675 7676 if ((pte & L2_S_PROT_U) == L2_S_PROT_U) 7677 ch += 0x20; 7678 7679 if ((pte & 0xc) == 0) 7680 ncptes[k & 63] = pte; 7681 } 7682 7683 if ((k % 64) == 63) { 7684 rows++; 7685 printf("%c\n", ch); 7686 pmap_dump_ncpg(pm); 7687 if (occ == 0) 7688 break; 7689 } else 7690 printf("%c", ch); 7691 } 7692 } 7693 } 7694 } 7695 7696 static void 7697 pmap_dump_ncpg(pmap_t pm) 7698 { 7699 struct vm_page *pg; 7700 struct vm_page_md *md; 7701 struct pv_entry *pv; 7702 int i; 7703 7704 for (i = 0; i < 63; i++) { 7705 if (ncptes[i] == 0) 7706 continue; 7707 7708 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i])); 7709 if (pg == NULL) 7710 continue; 7711 md = VM_PAGE_TO_MD(pg); 7712 7713 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n", 7714 VM_PAGE_TO_PHYS(pg), 7715 md->krw_mappings, md->kro_mappings, 7716 md->urw_mappings, md->uro_mappings); 7717 7718 SLIST_FOREACH(pv, &md->pvh_list, pv_link) { 7719 printf(" %c va 0x%08lx, flags 0x%x\n", 7720 (pm == pv->pv_pmap) ? '*' : ' ', 7721 pv->pv_va, pv->pv_flags); 7722 } 7723 } 7724 } 7725 #endif 7726 7727 #ifdef PMAP_STEAL_MEMORY 7728 void 7729 pmap_boot_pageadd(pv_addr_t *newpv) 7730 { 7731 pv_addr_t *pv, *npv; 7732 7733 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) { 7734 if (newpv->pv_pa < pv->pv_va) { 7735 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa); 7736 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) { 7737 newpv->pv_size += pv->pv_size; 7738 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list); 7739 } 7740 pv = NULL; 7741 } else { 7742 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL; 7743 pv = npv) { 7744 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa); 7745 KASSERT(pv->pv_pa < newpv->pv_pa); 7746 if (newpv->pv_pa > npv->pv_pa) 7747 continue; 7748 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) { 7749 pv->pv_size += newpv->pv_size; 7750 return; 7751 } 7752 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa) 7753 break; 7754 newpv->pv_size += npv->pv_size; 7755 SLIST_INSERT_AFTER(pv, newpv, pv_list); 7756 SLIST_REMOVE_AFTER(newpv, pv_list); 7757 return; 7758 } 7759 } 7760 } 7761 7762 if (pv) { 7763 SLIST_INSERT_AFTER(pv, newpv, pv_list); 7764 } else { 7765 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list); 7766 } 7767 } 7768 7769 void 7770 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match, 7771 pv_addr_t *rpv) 7772 { 7773 pv_addr_t *pv, **pvp; 7774 struct vm_physseg *ps; 7775 size_t i; 7776 7777 KASSERT(amount & PGOFSET); 7778 KASSERT((mask & PGOFSET) == 0); 7779 KASSERT((match & PGOFSET) == 0); 7780 KASSERT(amount != 0); 7781 7782 for (pvp = &SLIST_FIRST(&pmap_boot_freeq); 7783 (pv = *pvp) != NULL; 7784 pvp = &SLIST_NEXT(pv, pv_list)) { 7785 pv_addr_t *newpv; 7786 psize_t off; 7787 /* 7788 * If this entry is too small to satify the request... 7789 */ 7790 KASSERT(pv->pv_size > 0); 7791 if (pv->pv_size < amount) 7792 continue; 7793 7794 for (off = 0; off <= mask; off += PAGE_SIZE) { 7795 if (((pv->pv_pa + off) & mask) == match 7796 && off + amount <= pv->pv_size) 7797 break; 7798 } 7799 if (off > mask) 7800 continue; 7801 7802 rpv->pv_va = pv->pv_va + off; 7803 rpv->pv_pa = pv->pv_pa + off; 7804 rpv->pv_size = amount; 7805 pv->pv_size -= amount; 7806 if (pv->pv_size == 0) { 7807 KASSERT(off == 0); 7808 KASSERT((vaddr_t) pv == rpv->pv_va); 7809 *pvp = SLIST_NEXT(pv, pv_list); 7810 } else if (off == 0) { 7811 KASSERT((vaddr_t) pv == rpv->pv_va); 7812 newpv = (pv_addr_t *) (rpv->pv_va + amount); 7813 *newpv = *pv; 7814 newpv->pv_pa += amount; 7815 newpv->pv_va += amount; 7816 *pvp = newpv; 7817 } else if (off < pv->pv_size) { 7818 newpv = (pv_addr_t *) (rpv->pv_va + amount); 7819 *newpv = *pv; 7820 newpv->pv_size -= off; 7821 newpv->pv_pa += off + amount; 7822 newpv->pv_va += off + amount; 7823 7824 SLIST_NEXT(pv, pv_list) = newpv; 7825 pv->pv_size = off; 7826 } else { 7827 KASSERT((vaddr_t) pv != rpv->pv_va); 7828 } 7829 memset((void *)rpv->pv_va, 0, amount); 7830 return; 7831 } 7832 7833 if (vm_nphysseg == 0) 7834 panic("pmap_boot_pagealloc: couldn't allocate memory"); 7835 7836 for (pvp = &SLIST_FIRST(&pmap_boot_freeq); 7837 (pv = *pvp) != NULL; 7838 pvp = &SLIST_NEXT(pv, pv_list)) { 7839 if (SLIST_NEXT(pv, pv_list) == NULL) 