1 /* $NetBSD: pmap.c,v 1.212 2010/02/15 07:55:33 skrll Exp $ */ 2 3 /* 4 * Copyright 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 2002-2003 Wasabi Systems, Inc. 40 * Copyright (c) 2001 Richard Earnshaw 41 * Copyright (c) 2001-2002 Christopher Gilbert 42 * All rights reserved. 43 * 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. The name of the company nor the name of the author may be used to 50 * endorse or promote products derived from this software without specific 51 * prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 */ 65 66 /*- 67 * Copyright (c) 1999 The NetBSD Foundation, Inc. 68 * All rights reserved. 69 * 70 * This code is derived from software contributed to The NetBSD Foundation 71 * by Charles M. Hannum. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce the above copyright 79 * notice, this list of conditions and the following disclaimer in the 80 * documentation and/or other materials provided with the distribution. 81 * 82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 92 * POSSIBILITY OF SUCH DAMAGE. 93 */ 94 95 /* 96 * Copyright (c) 1994-1998 Mark Brinicombe. 97 * Copyright (c) 1994 Brini. 98 * All rights reserved. 99 * 100 * This code is derived from software written for Brini by Mark Brinicombe 101 * 102 * Redistribution and use in source and binary forms, with or without 103 * modification, are permitted provided that the following conditions 104 * are met: 105 * 1. Redistributions of source code must retain the above copyright 106 * notice, this list of conditions and the following disclaimer. 107 * 2. Redistributions in binary form must reproduce the above copyright 108 * notice, this list of conditions and the following disclaimer in the 109 * documentation and/or other materials provided with the distribution. 110 * 3. All advertising materials mentioning features or use of this software 111 * must display the following acknowledgement: 112 * This product includes software developed by Mark Brinicombe. 113 * 4. The name of the author may not be used to endorse or promote products 114 * derived from this software without specific prior written permission. 115 * 116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 125 * 126 * RiscBSD kernel project 127 * 128 * pmap.c 129 * 130 * Machine dependant vm stuff 131 * 132 * Created : 20/09/94 133 */ 134 135 /* 136 * armv6 and VIPT cache support by 3am Software Foundry, 137 * Copyright (c) 2007 Microsoft 138 */ 139 140 /* 141 * Performance improvements, UVM changes, overhauls and part-rewrites 142 * were contributed by Neil A. Carson <neil@causality.com>. 143 */ 144 145 /* 146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables 147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi 148 * Systems, Inc. 149 * 150 * There are still a few things outstanding at this time: 151 * 152 * - There are some unresolved issues for MP systems: 153 * 154 * o The L1 metadata needs a lock, or more specifically, some places 155 * need to acquire an exclusive lock when modifying L1 translation 156 * table entries. 157 * 158 * o When one cpu modifies an L1 entry, and that L1 table is also 159 * being used by another cpu, then the latter will need to be told 160 * that a tlb invalidation may be necessary. (But only if the old 161 * domain number in the L1 entry being over-written is currently 162 * the active domain on that cpu). I guess there are lots more tlb 163 * shootdown issues too... 164 * 165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then 166 * MP systems will lose big-time because of the MMU domain hack. 167 * The only way this can be solved (apart from moving the vector 168 * page to 0xffff0000) is to reserve the first 1MB of user address 169 * space for kernel use only. This would require re-linking all 170 * applications so that the text section starts above this 1MB 171 * boundary. 172 * 173 * o Tracking which VM space is resident in the cache/tlb has not yet 174 * been implemented for MP systems. 175 * 176 * o Finally, there is a pathological condition where two cpus running 177 * two separate processes (not lwps) which happen to share an L1 178 * can get into a fight over one or more L1 entries. This will result 179 * in a significant slow-down if both processes are in tight loops. 180 */ 181 182 /* 183 * Special compilation symbols 184 * PMAP_DEBUG - Build in pmap_debug_level code 185 */ 186 187 /* Include header files */ 188 189 #include "opt_cpuoptions.h" 190 #include "opt_pmap_debug.h" 191 #include "opt_ddb.h" 192 #include "opt_lockdebug.h" 193 #include "opt_multiprocessor.h" 194 195 #include <sys/param.h> 196 #include <sys/types.h> 197 #include <sys/kernel.h> 198 #include <sys/systm.h> 199 #include <sys/proc.h> 200 #include <sys/malloc.h> 201 #include <sys/pool.h> 202 #include <sys/cdefs.h> 203 #include <sys/cpu.h> 204 #include <sys/sysctl.h> 205 206 #include <uvm/uvm.h> 207 208 #include <machine/bus.h> 209 #include <machine/pmap.h> 210 #include <machine/pcb.h> 211 #include <machine/param.h> 212 #include <arm/arm32/katelib.h> 213 214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.212 2010/02/15 07:55:33 skrll Exp $"); 215 216 #ifdef PMAP_DEBUG 217 218 /* XXX need to get rid of all refs to this */ 219 int pmap_debug_level = 0; 220 221 /* 222 * for switching to potentially finer grained debugging 223 */ 224 #define PDB_FOLLOW 0x0001 225 #define PDB_INIT 0x0002 226 #define PDB_ENTER 0x0004 227 #define PDB_REMOVE 0x0008 228 #define PDB_CREATE 0x0010 229 #define PDB_PTPAGE 0x0020 230 #define PDB_GROWKERN 0x0040 231 #define PDB_BITS 0x0080 232 #define PDB_COLLECT 0x0100 233 #define PDB_PROTECT 0x0200 234 #define PDB_MAP_L1 0x0400 235 #define PDB_BOOTSTRAP 0x1000 236 #define PDB_PARANOIA 0x2000 237 #define PDB_WIRING 0x4000 238 #define PDB_PVDUMP 0x8000 239 #define PDB_VAC 0x10000 240 #define PDB_KENTER 0x20000 241 #define PDB_KREMOVE 0x40000 242 #define PDB_EXEC 0x80000 243 244 int debugmap = 1; 245 int pmapdebug = 0; 246 #define NPDEBUG(_lev_,_stat_) \ 247 if (pmapdebug & (_lev_)) \ 248 ((_stat_)) 249 250 #else /* PMAP_DEBUG */ 251 #define NPDEBUG(_lev_,_stat_) /* Nothing */ 252 #endif /* PMAP_DEBUG */ 253 254 /* 255 * pmap_kernel() points here 256 */ 257 static struct pmap kernel_pmap_store; 258 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store; 259 260 /* 261 * Which pmap is currently 'live' in the cache 262 * 263 * XXXSCW: Fix for SMP ... 264 */ 265 static pmap_t pmap_recent_user; 266 267 /* 268 * Pointer to last active lwp, or NULL if it exited. 269 */ 270 struct lwp *pmap_previous_active_lwp; 271 272 /* 273 * Pool and cache that pmap structures are allocated from. 274 * We use a cache to avoid clearing the pm_l2[] array (1KB) 275 * in pmap_create(). 276 */ 277 static struct pool_cache pmap_cache; 278 static LIST_HEAD(, pmap) pmap_pmaps; 279 280 /* 281 * Pool of PV structures 282 */ 283 static struct pool pmap_pv_pool; 284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int); 285 static void pmap_bootstrap_pv_page_free(struct pool *, void *); 286 static struct pool_allocator pmap_bootstrap_pv_allocator = { 287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free 288 }; 289 290 /* 291 * Pool and cache of l2_dtable structures. 292 * We use a cache to avoid clearing the structures when they're 293 * allocated. (196 bytes) 294 */ 295 static struct pool_cache pmap_l2dtable_cache; 296 static vaddr_t pmap_kernel_l2dtable_kva; 297 298 /* 299 * Pool and cache of L2 page descriptors. 300 * We use a cache to avoid clearing the descriptor table 301 * when they're allocated. (1KB) 302 */ 303 static struct pool_cache pmap_l2ptp_cache; 304 static vaddr_t pmap_kernel_l2ptp_kva; 305 static paddr_t pmap_kernel_l2ptp_phys; 306 307 #ifdef PMAPCOUNTERS 308 #define PMAP_EVCNT_INITIALIZER(name) \ 309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name) 310 311 #ifdef PMAP_CACHE_VIPT 312 static struct evcnt pmap_ev_vac_clean_one = 313 PMAP_EVCNT_INITIALIZER("clean page (1 color)"); 314 static struct evcnt pmap_ev_vac_flush_one = 315 PMAP_EVCNT_INITIALIZER("flush page (1 color)"); 316 static struct evcnt pmap_ev_vac_flush_lots = 317 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)"); 318 static struct evcnt pmap_ev_vac_flush_lots2 = 319 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)"); 320 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one); 321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one); 322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots); 323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2); 324 325 static struct evcnt pmap_ev_vac_color_new = 326 PMAP_EVCNT_INITIALIZER("new page color"); 327 static struct evcnt pmap_ev_vac_color_reuse = 328 PMAP_EVCNT_INITIALIZER("ok first page color"); 329 static struct evcnt pmap_ev_vac_color_ok = 330 PMAP_EVCNT_INITIALIZER("ok page color"); 331 static struct evcnt pmap_ev_vac_color_blind = 332 PMAP_EVCNT_INITIALIZER("blind page color"); 333 static struct evcnt pmap_ev_vac_color_change = 334 PMAP_EVCNT_INITIALIZER("change page color"); 335 static struct evcnt pmap_ev_vac_color_erase = 336 PMAP_EVCNT_INITIALIZER("erase page color"); 337 static struct evcnt pmap_ev_vac_color_none = 338 PMAP_EVCNT_INITIALIZER("no page color"); 339 static struct evcnt pmap_ev_vac_color_restore = 340 PMAP_EVCNT_INITIALIZER("restore page color"); 341 342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new); 343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse); 344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok); 345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind); 346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change); 347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase); 348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none); 349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore); 350 #endif 351 352 static struct evcnt pmap_ev_mappings = 353 PMAP_EVCNT_INITIALIZER("pages mapped"); 354 static struct evcnt pmap_ev_unmappings = 355 PMAP_EVCNT_INITIALIZER("pages unmapped"); 356 static struct evcnt pmap_ev_remappings = 357 PMAP_EVCNT_INITIALIZER("pages remapped"); 358 359 EVCNT_ATTACH_STATIC(pmap_ev_mappings); 360 EVCNT_ATTACH_STATIC(pmap_ev_unmappings); 361 EVCNT_ATTACH_STATIC(pmap_ev_remappings); 362 363 static struct evcnt pmap_ev_kernel_mappings = 364 PMAP_EVCNT_INITIALIZER("kernel pages mapped"); 365 static struct evcnt pmap_ev_kernel_unmappings = 366 PMAP_EVCNT_INITIALIZER("kernel pages unmapped"); 367 static struct evcnt pmap_ev_kernel_remappings = 368 PMAP_EVCNT_INITIALIZER("kernel pages remapped"); 369 370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings); 371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings); 372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings); 373 374 static struct evcnt pmap_ev_kenter_mappings = 375 PMAP_EVCNT_INITIALIZER("kenter pages mapped"); 376 static struct evcnt pmap_ev_kenter_unmappings = 377 PMAP_EVCNT_INITIALIZER("kenter pages unmapped"); 378 static struct evcnt pmap_ev_kenter_remappings = 379 PMAP_EVCNT_INITIALIZER("kenter pages remapped"); 380 static struct evcnt pmap_ev_pt_mappings = 381 PMAP_EVCNT_INITIALIZER("page table pages mapped"); 382 383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings); 384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings); 385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings); 386 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings); 387 388 #ifdef PMAP_CACHE_VIPT 389 static struct evcnt pmap_ev_exec_mappings = 390 PMAP_EVCNT_INITIALIZER("exec pages mapped"); 391 static struct evcnt pmap_ev_exec_cached = 392 PMAP_EVCNT_INITIALIZER("exec pages cached"); 393 394 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings); 395 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached); 396 397 static struct evcnt pmap_ev_exec_synced = 398 PMAP_EVCNT_INITIALIZER("exec pages synced"); 399 static struct evcnt pmap_ev_exec_synced_map = 400 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)"); 401 static struct evcnt pmap_ev_exec_synced_unmap = 402 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)"); 403 static struct evcnt pmap_ev_exec_synced_remap = 404 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)"); 405 static struct evcnt pmap_ev_exec_synced_clearbit = 406 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)"); 407 static struct evcnt pmap_ev_exec_synced_kremove = 408 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)"); 409 410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced); 411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map); 412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap); 413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap); 414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit); 415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove); 416 417 static struct evcnt pmap_ev_exec_discarded_unmap = 418 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)"); 419 static struct evcnt pmap_ev_exec_discarded_zero = 420 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)"); 421 static struct evcnt pmap_ev_exec_discarded_copy = 422 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)"); 423 static struct evcnt pmap_ev_exec_discarded_page_protect = 424 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)"); 425 static struct evcnt pmap_ev_exec_discarded_clearbit = 426 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)"); 427 static struct evcnt pmap_ev_exec_discarded_kremove = 428 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)"); 429 430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap); 431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero); 432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy); 433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect); 434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit); 435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove); 436 #endif /* PMAP_CACHE_VIPT */ 437 438 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates"); 439 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects"); 440 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations"); 441 442 EVCNT_ATTACH_STATIC(pmap_ev_updates); 443 EVCNT_ATTACH_STATIC(pmap_ev_collects); 444 EVCNT_ATTACH_STATIC(pmap_ev_activations); 445 446 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++)) 447 #else 448 #define PMAPCOUNT(x) ((void)0) 449 #endif 450 451 /* 452 * pmap copy/zero page, and mem(5) hook point 453 */ 454 static pt_entry_t *csrc_pte, *cdst_pte; 455 static vaddr_t csrcp, cdstp; 456 vaddr_t memhook; /* used by mem.c */ 457 kmutex_t memlock; /* used by mem.c */ 458 void *zeropage; /* used by mem.c */ 459 extern void *msgbufaddr; 460 int pmap_kmpages; 461 /* 462 * Flag to indicate if pmap_init() has done its thing 463 */ 464 bool pmap_initialized; 465 466 /* 467 * Misc. locking data structures 468 */ 469 470 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */ 471 static struct lock pmap_main_lock; 472 473 #define PMAP_MAP_TO_HEAD_LOCK() \ 474 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL) 475 #define PMAP_MAP_TO_HEAD_UNLOCK() \ 476 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL) 477 #define PMAP_HEAD_TO_MAP_LOCK() \ 478 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL) 479 #define PMAP_HEAD_TO_MAP_UNLOCK() \ 480 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0) 481 #else 482 #define PMAP_MAP_TO_HEAD_LOCK() /* null */ 483 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */ 484 #define PMAP_HEAD_TO_MAP_LOCK() /* null */ 485 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */ 486 #endif 487 488 #define pmap_acquire_pmap_lock(pm) \ 489 do { \ 490 if ((pm) != pmap_kernel()) \ 491 mutex_enter(&(pm)->pm_lock); \ 492 } while (/*CONSTCOND*/0) 493 494 #define pmap_release_pmap_lock(pm) \ 495 do { \ 496 if ((pm) != pmap_kernel()) \ 497 mutex_exit(&(pm)->pm_lock); \ 498 } while (/*CONSTCOND*/0) 499 500 501 /* 502 * Metadata for L1 translation tables. 503 */ 504 struct l1_ttable { 505 /* Entry on the L1 Table list */ 506 SLIST_ENTRY(l1_ttable) l1_link; 507 508 /* Entry on the L1 Least Recently Used list */ 509 TAILQ_ENTRY(l1_ttable) l1_lru; 510 511 /* Track how many domains are allocated from this L1 */ 512 volatile u_int l1_domain_use_count; 513 514 /* 515 * A free-list of domain numbers for this L1. 516 * We avoid using ffs() and a bitmap to track domains since ffs() 517 * is slow on ARM. 518 */ 519 u_int8_t l1_domain_first; 520 u_int8_t l1_domain_free[PMAP_DOMAINS]; 521 522 /* Physical address of this L1 page table */ 523 paddr_t l1_physaddr; 524 525 /* KVA of this L1 page table */ 526 pd_entry_t *l1_kva; 527 }; 528 529 /* 530 * Convert a virtual address into its L1 table index. That is, the 531 * index used to locate the L2 descriptor table pointer in an L1 table. 532 * This is basically used to index l1->l1_kva[]. 533 * 534 * Each L2 descriptor table represents 1MB of VA space. 535 */ 536 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT) 537 538 /* 539 * L1 Page Tables are tracked using a Least Recently Used list. 540 * - New L1s are allocated from the HEAD. 541 * - Freed L1s are added to the TAIl. 542 * - Recently accessed L1s (where an 'access' is some change to one of 543 * the userland pmaps which owns this L1) are moved to the TAIL. 544 */ 545 static TAILQ_HEAD(, l1_ttable) l1_lru_list; 546 static struct simplelock l1_lru_lock; 547 548 /* 549 * A list of all L1 tables 550 */ 551 static SLIST_HEAD(, l1_ttable) l1_list; 552 553 /* 554 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots. 555 * 556 * This is normally 16MB worth L2 page descriptors for any given pmap. 557 * Reference counts are maintained for L2 descriptors so they can be 558 * freed when empty. 559 */ 560 struct l2_dtable { 561 /* The number of L2 page descriptors allocated to this l2_dtable */ 562 u_int l2_occupancy; 563 564 /* List of L2 page descriptors */ 565 struct l2_bucket { 566 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */ 567 paddr_t l2b_phys; /* Physical address of same */ 568 u_short l2b_l1idx; /* This L2 table's L1 index */ 569 u_short l2b_occupancy; /* How many active descriptors */ 570 } l2_bucket[L2_BUCKET_SIZE]; 571 }; 572 573 /* 574 * Given an L1 table index, calculate the corresponding l2_dtable index 575 * and bucket index within the l2_dtable. 576 */ 577 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \ 578 (L2_SIZE - 1)) 579 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1)) 580 581 /* 582 * Given a virtual address, this macro returns the 583 * virtual address required to drop into the next L2 bucket. 584 */ 585 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE) 586 587 /* 588 * L2 allocation. 589 */ 590 #define pmap_alloc_l2_dtable() \ 591 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT) 592 #define pmap_free_l2_dtable(l2) \ 593 pool_cache_put(&pmap_l2dtable_cache, (l2)) 594 #define pmap_alloc_l2_ptp(pap) \ 595 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\ 596 PR_NOWAIT, (pap))) 597 598 /* 599 * We try to map the page tables write-through, if possible. However, not 600 * all CPUs have a write-through cache mode, so on those we have to sync 601 * the cache when we frob page tables. 602 * 603 * We try to evaluate this at compile time, if possible. However, it's 604 * not always possible to do that, hence this run-time var. 605 */ 606 int pmap_needs_pte_sync; 607 608 /* 609 * Real definition of pv_entry. 610 */ 611 struct pv_entry { 612 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */ 613 pmap_t pv_pmap; /* pmap where mapping lies */ 614 vaddr_t pv_va; /* virtual address for mapping */ 615 u_int pv_flags; /* flags */ 616 }; 617 618 /* 619 * Macro to determine if a mapping might be resident in the 620 * instruction cache and/or TLB 621 */ 622 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC)) 623 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0) 624 625 /* 626 * Macro to determine if a mapping might be resident in the 627 * data cache and/or TLB 628 */ 629 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0) 630 631 /* 632 * Local prototypes 633 */ 634 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t); 635 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *, 636 pt_entry_t **); 637 static bool pmap_is_current(pmap_t); 638 static bool pmap_is_cached(pmap_t); 639 static void pmap_enter_pv(struct vm_page *, struct pv_entry *, 640 pmap_t, vaddr_t, u_int); 641 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t); 642 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t); 643 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t, 644 u_int, u_int); 645 646 static void pmap_pinit(pmap_t); 647 static int pmap_pmap_ctor(void *, void *, int); 648 649 static void pmap_alloc_l1(pmap_t); 650 static void pmap_free_l1(pmap_t); 651 static void pmap_use_l1(pmap_t); 652 653 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t); 654 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t); 655 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int); 656 static int pmap_l2ptp_ctor(void *, void *, int); 657 static int pmap_l2dtable_ctor(void *, void *, int); 658 659 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t); 660 #ifdef PMAP_CACHE_VIVT 661 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t); 662 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t); 663 #endif 664 665 static void pmap_clearbit(struct vm_page *, u_int); 666 #ifdef PMAP_CACHE_VIVT 667 static int pmap_clean_page(struct pv_entry *, bool); 668 #endif 669 #ifdef PMAP_CACHE_VIPT 670 static void pmap_syncicache_page(struct vm_page *); 671 enum pmap_flush_op { 672 PMAP_FLUSH_PRIMARY, 673 PMAP_FLUSH_SECONDARY, 674 PMAP_CLEAN_PRIMARY 675 }; 676 static void pmap_flush_page(struct vm_page *, enum pmap_flush_op); 677 #endif 678 static void pmap_page_remove(struct vm_page *); 679 680 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *); 681 static vaddr_t kernel_pt_lookup(paddr_t); 682 683 684 /* 685 * External function prototypes 686 */ 687 extern void bzero_page(vaddr_t); 688 extern void bcopy_page(vaddr_t, vaddr_t); 689 690 /* 691 * Misc variables 692 */ 693 vaddr_t virtual_avail; 694 vaddr_t virtual_end; 695 vaddr_t pmap_curmaxkvaddr; 696 697 paddr_t avail_start; 698 paddr_t avail_end; 699 