7840 break; 7841 } 7842 KASSERT(mask == 0); 7843 for (i = 0; i < vm_nphysseg; i++) { 7844 ps = VM_PHYSMEM_PTR(i); 7845 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size) 7846 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) { 7847 rpv->pv_va = pv->pv_va; 7848 rpv->pv_pa = pv->pv_pa; 7849 rpv->pv_size = amount; 7850 *pvp = NULL; 7851 pmap_map_chunk(kernel_l1pt.pv_va, 7852 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa), 7853 ptoa(ps->avail_start), 7854 amount - pv->pv_size, 7855 VM_PROT_READ|VM_PROT_WRITE, 7856 PTE_CACHE); 7857 ps->avail_start += atop(amount - pv->pv_size); 7858 /* 7859 * If we consumed the entire physseg, remove it. 7860 */ 7861 if (ps->avail_start == ps->avail_end) { 7862 for (--vm_nphysseg; i < vm_nphysseg; i++) 7863 VM_PHYSMEM_PTR_SWAP(i, i + 1); 7864 } 7865 memset((void *)rpv->pv_va, 0, rpv->pv_size); 7866 return; 7867 } 7868 } 7869 7870 panic("pmap_boot_pagealloc: couldn't allocate memory"); 7871 } 7872 7873 vaddr_t 7874 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp) 7875 { 7876 pv_addr_t pv; 7877 7878 pmap_boot_pagealloc(size, 0, 0, &pv); 7879 7880 return pv.pv_va; 7881 } 7882 #endif /* PMAP_STEAL_MEMORY */ 7883 7884 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup") 7885 { 7886 sysctl_createv(clog, 0, NULL, NULL, 7887 CTLFLAG_PERMANENT, 7888 CTLTYPE_NODE, "machdep", NULL, 7889 NULL, 0, NULL, 0, 7890 CTL_MACHDEP, CTL_EOL); 7891 7892 sysctl_createv(clog, 0, NULL, NULL, 7893 CTLFLAG_PERMANENT, 7894 CTLTYPE_INT, "kmpages", 7895 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"), 7896 NULL, 0, &pmap_kmpages, 0, 7897 CTL_MACHDEP, CTL_CREATE, CTL_EOL); 7898 } 7899 7900 #ifdef PMAP_NEED_ALLOC_POOLPAGE 7901 struct vm_page * 7902 arm_pmap_alloc_poolpage(int flags) 7903 { 7904 /* 7905 * On some systems, only some pages may be "coherent" for dma and we 7906 * want to prefer those for pool pages (think mbufs) but fallback to 7907 * any page if none is available. 7908 */ 7909 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) { 7910 return uvm_pagealloc_strat(NULL, 0, NULL, flags, 7911 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist); 7912 } 7913 7914 return uvm_pagealloc(NULL, 0, NULL, flags); 7915 } 7916 #endif 7917 7918 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR) 7919 void 7920 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) 7921 { 7922 /* nothing */ 7923 } 7924 7925 int 7926 pic_ipi_shootdown(void *arg) 7927 { 7928 #if PMAP_TLB_NEED_SHOOTDOWN 7929 pmap_tlb_shootdown_process(); 7930 #endif 7931 return 1; 7932 } 7933 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */ 7934 7935 7936 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS 7937 vaddr_t 7938 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va) 7939 { 7940 bool ok = false; 7941 if (physical_start <= pa && pa < physical_end) { 7942 #ifdef KERNEL_BASE_VOFFSET 7943 const vaddr_t newva = pa + KERNEL_BASE_VOFFSET; 7944 #else 7945 const vaddr_t newva = KERNEL_BASE + pa - physical_start; 7946 #endif 7947 #ifdef ARM_MMU_EXTENDED 7948 if (newva >= KERNEL_BASE && newva < pmap_directlimit) { 7949 #endif 7950 va = newva; 7951 ok = true; 7952 #ifdef ARM_MMU_EXTENDED 7953 } 7954 #endif 7955 } 7956 KASSERT(ok_p); 7957 *ok_p = ok; 7958 return va; 7959 } 7960 7961 vaddr_t 7962 pmap_map_poolpage(paddr_t pa) 7963 { 7964 bool ok __diagused; 7965 vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0); 7966 KASSERTMSG(ok, "pa %#lx not direct mappable", pa); 7967 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED) 7968 if (arm_cache_prefer_mask != 0) { 7969 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); 7970 struct vm_page_md * const md = VM_PAGE_TO_MD(pg); 7971 pmap_acquire_page_lock(md); 7972 pmap_vac_me_harder(md, pa, pmap_kernel(), va); 7973 pmap_release_page_lock(md); 7974 } 7975 #endif 7976 return va; 7977 } 7978 7979 paddr_t 7980 pmap_unmap_poolpage(vaddr_t va) 7981 { 7982 KASSERT(va >= KERNEL_BASE); 7983 #ifdef PMAP_CACHE_VIVT 7984 cpu_idcache_wbinv_range(va, PAGE_SIZE); 7985 #endif 7986 #if defined(KERNEL_BASE_VOFFSET) 7987 return va - KERNEL_BASE_VOFFSET; 7988 #else 7989 return va - KERNEL_BASE + physical_start; 7990 #endif 7991 } 7992 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */ 7993