700 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq); 701 pv_addr_t kernelpages; 702 pv_addr_t kernel_l1pt; 703 pv_addr_t systempage; 704 705 /* Function to set the debug level of the pmap code */ 706 707 #ifdef PMAP_DEBUG 708 void 709 pmap_debug(int level) 710 { 711 pmap_debug_level = level; 712 printf("pmap_debug: level=%d\n", pmap_debug_level); 713 } 714 #endif /* PMAP_DEBUG */ 715 716 /* 717 * A bunch of routines to conditionally flush the caches/TLB depending 718 * on whether the specified pmap actually needs to be flushed at any 719 * given time. 720 */ 721 static inline void 722 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va) 723 { 724 725 if (pm->pm_cstate.cs_tlb_id) 726 cpu_tlb_flushID_SE(va); 727 } 728 729 static inline void 730 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va) 731 { 732 733 if (pm->pm_cstate.cs_tlb_d) 734 cpu_tlb_flushD_SE(va); 735 } 736 737 static inline void 738 pmap_tlb_flushID(pmap_t pm) 739 { 740 741 if (pm->pm_cstate.cs_tlb_id) { 742 cpu_tlb_flushID(); 743 pm->pm_cstate.cs_tlb = 0; 744 } 745 } 746 747 static inline void 748 pmap_tlb_flushD(pmap_t pm) 749 { 750 751 if (pm->pm_cstate.cs_tlb_d) { 752 cpu_tlb_flushD(); 753 pm->pm_cstate.cs_tlb_d = 0; 754 } 755 } 756 757 #ifdef PMAP_CACHE_VIVT 758 static inline void 759 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len) 760 { 761 if (pm->pm_cstate.cs_cache_id) { 762 cpu_idcache_wbinv_range(va, len); 763 } 764 } 765 766 static inline void 767 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len, 768 bool do_inv, bool rd_only) 769 { 770 771 if (pm->pm_cstate.cs_cache_d) { 772 if (do_inv) { 773 if (rd_only) 774 cpu_dcache_inv_range(va, len); 775 else 776 cpu_dcache_wbinv_range(va, len); 777 } else 778 if (!rd_only) 779 cpu_dcache_wb_range(va, len); 780 } 781 } 782 783 static inline void 784 pmap_idcache_wbinv_all(pmap_t pm) 785 { 786 if (pm->pm_cstate.cs_cache_id) { 787 cpu_idcache_wbinv_all(); 788 pm->pm_cstate.cs_cache = 0; 789 } 790 } 791 792 static inline void 793 pmap_dcache_wbinv_all(pmap_t pm) 794 { 795 if (pm->pm_cstate.cs_cache_d) { 796 cpu_dcache_wbinv_all(); 797 pm->pm_cstate.cs_cache_d = 0; 798 } 799 } 800 #endif /* PMAP_CACHE_VIVT */ 801 802 static inline bool 803 pmap_is_current(pmap_t pm) 804 { 805 806 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm) 807 return true; 808 809 return false; 810 } 811 812 static inline bool 813 pmap_is_cached(pmap_t pm) 814 { 815 816 if (pm == pmap_kernel() || pmap_recent_user == NULL || 817 pmap_recent_user == pm) 818 return (true); 819 820 return false; 821 } 822 823 /* 824 * PTE_SYNC_CURRENT: 825 * 826 * Make sure the pte is written out to RAM. 827 * We need to do this for one of two cases: 828 * - We're dealing with the kernel pmap 829 * - There is no pmap active in the cache/tlb. 830 * - The specified pmap is 'active' in the cache/tlb. 831 */ 832 #ifdef PMAP_INCLUDE_PTE_SYNC 833 #define PTE_SYNC_CURRENT(pm, ptep) \ 834 do { \ 835 if (PMAP_NEEDS_PTE_SYNC && \ 836 pmap_is_cached(pm)) \ 837 PTE_SYNC(ptep); \ 838 } while (/*CONSTCOND*/0) 839 #else 840 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */ 841 #endif 842 843 /* 844 * main pv_entry manipulation functions: 845 * pmap_enter_pv: enter a mapping onto a vm_page list 846 * pmap_remove_pv: remove a mappiing from a vm_page list 847 * 848 * NOTE: pmap_enter_pv expects to lock the pvh itself 849 * pmap_remove_pv expects te caller to lock the pvh before calling 850 */ 851 852 /* 853 * pmap_enter_pv: enter a mapping onto a vm_page lst 854 * 855 * => caller should hold the proper lock on pmap_main_lock 856 * => caller should have pmap locked 857 * => we will gain the lock on the vm_page and allocate the new pv_entry 858 * => caller should adjust ptp's wire_count before calling 859 * => caller should not adjust pmap's wire_count 860 */ 861 static void 862 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pv, pmap_t pm, 863 vaddr_t va, u_int flags) 864 { 865 struct pv_entry **pvp; 866 867 NPDEBUG(PDB_PVDUMP, 868 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags)); 869 870 pv->pv_pmap = pm; 871 pv->pv_va = va; 872 pv->pv_flags = flags; 873 874 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */ 875 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list); 876 #ifdef PMAP_CACHE_VIPT 877 /* 878 * Insert unmanaged entries, writeable first, at the head of 879 * the pv list. 880 */ 881 if (__predict_true((flags & PVF_KENTRY) == 0)) { 882 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY) 883 pvp = &SLIST_NEXT(*pvp, pv_link); 884 } else if ((flags & PVF_WRITE) == 0) { 885 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE) 886 pvp = &SLIST_NEXT(*pvp, pv_link); 887 } 888 #endif 889 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */ 890 *pvp = pv; /* ... locked list */ 891 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD); 892 #ifdef PMAP_CACHE_VIPT 893 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE) 894 pg->mdpage.pvh_attrs |= PVF_KMOD; 895 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC) 896 pg->mdpage.pvh_attrs |= PVF_DIRTY; 897 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 898 #endif 899 if (pm == pmap_kernel()) { 900 PMAPCOUNT(kernel_mappings); 901 if (flags & PVF_WRITE) 902 pg->mdpage.krw_mappings++; 903 else 904 pg->mdpage.kro_mappings++; 905 } else { 906 if (flags & PVF_WRITE) 907 pg->mdpage.urw_mappings++; 908 else 909 pg->mdpage.uro_mappings++; 910 } 911 912 #ifdef PMAP_CACHE_VIPT 913 /* 914 * If this is an exec mapping and its the first exec mapping 915 * for this page, make sure to sync the I-cache. 916 */ 917 if (PV_IS_EXEC_P(flags)) { 918 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) { 919 pmap_syncicache_page(pg); 920 PMAPCOUNT(exec_synced_map); 921 } 922 PMAPCOUNT(exec_mappings); 923 } 924 #endif 925 926 PMAPCOUNT(mappings); 927 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */ 928 929 if (pv->pv_flags & PVF_WIRED) 930 ++pm->pm_stats.wired_count; 931 } 932 933 /* 934 * 935 * pmap_find_pv: Find a pv entry 936 * 937 * => caller should hold lock on vm_page 938 */ 939 static inline struct pv_entry * 940 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va) 941 { 942 struct pv_entry *pv; 943 944 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 945 if (pm == pv->pv_pmap && va == pv->pv_va) 946 break; 947 } 948 949 return (pv); 950 } 951 952 /* 953 * pmap_remove_pv: try to remove a mapping from a pv_list 954 * 955 * => caller should hold proper lock on pmap_main_lock 956 * => pmap should be locked 957 * => caller should hold lock on vm_page [so that attrs can be adjusted] 958 * => caller should adjust ptp's wire_count and free PTP if needed 959 * => caller should NOT adjust pmap's wire_count 960 * => we return the removed pv 961 */ 962 static struct pv_entry * 963 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va) 964 { 965 struct pv_entry *pv, **prevptr; 966 967 NPDEBUG(PDB_PVDUMP, 968 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va)); 969 970 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */ 971 pv = *prevptr; 972 973 while (pv) { 974 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */ 975 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg " 976 "%p, flags 0x%x\n", pm, pg, pv->pv_flags)); 977 if (pv->pv_flags & PVF_WIRED) { 978 --pm->pm_stats.wired_count; 979 } 980 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */ 981 if (pm == pmap_kernel()) { 982 PMAPCOUNT(kernel_unmappings); 983 if (pv->pv_flags & PVF_WRITE) 984 pg->mdpage.krw_mappings--; 985 else 986 pg->mdpage.kro_mappings--; 987 } else { 988 if (pv->pv_flags & PVF_WRITE) 989 pg->mdpage.urw_mappings--; 990 else 991 pg->mdpage.uro_mappings--; 992 } 993 994 PMAPCOUNT(unmappings); 995 #ifdef PMAP_CACHE_VIPT 996 if (!(pv->pv_flags & PVF_WRITE)) 997 break; 998 /* 999 * If this page has had an exec mapping, then if 1000 * this was the last mapping, discard the contents, 1001 * otherwise sync the i-cache for this page. 1002 */ 1003 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) { 1004 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) { 1005 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 1006 PMAPCOUNT(exec_discarded_unmap); 1007 } else { 1008 pmap_syncicache_page(pg); 1009 PMAPCOUNT(exec_synced_unmap); 1010 } 1011 } 1012 #endif /* PMAP_CACHE_VIPT */ 1013 break; 1014 } 1015 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */ 1016 pv = *prevptr; /* advance */ 1017 } 1018 1019 #ifdef PMAP_CACHE_VIPT 1020 /* 1021 * If we no longer have a WRITEABLE KENTRY at the head of list, 1022 * clear the KMOD attribute from the page. 1023 */ 1024 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL 1025 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE) 1026 pg->mdpage.pvh_attrs &= ~PVF_KMOD; 1027 1028 /* 1029 * If this was a writeable page and there are no more writeable 1030 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback 1031 * the contents to memory. 1032 */ 1033 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0) 1034 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 1035 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1036 #endif /* PMAP_CACHE_VIPT */ 1037 1038 return(pv); /* return removed pv */ 1039 } 1040 1041 /* 1042 * 1043 * pmap_modify_pv: Update pv flags 1044 * 1045 * => caller should hold lock on vm_page [so that attrs can be adjusted] 1046 * => caller should NOT adjust pmap's wire_count 1047 * => caller must call pmap_vac_me_harder() if writable status of a page 1048 * may have changed. 1049 * => we return the old flags 1050 * 1051 * Modify a physical-virtual mapping in the pv table 1052 */ 1053 static u_int 1054 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, 1055 u_int clr_mask, u_int set_mask) 1056 { 1057 struct pv_entry *npv; 1058 u_int flags, oflags; 1059 1060 KASSERT((clr_mask & PVF_KENTRY) == 0); 1061 KASSERT((set_mask & PVF_KENTRY) == 0); 1062 1063 if ((npv = pmap_find_pv(pg, pm, va)) == NULL) 1064 return (0); 1065 1066 NPDEBUG(PDB_PVDUMP, 1067 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags)); 1068 1069 /* 1070 * There is at least one VA mapping this page. 1071 */ 1072 1073 if (clr_mask & (PVF_REF | PVF_MOD)) { 1074 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD); 1075 #ifdef PMAP_CACHE_VIPT 1076 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC) 1077 pg->mdpage.pvh_attrs |= PVF_DIRTY; 1078 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1079 #endif 1080 } 1081 1082 oflags = npv->pv_flags; 1083 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask; 1084 1085 if ((flags ^ oflags) & PVF_WIRED) { 1086 if (flags & PVF_WIRED) 1087 ++pm->pm_stats.wired_count; 1088 else 1089 --pm->pm_stats.wired_count; 1090 } 1091 1092 if ((flags ^ oflags) & PVF_WRITE) { 1093 if (pm == pmap_kernel()) { 1094 if (flags & PVF_WRITE) { 1095 pg->mdpage.krw_mappings++; 1096 pg->mdpage.kro_mappings--; 1097 } else { 1098 pg->mdpage.kro_mappings++; 1099 pg->mdpage.krw_mappings--; 1100 } 1101 } else { 1102 if (flags & PVF_WRITE) { 1103 pg->mdpage.urw_mappings++; 1104 pg->mdpage.uro_mappings--; 1105 } else { 1106 pg->mdpage.uro_mappings++; 1107 pg->mdpage.urw_mappings--; 1108 } 1109 } 1110 } 1111 #ifdef PMAP_CACHE_VIPT 1112 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) 1113 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 1114 /* 1115 * We have two cases here: the first is from enter_pv (new exec 1116 * page), the second is a combined pmap_remove_pv/pmap_enter_pv. 1117 * Since in latter, pmap_enter_pv won't do anything, we just have 1118 * to do what pmap_remove_pv would do. 1119 */ 1120 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) 1121 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs) 1122 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) { 1123 pmap_syncicache_page(pg); 1124 PMAPCOUNT(exec_synced_remap); 1125 } 1126 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1127 #endif 1128 1129 PMAPCOUNT(remappings); 1130 1131 return (oflags); 1132 } 1133 1134 /* 1135 * Allocate an L1 translation table for the specified pmap. 1136 * This is called at pmap creation time. 1137 */ 1138 static void 1139 pmap_alloc_l1(pmap_t pm) 1140 { 1141 struct l1_ttable *l1; 1142 u_int8_t domain; 1143 1144 /* 1145 * Remove the L1 at the head of the LRU list 1146 */ 1147 simple_lock(&l1_lru_lock); 1148 l1 = TAILQ_FIRST(&l1_lru_list); 1149 KDASSERT(l1 != NULL); 1150 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1151 1152 /* 1153 * Pick the first available domain number, and update 1154 * the link to the next number. 1155 */ 1156 domain = l1->l1_domain_first; 1157 l1->l1_domain_first = l1->l1_domain_free[domain]; 1158 1159 /* 1160 * If there are still free domain numbers in this L1, 1161 * put it back on the TAIL of the LRU list. 1162 */ 1163 if (++l1->l1_domain_use_count < PMAP_DOMAINS) 1164 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1165 1166 simple_unlock(&l1_lru_lock); 1167 1168 /* 1169 * Fix up the relevant bits in the pmap structure 1170 */ 1171 pm->pm_l1 = l1; 1172 pm->pm_domain = domain; 1173 } 1174 1175 /* 1176 * Free an L1 translation table. 1177 * This is called at pmap destruction time. 1178 */ 1179 static void 1180 pmap_free_l1(pmap_t pm) 1181 { 1182 struct l1_ttable *l1 = pm->pm_l1; 1183 1184 simple_lock(&l1_lru_lock); 1185 1186 /* 1187 * If this L1 is currently on the LRU list, remove it. 1188 */ 1189 if (l1->l1_domain_use_count < PMAP_DOMAINS) 1190 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1191 1192 /* 1193 * Free up the domain number which was allocated to the pmap 1194 */ 1195 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first; 1196 l1->l1_domain_first = pm->pm_domain; 1197 l1->l1_domain_use_count--; 1198 1199 /* 1200 * The L1 now must have at least 1 free domain, so add 1201 * it back to the LRU list. If the use count is zero, 1202 * put it at the head of the list, otherwise it goes 1203 * to the tail. 1204 */ 1205 if (l1->l1_domain_use_count == 0) 1206 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru); 1207 else 1208 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1209 1210 simple_unlock(&l1_lru_lock); 1211 } 1212 1213 static inline void 1214 pmap_use_l1(pmap_t pm) 1215 { 1216 struct l1_ttable *l1; 1217 1218 /* 1219 * Do nothing if we're in interrupt context. 1220 * Access to an L1 by the kernel pmap must not affect 1221 * the LRU list. 1222 */ 1223 if (cpu_intr_p() || pm == pmap_kernel()) 1224 return; 1225 1226 l1 = pm->pm_l1; 1227 1228 /* 1229 * If the L1 is not currently on the LRU list, just return 1230 */ 1231 if (l1->l1_domain_use_count == PMAP_DOMAINS) 1232 return; 1233 1234 simple_lock(&l1_lru_lock); 1235 1236 /* 1237 * Check the use count again, now that we've acquired the lock 1238 */ 1239 if (l1->l1_domain_use_count == PMAP_DOMAINS) { 1240 simple_unlock(&l1_lru_lock); 1241 return; 1242 } 1243 1244 /* 1245 * Move the L1 to the back of the LRU list 1246 */ 1247 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); 1248 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 1249 1250 simple_unlock(&l1_lru_lock); 1251 } 1252 1253 /* 1254 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *) 1255 * 1256 * Free an L2 descriptor table. 1257 */ 1258 static inline void 1259 #ifndef PMAP_INCLUDE_PTE_SYNC 1260 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa) 1261 #else 1262 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa) 1263 #endif 1264 { 1265 #ifdef PMAP_INCLUDE_PTE_SYNC 1266 #ifdef PMAP_CACHE_VIVT 1267 /* 1268 * Note: With a write-back cache, we may need to sync this 1269 * L2 table before re-using it. 1270 * This is because it may have belonged to a non-current 1271 * pmap, in which case the cache syncs would have been 1272 * skipped for the pages that were being unmapped. If the 1273 * L2 table were then to be immediately re-allocated to 1274 * the *current* pmap, it may well contain stale mappings 1275 * which have not yet been cleared by a cache write-back 1276 * and so would still be visible to the mmu. 1277 */ 1278 if (need_sync) 1279 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 1280 #endif /* PMAP_CACHE_VIVT */ 1281 #endif /* PMAP_INCLUDE_PTE_SYNC */ 1282 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa); 1283 } 1284 1285 /* 1286 * Returns a pointer to the L2 bucket associated with the specified pmap 1287 * and VA, or NULL if no L2 bucket exists for the address. 1288 */ 1289 static inline struct l2_bucket * 1290 pmap_get_l2_bucket(pmap_t pm, vaddr_t va) 1291 { 1292 struct l2_dtable *l2; 1293 struct l2_bucket *l2b; 1294 u_short l1idx; 1295 1296 l1idx = L1_IDX(va); 1297 1298 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL || 1299 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL) 1300 return (NULL); 1301 1302 return (l2b); 1303 } 1304 1305 /* 1306 * Returns a pointer to the L2 bucket associated with the specified pmap 1307 * and VA. 1308 * 1309 * If no L2 bucket exists, perform the necessary allocations to put an L2 1310 * bucket/page table in place. 1311 * 1312 * Note that if a new L2 bucket/page was allocated, the caller *must* 1313 * increment the bucket occupancy counter appropriately *before* 1314 * releasing the pmap's lock to ensure no other thread or cpu deallocates 1315 * the bucket/page in the meantime. 1316 */ 1317 static struct l2_bucket * 1318 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va) 1319 { 1320 struct l2_dtable *l2; 1321 struct l2_bucket *l2b; 1322 u_short l1idx; 1323 1324 l1idx = L1_IDX(va); 1325 1326 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) { 1327 /* 1328 * No mapping at this address, as there is 1329 * no entry in the L1 table. 1330 * Need to allocate a new l2_dtable. 1331 */ 1332 if ((l2 = pmap_alloc_l2_dtable()) == NULL) 1333 return (NULL); 1334 1335 /* 1336 * Link it into the parent pmap 1337 */ 1338 pm->pm_l2[L2_IDX(l1idx)] = l2; 1339 } 1340 1341 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; 1342 1343 /* 1344 * Fetch pointer to the L2 page table associated with the address. 1345 */ 1346 if (l2b->l2b_kva == NULL) { 1347 pt_entry_t *ptep; 1348 1349 /* 1350 * No L2 page table has been allocated. Chances are, this 1351 * is because we just allocated the l2_dtable, above. 1352 */ 1353 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) { 1354 /* 1355 * Oops, no more L2 page tables available at this 1356 * time. We may need to deallocate the l2_dtable 1357 * if we allocated a new one above. 1358 */ 1359 if (l2->l2_occupancy == 0) { 1360 pm->pm_l2[L2_IDX(l1idx)] = NULL; 1361 pmap_free_l2_dtable(l2); 1362 } 1363 return (NULL); 1364 } 1365 1366 l2->l2_occupancy++; 1367 l2b->l2b_kva = ptep; 1368 l2b->l2b_l1idx = l1idx; 1369 } 1370 1371 return (l2b); 1372 } 1373 1374 /* 1375 * One or more mappings in the specified L2 descriptor table have just been 1376 * invalidated. 1377 * 1378 * Garbage collect the metadata and descriptor table itself if necessary. 1379 * 1380 * The pmap lock must be acquired when this is called (not necessary 1381 * for the kernel pmap). 1382 */ 1383 static void 1384 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count) 1385 { 1386 struct l2_dtable *l2; 1387 pd_entry_t *pl1pd, l1pd; 1388 pt_entry_t *ptep; 1389 u_short l1idx; 1390 1391 KDASSERT(count <= l2b->l2b_occupancy); 1392 1393 /* 1394 * Update the bucket's reference count according to how many 1395 * PTEs the caller has just invalidated. 1396 */ 1397 l2b->l2b_occupancy -= count; 1398 1399 /* 1400 * Note: 1401 * 1402 * Level 2 page tables allocated to the kernel pmap are never freed 1403 * as that would require checking all Level 1 page tables and 1404 * removing any references to the Level 2 page table. See also the 1405 * comment elsewhere about never freeing bootstrap L2 descriptors. 1406 * 1407 * We make do with just invalidating the mapping in the L2 table. 1408 * 1409 * This isn't really a big deal in practice and, in fact, leads 1410 * to a performance win over time as we don't need to continually 1411 * alloc/free. 1412 */ 1413 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel()) 1414 return; 1415 1416 /* 1417 * There are no more valid mappings in this level 2 page table. 1418 * Go ahead and NULL-out the pointer in the bucket, then 1419 * free the page table. 1420 */ 1421 l1idx = l2b->l2b_l1idx; 1422 ptep = l2b->l2b_kva; 1423 l2b->l2b_kva = NULL; 1424 1425 pl1pd = &pm->pm_l1->l1_kva[l1idx]; 1426 1427 /* 1428 * If the L1 slot matches the pmap's domain 1429 * number, then invalidate it. 1430 */ 1431 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK); 1432 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) { 1433 *pl1pd = 0; 1434 PTE_SYNC(pl1pd); 1435 } 1436 1437 /* 1438 * Release the L2 descriptor table back to the pool cache. 1439 */ 1440 #ifndef PMAP_INCLUDE_PTE_SYNC 1441 pmap_free_l2_ptp(ptep, l2b->l2b_phys); 1442 #else 1443 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys); 1444 #endif 1445 1446 /* 1447 * Update the reference count in the associated l2_dtable 1448 */ 1449 l2 = pm->pm_l2[L2_IDX(l1idx)]; 1450 if (--l2->l2_occupancy > 0) 1451 return; 1452 1453 /* 1454 * There are no more valid mappings in any of the Level 1 1455 * slots managed by this l2_dtable. Go ahead and NULL-out 1456 * the pointer in the parent pmap and free the l2_dtable. 1457 */ 1458 pm->pm_l2[L2_IDX(l1idx)] = NULL; 1459 pmap_free_l2_dtable(l2); 1460 } 1461 1462 /* 1463 * Pool cache constructors for L2 descriptor tables, metadata and pmap 1464 * structures. 1465 */ 1466 static int 1467 pmap_l2ptp_ctor(void *arg, void *v, int flags) 1468 { 1469 #ifndef PMAP_INCLUDE_PTE_SYNC 1470 struct l2_bucket *l2b; 1471 pt_entry_t *ptep, pte; 1472 vaddr_t va = (vaddr_t)v & ~PGOFSET; 1473 1474 /* 1475 * The mappings for these page tables were initially made using 1476 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache- 1477 * mode will not be right for page table mappings. To avoid 1478 * polluting the pmap_kenter_pa() code with a special case for 1479 * page tables, we simply fix up the cache-mode here if it's not 1480 * correct. 1481 */ 1482 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 1483 KDASSERT(l2b != NULL); 1484 ptep = &l2b->l2b_kva[l2pte_index(va)]; 1485 pte = *ptep; 1486 1487 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { 1488 /* 1489 * Page tables must have the cache-mode set to Write-Thru. 1490 */ 1491 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt; 1492 PTE_SYNC(ptep); 1493 cpu_tlb_flushD_SE(va); 1494 cpu_cpwait(); 1495 } 1496 #endif 1497 1498 memset(v, 0, L2_TABLE_SIZE_REAL); 1499 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 1500 return (0); 1501 } 1502 1503 static int 1504 pmap_l2dtable_ctor(void *arg, void *v, int flags) 1505 { 1506 1507 memset(v, 0, sizeof(struct l2_dtable)); 1508 return (0); 1509 } 1510 1511 static int 1512 pmap_pmap_ctor(void *arg, void *v, int flags) 1513 { 1514 1515 memset(v, 0, sizeof(struct pmap)); 1516 return (0); 1517 } 1518 1519 static void 1520 pmap_pinit(pmap_t pm) 1521 { 1522 struct l2_bucket *l2b; 1523 1524 if (vector_page < KERNEL_BASE) { 1525 /* 1526 * Map the vector page. 1527 */ 1528 pmap_enter(pm, vector_page, systempage.pv_pa, 1529 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED); 1530 pmap_update(pm); 1531 1532 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)]; 1533 l2b = pmap_get_l2_bucket(pm, vector_page); 1534 KDASSERT(l2b != NULL); 1535 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO | 1536 L1_C_DOM(pm->pm_domain); 1537 } else 1538 pm->pm_pl1vec = NULL; 1539 } 1540 1541 #ifdef PMAP_CACHE_VIVT 1542 /* 1543 * Since we have a virtually indexed cache, we may need to inhibit caching if 1544 * there is more than one mapping and at least one of them is writable. 1545 * Since we purge the cache on every context switch, we only need to check for 1546 * other mappings within the same pmap, or kernel_pmap. 1547 * This function is also called when a page is unmapped, to possibly reenable 1548 * caching on any remaining mappings. 1549 * 1550 * The code implements the following logic, where: 1551 * 1552 * KW = # of kernel read/write pages 1553 * KR = # of kernel read only pages 1554 * UW = # of user read/write pages 1555 * UR = # of user read only pages 1556 * 1557 * KC = kernel mapping is cacheable 1558 * UC = user mapping is cacheable 1559 * 1560 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0 1561 * +--------------------------------------------- 1562 * UW=0,UR=0 | --- KC=1 KC=1 KC=0 1563 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0 1564 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0 1565 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0 1566 */ 1567 1568 static const int pmap_vac_flags[4][4] = { 1569 {-1, 0, 0, PVF_KNC}, 1570 {0, 0, PVF_NC, PVF_NC}, 1571 {0, PVF_NC, PVF_NC, PVF_NC}, 1572 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC} 1573 }; 1574 1575 static inline int 1576 pmap_get_vac_flags(const struct vm_page *pg) 1577 { 1578 int kidx, uidx; 1579 1580 kidx = 0; 1581 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1) 1582 kidx |= 1; 1583 if (pg->mdpage.krw_mappings) 1584 kidx |= 2; 1585 1586 uidx = 0; 1587 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1) 1588 uidx |= 1; 1589 if (pg->mdpage.urw_mappings) 1590 uidx |= 2; 1591 1592 return (pmap_vac_flags[uidx][kidx]); 1593 } 1594 1595 static inline void 1596 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va) 1597 { 1598 int nattr; 1599 1600 nattr = pmap_get_vac_flags(pg); 1601 1602 if (nattr < 0) { 1603 pg->mdpage.pvh_attrs &= ~PVF_NC; 1604 return; 1605 } 1606 1607 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0) 1608 return; 1609 1610 if (pm == pmap_kernel()) 1611 pmap_vac_me_kpmap(pg, pm, va); 1612 else 1613 pmap_vac_me_user(pg, pm, va); 1614 1615 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr; 1616 } 1617 1618 static void 1619 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va) 1620 { 1621 u_int u_cacheable, u_entries; 1622 struct pv_entry *pv; 1623 pmap_t last_pmap = pm; 1624 1625 /* 1626 * Pass one, see if there are both kernel and user pmaps for 1627 * this page. Calculate whether there are user-writable or 1628 * kernel-writable pages. 1629 */ 1630 u_cacheable = 0; 1631 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 1632 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0) 1633 u_cacheable++; 1634 } 1635 1636 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings; 1637 1638 /* 1639 * We know we have just been updating a kernel entry, so if 1640 * all user pages are already cacheable, then there is nothing 1641 * further to do. 1642 */ 1643 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries) 1644 return; 1645 1646 if (u_entries) { 1647 /* 1648 * Scan over the list again, for each entry, if it 1649 * might not be set correctly, call pmap_vac_me_user 1650 * to recalculate the settings. 1651 */ 1652 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 1653 /* 1654 * We know kernel mappings will get set 1655 * correctly in other calls. We also know 1656 * that if the pmap is the same as last_pmap 1657 * then we've just handled this entry. 1658 */ 1659 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap) 1660 continue; 1661 1662 /* 1663 * If there are kernel entries and this page 1664 * is writable but non-cacheable, then we can 1665 * skip this entry also. 1666 */ 1667 if (pg->mdpage.k_mappings && 1668 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 1669 (PVF_NC | PVF_WRITE)) 1670 continue; 1671 1672 /* 1673 * Similarly if there are no kernel-writable 1674 * entries and the page is already 1675 * read-only/cacheable. 1676 */ 1677 if (pg->mdpage.krw_mappings == 0 && 1678 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0) 1679 continue; 1680 1681 /* 1682 * For some of the remaining cases, we know 1683 * that we must recalculate, but for others we 1684 * can't tell if they are correct or not, so 1685 * we recalculate anyway. 1686 */ 1687 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0); 1688 } 1689 1690 if (pg->mdpage.k_mappings == 0) 1691 return; 1692 } 1693 1694 pmap_vac_me_user(pg, pm, va); 1695 } 1696 1697 static void 1698 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va) 1699 { 1700 pmap_t kpmap = pmap_kernel(); 1701 struct pv_entry *pv, *npv = NULL; 1702 struct l2_bucket *l2b; 1703 pt_entry_t *ptep, pte; 1704 u_int entries = 0; 1705 u_int writable = 0; 1706 u_int cacheable_entries = 0; 1707 u_int kern_cacheable = 0; 1708 u_int other_writable = 0; 1709 1710 /* 1711 * Count mappings and writable mappings in this pmap. 1712 * Include kernel mappings as part of our own. 1713 * Keep a pointer to the first one. 1714 */ 1715 npv = NULL; 1716 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 1717 /* Count mappings in the same pmap */ 1718 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) { 1719 if (entries++ == 0) 1720 npv = pv; 1721 1722 /* Cacheable mappings */ 1723 if ((pv->pv_flags & PVF_NC) == 0) { 1724 cacheable_entries++; 1725 if (kpmap == pv->pv_pmap) 1726 kern_cacheable++; 1727 } 1728 1729 /* Writable mappings */ 1730 if (pv->pv_flags & PVF_WRITE) 1731 ++writable; 1732 } else 1733 if (pv->pv_flags & PVF_WRITE) 1734 other_writable = 1; 1735 } 1736 1737 /* 1738 * Enable or disable caching as necessary. 1739 * Note: the first entry might be part of the kernel pmap, 1740 * so we can't assume this is indicative of the state of the 1741 * other (maybe non-kpmap) entries. 1742 */ 1743 if ((entries > 1 && writable) || 1744 (entries > 0 && pm == kpmap && other_writable)) { 1745 if (cacheable_entries == 0) 1746 return; 1747 1748 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) { 1749 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) || 1750 (pv->pv_flags & PVF_NC)) 1751 continue; 1752 1753 pv->pv_flags |= PVF_NC; 1754 1755 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); 1756 KDASSERT(l2b != NULL); 1757 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 1758 pte = *ptep & ~L2_S_CACHE_MASK; 1759 1760 if ((va != pv->pv_va || pm != pv->pv_pmap) && 1761 l2pte_valid(pte)) { 1762 if (PV_BEEN_EXECD(pv->pv_flags)) { 1763 #ifdef PMAP_CACHE_VIVT 1764 pmap_idcache_wbinv_range(pv->pv_pmap, 1765 pv->pv_va, PAGE_SIZE); 1766 #endif 1767 pmap_tlb_flushID_SE(pv->pv_pmap, 1768 pv->pv_va); 1769 } else 1770 if (PV_BEEN_REFD(pv->pv_flags)) { 1771 #ifdef PMAP_CACHE_VIVT 1772 pmap_dcache_wb_range(pv->pv_pmap, 1773 pv->pv_va, PAGE_SIZE, true, 1774 (pv->pv_flags & PVF_WRITE) == 0); 1775 #endif 1776 pmap_tlb_flushD_SE(pv->pv_pmap, 1777 pv->pv_va); 1778 } 1779 } 1780 1781 *ptep = pte; 1782 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 1783 } 1784 cpu_cpwait(); 1785 } else 1786 if (entries > cacheable_entries) { 1787 /* 1788 * Turn cacheing back on for some pages. If it is a kernel 1789 * page, only do so if there are no other writable pages. 1790 */ 1791 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) { 1792 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap && 1793 (kpmap != pv->pv_pmap || other_writable))) 1794 continue; 1795 1796 pv->pv_flags &= ~PVF_NC; 1797 1798 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); 1799 KDASSERT(l2b != NULL); 1800 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 1801 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode; 1802 1803 if (l2pte_valid(pte)) { 1804 if (PV_BEEN_EXECD(pv->pv_flags)) { 1805 pmap_tlb_flushID_SE(pv->pv_pmap, 1806 pv->pv_va); 1807 } else 1808 if (PV_BEEN_REFD(pv->pv_flags)) { 1809 pmap_tlb_flushD_SE(pv->pv_pmap, 1810 pv->pv_va); 1811 } 1812 } 1813 1814 *ptep = pte; 1815 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 1816 } 1817 } 1818 } 1819 #endif 1820 1821 #ifdef PMAP_CACHE_VIPT 1822 static void 1823 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va) 1824 { 1825 struct pv_entry *pv; 1826 vaddr_t tst_mask; 1827 bool bad_alias; 1828 struct l2_bucket *l2b; 1829 pt_entry_t *ptep, pte, opte; 1830 const u_int 1831 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings, 1832 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings; 1833 1834 /* do we need to do anything? */ 1835 if (arm_cache_prefer_mask == 0) 1836 return; 1837 1838 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n", 1839 pg, pm, va)); 1840 1841 KASSERT(!va || pm); 1842 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1843 1844 /* Already a conflict? */ 1845 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) { 1846 /* just an add, things are already non-cached */ 1847 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY)); 1848 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR)); 1849 bad_alias = false; 1850 if (va) { 1851 PMAPCOUNT(vac_color_none); 1852 bad_alias = true; 1853 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 1854 goto fixup; 1855 } 1856 pv = SLIST_FIRST(&pg->mdpage.pvh_list); 1857 /* the list can't be empty because it would be cachable */ 1858 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) { 1859 tst_mask = pg->mdpage.pvh_attrs; 1860 } else { 1861 KASSERT(pv); 1862 tst_mask = pv->pv_va; 1863 pv = SLIST_NEXT(pv, pv_link); 1864 } 1865 /* 1866 * Only check for a bad alias if we have writable mappings. 1867 */ 1868 tst_mask &= arm_cache_prefer_mask; 1869 if (rw_mappings > 0 && arm_cache_prefer_mask) { 1870 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) { 1871 /* if there's a bad alias, stop checking. */ 1872 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) 1873 bad_alias = true; 1874 } 1875 pg->mdpage.pvh_attrs |= PVF_WRITE; 1876 if (!bad_alias) 1877 pg->mdpage.pvh_attrs |= PVF_DIRTY; 1878 } else { 1879 /* 1880 * We have only read-only mappings. Let's see if there 1881 * are multiple colors in use or if we mapped a KMPAGE. 1882 * If the latter, we have a bad alias. If the former, 1883 * we need to remember that. 1884 */ 1885 for (; pv; pv = SLIST_NEXT(pv, pv_link)) { 1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) { 1887 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) 1888 bad_alias = true; 1889 break; 1890 } 1891 } 1892 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 1893 /* 1894 * No KMPAGE and we exited early, so we must have 1895 * multiple color mappings. 1896 */ 1897 if (!bad_alias && pv != NULL) 1898 pg->mdpage.pvh_attrs |= PVF_MULTCLR; 1899 } 1900 1901 /* If no conflicting colors, set everything back to cached */ 1902 if (!bad_alias) { 1903 #ifdef DEBUG 1904 if ((pg->mdpage.pvh_attrs & PVF_WRITE) 1905 || ro_mappings < 2) { 1906 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) 1907 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0); 1908 } 1909 #endif 1910 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC; 1911 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED; 1912 /* 1913 * Restore DIRTY bit if page is modified 1914 */ 1915 if (pg->mdpage.pvh_attrs & PVF_DMOD) 1916 pg->mdpage.pvh_attrs |= PVF_DIRTY; 1917 PMAPCOUNT(vac_color_restore); 1918 } else { 1919 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL); 1920 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL); 1921 } 1922 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1923 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 1924 } else if (!va) { 1925 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(pg)); 1926 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE) 1927 || (pg->mdpage.pvh_attrs & PVF_DIRTY)); 1928 if (rw_mappings == 0) { 1929 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 1930 if (ro_mappings == 1 1931 && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) { 1932 /* 1933 * If this is the last readonly mapping 1934 * but it doesn't match the current color 1935 * for the page, change the current color 1936 * to match this last readonly mapping. 1937 */ 1938 pv = SLIST_FIRST(&pg->mdpage.pvh_list); 1939 tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va) 1940 & arm_cache_prefer_mask; 1941 if (tst_mask) { 1942 pg->mdpage.pvh_attrs ^= tst_mask; 1943 PMAPCOUNT(vac_color_change); 1944 } 1945 } 1946 } 1947 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1948 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 1949 return; 1950 } else if (!pmap_is_page_colored_p(pg)) { 1951 /* not colored so we just use its color */ 1952 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY)); 1953 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR)); 1954 PMAPCOUNT(vac_color_new); 1955 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1; 1956 pg->mdpage.pvh_attrs |= PVF_COLORED 1957 | (va & arm_cache_prefer_mask) 1958 | (rw_mappings > 0 ? PVF_WRITE : 0); 1959 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 1960 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 1961 return; 1962 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) { 1963 bad_alias = false; 1964 if (rw_mappings > 0) { 1965 /* 1966 * We now have writeable mappings and if we have 1967 * readonly mappings in more than once color, we have 1968 * an aliasing problem. Regardless mark the page as 1969 * writeable. 1970 */ 1971 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) { 1972 if (ro_mappings < 2) { 1973 /* 1974 * If we only have less than two 1975 * read-only mappings, just flush the 1976 * non-primary colors from the cache. 1977 */ 1978 pmap_flush_page(pg, 1979 PMAP_FLUSH_SECONDARY); 1980 } else { 1981 bad_alias = true; 1982 } 1983 } 1984 pg->mdpage.pvh_attrs |= PVF_WRITE; 1985 } 1986 /* If no conflicting colors, set everything back to cached */ 1987 if (!bad_alias) { 1988 #ifdef DEBUG 1989 if (rw_mappings > 0 1990 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) { 1991 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 1992 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) 1993 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0); 1994 } 1995 #endif 1996 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) 1997 PMAPCOUNT(vac_color_reuse); 1998 else 1999 PMAPCOUNT(vac_color_ok); 2000 2001 /* matching color, just return */ 2002 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 2003 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2004 return; 2005 } 2006 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL); 2007 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL); 2008 2009 /* color conflict. evict from cache. */ 2010 2011 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY); 2012 pg->mdpage.pvh_attrs &= ~PVF_COLORED; 2013 pg->mdpage.pvh_attrs |= PVF_NC; 2014 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 2015 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR)); 2016 PMAPCOUNT(vac_color_erase); 2017 } else if (rw_mappings == 0 2018 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) { 2019 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0); 2020 2021 /* 2022 * If the page has dirty cache lines, clean it. 2023 */ 2024 if (pg->mdpage.pvh_attrs & PVF_DIRTY) 2025 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY); 2026 2027 /* 2028 * If this is the first remapping (we know that there are no 2029 * writeable mappings), then this is a simple color change. 2030 * Otherwise this is a seconary r/o mapping, which means 2031 * we don't have to do anything. 2032 */ 2033 if (ro_mappings == 1) { 2034 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0); 2035 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1; 2036 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask); 2037 PMAPCOUNT(vac_color_change); 2038 } else { 2039 PMAPCOUNT(vac_color_blind); 2040 } 2041 pg->mdpage.pvh_attrs |= PVF_MULTCLR; 2042 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 2043 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2044 return; 2045 } else { 2046 if (rw_mappings > 0) 2047 pg->mdpage.pvh_attrs |= PVF_WRITE; 2048 2049 /* color conflict. evict from cache. */ 2050 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY); 2051 2052 /* the list can't be empty because this was a enter/modify */ 2053 pv = SLIST_FIRST(&pg->mdpage.pvh_list); 2054 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) { 2055 KASSERT(pv); 2056 /* 2057 * If there's only one mapped page, change color to the 2058 * page's new color and return. Restore the DIRTY bit 2059 * that was erased by pmap_flush_page. 2060 */ 2061 if (SLIST_NEXT(pv, pv_link) == NULL) { 2062 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1; 2063 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask); 2064 if (pg->mdpage.pvh_attrs & PVF_DMOD) 2065 pg->mdpage.pvh_attrs |= PVF_DIRTY; 2066 PMAPCOUNT(vac_color_change); 2067 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 2068 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2069 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR)); 2070 return; 2071 } 2072 } 2073 bad_alias = true; 2074 pg->mdpage.pvh_attrs &= ~PVF_COLORED; 2075 pg->mdpage.pvh_attrs |= PVF_NC; 2076 PMAPCOUNT(vac_color_erase); 2077 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 2078 } 2079 2080 fixup: 2081 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2082 2083 /* 2084 * Turn cacheing on/off for all pages. 2085 */ 2086 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 2087 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); 2088 KDASSERT(l2b != NULL); 2089 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 2090 opte = *ptep; 2091 pte = opte & ~L2_S_CACHE_MASK; 2092 if (bad_alias) { 2093 pv->pv_flags |= PVF_NC; 2094 } else { 2095 pv->pv_flags &= ~PVF_NC; 2096 pte |= pte_l2_s_cache_mode; 2097 } 2098 2099 if (opte == pte) /* only update is there's a change */ 2100 continue; 2101 2102 if (l2pte_valid(pte)) { 2103 if (PV_BEEN_EXECD(pv->pv_flags)) { 2104 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va); 2105 } else if (PV_BEEN_REFD(pv->pv_flags)) { 2106 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va); 2107 } 2108 } 2109 2110 *ptep = pte; 2111 PTE_SYNC_CURRENT(pv->pv_pmap, ptep); 2112 } 2113 } 2114 #endif /* PMAP_CACHE_VIPT */ 2115 2116 2117 /* 2118 * Modify pte bits for all ptes corresponding to the given physical address. 2119 * We use `maskbits' rather than `clearbits' because we're always passing 2120 * constants and the latter would require an extra inversion at run-time. 2121 */ 2122 static void 2123 pmap_clearbit(struct vm_page *pg, u_int maskbits) 2124 { 2125 struct l2_bucket *l2b; 2126 struct pv_entry *pv; 2127 pt_entry_t *ptep, npte, opte; 2128 pmap_t pm; 2129 vaddr_t va; 2130 u_int oflags; 2131 #ifdef PMAP_CACHE_VIPT 2132 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs); 2133 bool need_syncicache = false; 2134 bool did_syncicache = false; 2135 bool need_vac_me_harder = false; 2136 #endif 2137 2138 NPDEBUG(PDB_BITS, 2139 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n", 2140 pg, VM_PAGE_TO_PHYS(pg), maskbits)); 2141 2142 PMAP_HEAD_TO_MAP_LOCK(); 2143 simple_lock(&pg->mdpage.pvh_slock); 2144 2145 #ifdef PMAP_CACHE_VIPT 2146 /* 2147 * If we might want to sync the I-cache and we've modified it, 2148 * then we know we definitely need to sync or discard it. 2149 */ 2150 if (want_syncicache) 2151 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD; 2152 #endif 2153 /* 2154 * Clear saved attributes (modify, reference) 2155 */ 2156 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF)); 2157 2158 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) { 2159 #ifdef PMAP_CACHE_VIPT 2160 if (need_syncicache) { 2161 /* 2162 * No one has it mapped, so just discard it. The next 2163 * exec remapping will cause it to be synced. 2164 */ 2165 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 2166 PMAPCOUNT(exec_discarded_clearbit); 2167 } 2168 #endif 2169 simple_unlock(&pg->mdpage.pvh_slock); 2170 PMAP_HEAD_TO_MAP_UNLOCK(); 2171 return; 2172 } 2173 2174 /* 2175 * Loop over all current mappings setting/clearing as appropos 2176 */ 2177 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 2178 va = pv->pv_va; 2179 pm = pv->pv_pmap; 2180 oflags = pv->pv_flags; 2181 /* 2182 * Kernel entries are unmanaged and as such not to be changed. 2183 */ 2184 if (oflags & PVF_KENTRY) 2185 continue; 2186 pv->pv_flags &= ~maskbits; 2187 2188 pmap_acquire_pmap_lock(pm); 2189 2190 l2b = pmap_get_l2_bucket(pm, va); 2191 KDASSERT(l2b != NULL); 2192 2193 ptep = &l2b->l2b_kva[l2pte_index(va)]; 2194 npte = opte = *ptep; 2195 2196 NPDEBUG(PDB_BITS, 2197 printf( 2198 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n", 2199 pv, pv->pv_pmap, pv->pv_va, oflags)); 2200 2201 if (maskbits & (PVF_WRITE|PVF_MOD)) { 2202 #ifdef PMAP_CACHE_VIVT 2203 if ((pv->pv_flags & PVF_NC)) { 2204 /* 2205 * Entry is not cacheable: 2206 * 2207 * Don't turn caching on again if this is a 2208 * modified emulation. This would be 2209 * inconsitent with the settings created by 2210 * pmap_vac_me_harder(). Otherwise, it's safe 2211 * to re-enable cacheing. 2212 * 2213 * There's no need to call pmap_vac_me_harder() 2214 * here: all pages are losing their write 2215 * permission. 2216 */ 2217 if (maskbits & PVF_WRITE) { 2218 npte |= pte_l2_s_cache_mode; 2219 pv->pv_flags &= ~PVF_NC; 2220 } 2221 } else 2222 if (opte & L2_S_PROT_W) { 2223 /* 2224 * Entry is writable/cacheable: check if pmap 2225 * is current if it is flush it, otherwise it 2226 * won't be in the cache 2227 */ 2228 if (PV_BEEN_EXECD(oflags)) 2229 pmap_idcache_wbinv_range(pm, pv->pv_va, 2230 PAGE_SIZE); 2231 else 2232 if (PV_BEEN_REFD(oflags)) 2233 pmap_dcache_wb_range(pm, pv->pv_va, 2234 PAGE_SIZE, 2235 (maskbits & PVF_REF) != 0, false); 2236 } 2237 #endif 2238 2239 /* make the pte read only */ 2240 npte &= ~L2_S_PROT_W; 2241 2242 if (maskbits & oflags & PVF_WRITE) { 2243 /* 2244 * Keep alias accounting up to date 2245 */ 2246 if (pv->pv_pmap == pmap_kernel()) { 2247 pg->mdpage.krw_mappings--; 2248 pg->mdpage.kro_mappings++; 2249 } else { 2250 pg->mdpage.urw_mappings--; 2251 pg->mdpage.uro_mappings++; 2252 } 2253 #ifdef PMAP_CACHE_VIPT 2254 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) 2255 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 2256 if (want_syncicache) 2257 need_syncicache = true; 2258 need_vac_me_harder = true; 2259 #endif 2260 } 2261 } 2262 2263 if (maskbits & PVF_REF) { 2264 if ((pv->pv_flags & PVF_NC) == 0 && 2265 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 && 2266 l2pte_valid(npte)) { 2267 #ifdef PMAP_CACHE_VIVT 2268 /* 2269 * Check npte here; we may have already 2270 * done the wbinv above, and the validity 2271 * of the PTE is the same for opte and 2272 * npte. 2273 */ 2274 /* XXXJRT need idcache_inv_range */ 2275 if (PV_BEEN_EXECD(oflags)) 2276 pmap_idcache_wbinv_range(pm, 2277 pv->pv_va, PAGE_SIZE); 2278 else 2279 if (PV_BEEN_REFD(oflags)) 2280 pmap_dcache_wb_range(pm, 2281 pv->pv_va, PAGE_SIZE, 2282 true, true); 2283 #endif 2284 } 2285 2286 /* 2287 * Make the PTE invalid so that we will take a 2288 * page fault the next time the mapping is 2289 * referenced. 2290 */ 2291 npte &= ~L2_TYPE_MASK; 2292 npte |= L2_TYPE_INV; 2293 } 2294 2295 if (npte != opte) { 2296 *ptep = npte; 2297 PTE_SYNC(ptep); 2298 /* Flush the TLB entry if a current pmap. */ 2299 if (PV_BEEN_EXECD(oflags)) 2300 pmap_tlb_flushID_SE(pm, pv->pv_va); 2301 else 2302 if (PV_BEEN_REFD(oflags)) 2303 pmap_tlb_flushD_SE(pm, pv->pv_va); 2304 } 2305 2306 pmap_release_pmap_lock(pm); 2307 2308 NPDEBUG(PDB_BITS, 2309 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n", 2310 pm, va, opte, npte)); 2311 } 2312 2313 #ifdef PMAP_CACHE_VIPT 2314 /* 2315 * If we need to sync the I-cache and we haven't done it yet, do it. 2316 */ 2317 if (need_syncicache && !did_syncicache) { 2318 pmap_syncicache_page(pg); 2319 PMAPCOUNT(exec_synced_clearbit); 2320 } 2321 /* 2322 * If we are changing this to read-only, we need to call vac_me_harder 2323 * so we can change all the read-only pages to cacheable. We pretend 2324 * this as a page deletion. 2325 */ 2326 if (need_vac_me_harder) { 2327 if (pg->mdpage.pvh_attrs & PVF_NC) 2328 pmap_vac_me_harder(pg, NULL, 0); 2329 } 2330 #endif 2331 2332 simple_unlock(&pg->mdpage.pvh_slock); 2333 PMAP_HEAD_TO_MAP_UNLOCK(); 2334 } 2335 2336 /* 2337 * pmap_clean_page() 2338 * 2339 * This is a local function used to work out the best strategy to clean 2340 * a single page referenced by its entry in the PV table. It's used by 2341 * pmap_copy_page, pmap_zero page and maybe some others later on. 2342 * 2343 * Its policy is effectively: 2344 * o If there are no mappings, we don't bother doing anything with the cache. 2345 * o If there is one mapping, we clean just that page. 2346 * o If there are multiple mappings, we clean the entire cache. 2347 * 2348 * So that some functions can be further optimised, it returns 0 if it didn't 2349 * clean the entire cache, or 1 if it did. 2350 * 2351 * XXX One bug in this routine is that if the pv_entry has a single page 2352 * mapped at 0x00000000 a whole cache clean will be performed rather than 2353 * just the 1 page. Since this should not occur in everyday use and if it does 2354 * it will just result in not the most efficient clean for the page. 2355 */ 2356 #ifdef PMAP_CACHE_VIVT 2357 static int 2358 pmap_clean_page(struct pv_entry *pv, bool is_src) 2359 { 2360 pmap_t pm_to_clean = NULL; 2361 struct pv_entry *npv; 2362 u_int cache_needs_cleaning = 0; 2363 u_int flags = 0; 2364 vaddr_t page_to_clean = 0; 2365 2366 if (pv == NULL) { 2367 /* nothing mapped in so nothing to flush */ 2368 return (0); 2369 } 2370 2371 /* 2372 * Since we flush the cache each time we change to a different 2373 * user vmspace, we only need to flush the page if it is in the 2374 * current pmap. 2375 */ 2376 2377 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) { 2378 if (pmap_is_current(npv->pv_pmap)) { 2379 flags |= npv->pv_flags; 2380 /* 2381 * The page is mapped non-cacheable in 2382 * this map. No need to flush the cache. 2383 */ 2384 if (npv->pv_flags & PVF_NC) { 2385 #ifdef DIAGNOSTIC 2386 if (cache_needs_cleaning) 2387 panic("pmap_clean_page: " 2388 "cache inconsistency"); 2389 #endif 2390 break; 2391 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0) 2392 continue; 2393 if (cache_needs_cleaning) { 2394 page_to_clean = 0; 2395 break; 2396 } else { 2397 page_to_clean = npv->pv_va; 2398 pm_to_clean = npv->pv_pmap; 2399 } 2400 cache_needs_cleaning = 1; 2401 } 2402 } 2403 2404 if (page_to_clean) { 2405 if (PV_BEEN_EXECD(flags)) 2406 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean, 2407 PAGE_SIZE); 2408 else 2409 pmap_dcache_wb_range(pm_to_clean, page_to_clean, 2410 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0); 2411 } else if (cache_needs_cleaning) { 2412 pmap_t const pm = curproc->p_vmspace->vm_map.pmap; 2413 2414 if (PV_BEEN_EXECD(flags)) 2415 pmap_idcache_wbinv_all(pm); 2416 else 2417 pmap_dcache_wbinv_all(pm); 2418 return (1); 2419 } 2420 return (0); 2421 } 2422 #endif 2423 2424 #ifdef PMAP_CACHE_VIPT 2425 /* 2426 * Sync a page with the I-cache. Since this is a VIPT, we must pick the 2427 * right cache alias to make sure we flush the right stuff. 2428 */ 2429 void 2430 pmap_syncicache_page(struct vm_page *pg) 2431 { 2432 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 2433 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT]; 2434 2435 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n", 2436 pg, pg->mdpage.pvh_attrs)); 2437 /* 2438 * No need to clean the page if it's non-cached. 2439 */ 2440 if (pg->mdpage.pvh_attrs & PVF_NC) 2441 return; 2442 KASSERT(arm_cache_prefer_mask == 0 || pg->mdpage.pvh_attrs & PVF_COLORED); 2443 2444 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset); 2445 /* 2446 * Set up a PTE with the right coloring to flush existing cache lines. 2447 */ 2448 *ptep = L2_S_PROTO | 2449 VM_PAGE_TO_PHYS(pg) 2450 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) 2451 | pte_l2_s_cache_mode; 2452 PTE_SYNC(ptep); 2453 2454 /* 2455 * Flush it. 2456 */ 2457 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE); 2458 /* 2459 * Unmap the page. 2460 */ 2461 *ptep = 0; 2462 PTE_SYNC(ptep); 2463 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset); 2464 2465 pg->mdpage.pvh_attrs |= PVF_EXEC; 2466 PMAPCOUNT(exec_synced); 2467 } 2468 2469 void 2470 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush) 2471 { 2472 vsize_t va_offset, end_va; 2473 void (*cf)(vaddr_t, vsize_t); 2474 2475 if (arm_cache_prefer_mask == 0) 2476 return; 2477 2478 switch (flush) { 2479 case PMAP_FLUSH_PRIMARY: 2480 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) { 2481 va_offset = 0; 2482 end_va = arm_cache_prefer_mask; 2483 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR; 2484 PMAPCOUNT(vac_flush_lots); 2485 } else { 2486 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 2487 end_va = va_offset; 2488 PMAPCOUNT(vac_flush_one); 2489 } 2490 /* 2491 * Mark that the page is no longer dirty. 2492 */ 2493 pg->mdpage.pvh_attrs &= ~PVF_DIRTY; 2494 cf = cpufuncs.cf_idcache_wbinv_range; 2495 break; 2496 case PMAP_FLUSH_SECONDARY: 2497 va_offset = 0; 2498 end_va = arm_cache_prefer_mask; 2499 cf = cpufuncs.cf_idcache_wbinv_range; 2500 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR; 2501 PMAPCOUNT(vac_flush_lots); 2502 break; 2503 case PMAP_CLEAN_PRIMARY: 2504 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 2505 end_va = va_offset; 2506 cf = cpufuncs.cf_dcache_wb_range; 2507 /* 2508 * Mark that the page is no longer dirty. 2509 */ 2510 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0) 2511 pg->mdpage.pvh_attrs &= ~PVF_DIRTY; 2512 PMAPCOUNT(vac_clean_one); 2513 break; 2514 default: 2515 return; 2516 } 2517 2518 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC)); 2519 2520 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n", 2521 pg, pg->mdpage.pvh_attrs)); 2522 2523 for (; va_offset <= end_va; va_offset += PAGE_SIZE) { 2524 const size_t pte_offset = va_offset >> PGSHIFT; 2525 pt_entry_t * const ptep = &cdst_pte[pte_offset]; 2526 const pt_entry_t oldpte = *ptep; 2527 2528 if (flush == PMAP_FLUSH_SECONDARY 2529 && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask)) 2530 continue; 2531 2532 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset); 2533 /* 2534 * Set up a PTE with the right coloring to flush 2535 * existing cache entries. 2536 */ 2537 *ptep = L2_S_PROTO 2538 | VM_PAGE_TO_PHYS(pg) 2539 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) 2540 | pte_l2_s_cache_mode; 2541 PTE_SYNC(ptep); 2542 2543 /* 2544 * Flush it. 2545 */ 2546 (*cf)(cdstp + va_offset, PAGE_SIZE); 2547 2548 /* 2549 * Restore the page table entry since we might have interrupted 2550 * pmap_zero_page or pmap_copy_page which was already using 2551 * this pte. 2552 */ 2553 *ptep = oldpte; 2554 PTE_SYNC(ptep); 2555 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset); 2556 } 2557 } 2558 #endif /* PMAP_CACHE_VIPT */ 2559 2560 /* 2561 * Routine: pmap_page_remove 2562 * Function: 2563 * Removes this physical page from 2564 * all physical maps in which it resides. 2565 * Reflects back modify bits to the pager. 2566 */ 2567 static void 2568 pmap_page_remove(struct vm_page *pg) 2569 { 2570 struct l2_bucket *l2b; 2571 struct pv_entry *pv, *npv, **pvp; 2572 pmap_t pm; 2573 pt_entry_t *ptep; 2574 bool flush; 2575 u_int flags; 2576 2577 NPDEBUG(PDB_FOLLOW, 2578 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, 2579 VM_PAGE_TO_PHYS(pg))); 2580 2581 PMAP_HEAD_TO_MAP_LOCK(); 2582 simple_lock(&pg->mdpage.pvh_slock); 2583 2584 pv = SLIST_FIRST(&pg->mdpage.pvh_list); 2585 if (pv == NULL) { 2586 #ifdef PMAP_CACHE_VIPT 2587 /* 2588 * We *know* the page contents are about to be replaced. 2589 * Discard the exec contents 2590 */ 2591 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) 2592 PMAPCOUNT(exec_discarded_page_protect); 2593 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 2594 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2595 #endif 2596 simple_unlock(&pg->mdpage.pvh_slock); 2597 PMAP_HEAD_TO_MAP_UNLOCK(); 2598 return; 2599 } 2600 #ifdef PMAP_CACHE_VIPT 2601 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(pg)); 2602 #endif 2603 2604 /* 2605 * Clear alias counts 2606 */ 2607 #ifdef PMAP_CACHE_VIVT 2608 pg->mdpage.k_mappings = 0; 2609 #endif 2610 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0; 2611 2612 flush = false; 2613 flags = 0; 2614 2615 #ifdef PMAP_CACHE_VIVT 2616 pmap_clean_page(pv, false); 2617 #endif 2618 2619 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list); 2620 while (pv) { 2621 pm = pv->pv_pmap; 2622 npv = SLIST_NEXT(pv, pv_link); 2623 if (flush == false && pmap_is_current(pm)) 2624 flush = true; 2625 2626 if (pm == pmap_kernel()) { 2627 #ifdef PMAP_CACHE_VIPT 2628 /* 2629 * If this was unmanaged mapping, it must be preserved. 2630 * Move it back on the list and advance the end-of-list 2631 * pointer. 2632 */ 2633 if (pv->pv_flags & PVF_KENTRY) { 2634 *pvp = pv; 2635 pvp = &SLIST_NEXT(pv, pv_link); 2636 pv = npv; 2637 continue; 2638 } 2639 if (pv->pv_flags & PVF_WRITE) 2640 pg->mdpage.krw_mappings--; 2641 else 2642 pg->mdpage.kro_mappings--; 2643 #endif 2644 PMAPCOUNT(kernel_unmappings); 2645 } 2646 PMAPCOUNT(unmappings); 2647 2648 pmap_acquire_pmap_lock(pm); 2649 2650 l2b = pmap_get_l2_bucket(pm, pv->pv_va); 2651 KDASSERT(l2b != NULL); 2652 2653 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; 2654 2655 /* 2656 * Update statistics 2657 */ 2658 --pm->pm_stats.resident_count; 2659 2660 /* Wired bit */ 2661 if (pv->pv_flags & PVF_WIRED) 2662 --pm->pm_stats.wired_count; 2663 2664 flags |= pv->pv_flags; 2665 2666 /* 2667 * Invalidate the PTEs. 2668 */ 2669 *ptep = 0; 2670 PTE_SYNC_CURRENT(pm, ptep); 2671 pmap_free_l2_bucket(pm, l2b, 1); 2672 2673 pool_put(&pmap_pv_pool, pv); 2674 pv = npv; 2675 /* 2676 * if we reach the end of the list and there are still 2677 * mappings, they might be able to be cached now. 2678 */ 2679 if (pv == NULL) { 2680 *pvp = NULL; 2681 if (!SLIST_EMPTY(&pg->mdpage.pvh_list)) 2682 pmap_vac_me_harder(pg, pm, 0); 2683 } 2684 pmap_release_pmap_lock(pm); 2685 } 2686 #ifdef PMAP_CACHE_VIPT 2687 /* 2688 * Its EXEC cache is now gone. 2689 */ 2690 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) 2691 PMAPCOUNT(exec_discarded_page_protect); 2692 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 2693 KASSERT(pg->mdpage.urw_mappings == 0); 2694 KASSERT(pg->mdpage.uro_mappings == 0); 2695 if (pg->mdpage.krw_mappings == 0) 2696 pg->mdpage.pvh_attrs &= ~PVF_WRITE; 2697 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE)); 2698 #endif 2699 simple_unlock(&pg->mdpage.pvh_slock); 2700 PMAP_HEAD_TO_MAP_UNLOCK(); 2701 2702 if (flush) { 2703 /* 2704 * Note: We can't use pmap_tlb_flush{I,D}() here since that 2705 * would need a subsequent call to pmap_update() to ensure 2706 * curpm->pm_cstate.cs_all is reset. Our callers are not 2707 * required to do that (see pmap(9)), so we can't modify 2708 * the current pmap's state. 2709 */ 2710 if (PV_BEEN_EXECD(flags)) 2711 cpu_tlb_flushID(); 2712 else 2713 cpu_tlb_flushD(); 2714 } 2715 cpu_cpwait(); 2716 } 2717 2718 /* 2719 * pmap_t pmap_create(void) 2720 * 2721 * Create a new pmap structure from scratch. 2722 */ 2723 pmap_t 2724 pmap_create(void) 2725 { 2726 pmap_t pm; 2727 2728 pm = pool_cache_get(&pmap_cache, PR_WAITOK); 2729 2730 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1); 2731 pm->pm_stats.wired_count = 0; 2732 pm->pm_stats.resident_count = 1; 2733 pm->pm_cstate.cs_all = 0; 2734 pmap_alloc_l1(pm); 2735 2736 /* 2737 * Note: The pool cache ensures that the pm_l2[] array is already 2738 * initialised to zero. 2739 */ 2740 2741 pmap_pinit(pm); 2742 2743 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list); 2744 2745 return (pm); 2746 } 2747 2748 /* 2749 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, 2750 * u_int flags) 2751 * 2752 * Insert the given physical page (p) at 2753 * the specified virtual address (v) in the 2754 * target physical map with the protection requested. 2755 * 2756 * NB: This is the only routine which MAY NOT lazy-evaluate 2757 * or lose information. That is, this routine must actually 2758 * insert this page into the given map NOW. 2759 */ 2760 int 2761 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 2762 { 2763 struct l2_bucket *l2b; 2764 struct vm_page *pg, *opg; 2765 struct pv_entry *pv; 2766 pt_entry_t *ptep, npte, opte; 2767 u_int nflags; 2768 u_int oflags; 2769 2770 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags)); 2771 2772 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0); 2773 KDASSERT(((va | pa) & PGOFSET) == 0); 2774 2775 /* 2776 * Get a pointer to the page. Later on in this function, we 2777 * test for a managed page by checking pg != NULL. 2778 */ 2779 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL; 2780 2781 nflags = 0; 2782 if (prot & VM_PROT_WRITE) 2783 nflags |= PVF_WRITE; 2784 if (prot & VM_PROT_EXECUTE) 2785 nflags |= PVF_EXEC; 2786 if (flags & PMAP_WIRED) 2787 nflags |= PVF_WIRED; 2788 2789 PMAP_MAP_TO_HEAD_LOCK(); 2790 pmap_acquire_pmap_lock(pm); 2791 2792 /* 2793 * Fetch the L2 bucket which maps this page, allocating one if 2794 * necessary for user pmaps. 2795 */ 2796 if (pm == pmap_kernel()) 2797 l2b = pmap_get_l2_bucket(pm, va); 2798 else 2799 l2b = pmap_alloc_l2_bucket(pm, va); 2800 if (l2b == NULL) { 2801 if (flags & PMAP_CANFAIL) { 2802 pmap_release_pmap_lock(pm); 2803 PMAP_MAP_TO_HEAD_UNLOCK(); 2804 return (ENOMEM); 2805 } 2806 panic("pmap_enter: failed to allocate L2 bucket"); 2807 } 2808 ptep = &l2b->l2b_kva[l2pte_index(va)]; 2809 opte = *ptep; 2810 npte = pa; 2811 oflags = 0; 2812 2813 if (opte) { 2814 /* 2815 * There is already a mapping at this address. 2816 * If the physical address is different, lookup the 2817 * vm_page. 2818 */ 2819 if (l2pte_pa(opte) != pa) 2820 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 2821 else 2822 opg = pg; 2823 } else 2824 opg = NULL; 2825 2826 if (pg) { 2827 /* 2828 * This is to be a managed mapping. 2829 */ 2830 if ((flags & VM_PROT_ALL) || 2831 (pg->mdpage.pvh_attrs & PVF_REF)) { 2832 /* 2833 * - The access type indicates that we don't need 2834 * to do referenced emulation. 2835 * OR 2836 * - The physical page has already been referenced 2837 * so no need to re-do referenced emulation here. 2838 */ 2839 npte |= L2_S_PROTO; 2840 2841 nflags |= PVF_REF; 2842 2843 if ((prot & VM_PROT_WRITE) != 0 && 2844 ((flags & VM_PROT_WRITE) != 0 || 2845 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) { 2846 /* 2847 * This is a writable mapping, and the 2848 * page's mod state indicates it has 2849 * already been modified. Make it 2850 * writable from the outset. 2851 */ 2852 npte |= L2_S_PROT_W; 2853 nflags |= PVF_MOD; 2854 } 2855 } else { 2856 /* 2857 * Need to do page referenced emulation. 2858 */ 2859 npte |= L2_TYPE_INV; 2860 } 2861 2862 npte |= pte_l2_s_cache_mode; 2863 2864 if (pg == opg) { 2865 /* 2866 * We're changing the attrs of an existing mapping. 2867 */ 2868 simple_lock(&pg->mdpage.pvh_slock); 2869 oflags = pmap_modify_pv(pg, pm, va, 2870 PVF_WRITE | PVF_EXEC | PVF_WIRED | 2871 PVF_MOD | PVF_REF, nflags); 2872 simple_unlock(&pg->mdpage.pvh_slock); 2873 2874 #ifdef PMAP_CACHE_VIVT 2875 /* 2876 * We may need to flush the cache if we're 2877 * doing rw-ro... 2878 */ 2879 if (pm->pm_cstate.cs_cache_d && 2880 (oflags & PVF_NC) == 0 && 2881 (opte & L2_S_PROT_W) != 0 && 2882 (prot & VM_PROT_WRITE) == 0) 2883 cpu_dcache_wb_range(va, PAGE_SIZE); 2884 #endif 2885 } else { 2886 /* 2887 * New mapping, or changing the backing page 2888 * of an existing mapping. 2889 */ 2890 if (opg) { 2891 /* 2892 * Replacing an existing mapping with a new one. 2893 * It is part of our managed memory so we 2894 * must remove it from the PV list 2895 */ 2896 simple_lock(&opg->mdpage.pvh_slock); 2897 pv = pmap_remove_pv(opg, pm, va); 2898 pmap_vac_me_harder(opg, pm, 0); 2899 simple_unlock(&opg->mdpage.pvh_slock); 2900 oflags = pv->pv_flags; 2901 2902 #ifdef PMAP_CACHE_VIVT 2903 /* 2904 * If the old mapping was valid (ref/mod 2905 * emulation creates 'invalid' mappings 2906 * initially) then make sure to frob 2907 * the cache. 2908 */ 2909 if ((oflags & PVF_NC) == 0 && 2910 l2pte_valid(opte)) { 2911 if (PV_BEEN_EXECD(oflags)) { 2912 pmap_idcache_wbinv_range(pm, va, 2913 PAGE_SIZE); 2914 } else 2915 if (PV_BEEN_REFD(oflags)) { 2916 pmap_dcache_wb_range(pm, va, 2917 PAGE_SIZE, true, 2918 (oflags & PVF_WRITE) == 0); 2919 } 2920 } 2921 #endif 2922 } else 2923 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){ 2924 if ((flags & PMAP_CANFAIL) == 0) 2925 panic("pmap_enter: no pv entries"); 2926 2927 if (pm != pmap_kernel()) 2928 pmap_free_l2_bucket(pm, l2b, 0); 2929 pmap_release_pmap_lock(pm); 2930 PMAP_MAP_TO_HEAD_UNLOCK(); 2931 NPDEBUG(PDB_ENTER, 2932 printf("pmap_enter: ENOMEM\n")); 2933 return (ENOMEM); 2934 } 2935 2936 pmap_enter_pv(pg, pv, pm, va, nflags); 2937 } 2938 } else { 2939 /* 2940 * We're mapping an unmanaged page. 2941 * These are always readable, and possibly writable, from 2942 * the get go as we don't need to track ref/mod status. 2943 */ 2944 npte |= L2_S_PROTO; 2945 if (prot & VM_PROT_WRITE) 2946 npte |= L2_S_PROT_W; 2947 2948 /* 2949 * Make sure the vector table is mapped cacheable 2950 */ 2951 if (pm != pmap_kernel() && va == vector_page) 2952 npte |= pte_l2_s_cache_mode; 2953 2954 if (opg) { 2955 /* 2956 * Looks like there's an existing 'managed' mapping 2957 * at this address. 2958 */ 2959 simple_lock(&opg->mdpage.pvh_slock); 2960 pv = pmap_remove_pv(opg, pm, va); 2961 pmap_vac_me_harder(opg, pm, 0); 2962 simple_unlock(&opg->mdpage.pvh_slock); 2963 oflags = pv->pv_flags; 2964 2965 #ifdef PMAP_CACHE_VIVT 2966 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) { 2967 if (PV_BEEN_EXECD(oflags)) 2968 pmap_idcache_wbinv_range(pm, va, 2969 PAGE_SIZE); 2970 else 2971 if (PV_BEEN_REFD(oflags)) 2972 pmap_dcache_wb_range(pm, va, PAGE_SIZE, 2973 true, (oflags & PVF_WRITE) == 0); 2974 } 2975 #endif 2976 pool_put(&pmap_pv_pool, pv); 2977 } 2978 } 2979 2980 /* 2981 * Make sure userland mappings get the right permissions 2982 */ 2983 if (pm != pmap_kernel() && va != vector_page) 2984 npte |= L2_S_PROT_U; 2985 2986 /* 2987 * Keep the stats up to date 2988 */ 2989 if (opte == 0) { 2990 l2b->l2b_occupancy++; 2991 pm->pm_stats.resident_count++; 2992 } 2993 2994 NPDEBUG(PDB_ENTER, 2995 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte)); 2996 2997 /* 2998 * If this is just a wiring change, the two PTEs will be 2999 * identical, so there's no need to update the page table. 3000 */ 3001 if (npte != opte) { 3002 bool is_cached = pmap_is_cached(pm); 3003 3004 *ptep = npte; 3005 if (is_cached) { 3006 /* 3007 * We only need to frob the cache/tlb if this pmap 3008 * is current 3009 */ 3010 PTE_SYNC(ptep); 3011 if (va != vector_page && l2pte_valid(npte)) { 3012 /* 3013 * This mapping is likely to be accessed as 3014 * soon as we return to userland. Fix up the 3015 * L1 entry to avoid taking another 3016 * page/domain fault. 3017 */ 3018 pd_entry_t *pl1pd, l1pd; 3019 3020 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)]; 3021 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | 3022 L1_C_PROTO; 3023 if (*pl1pd != l1pd) { 3024 *pl1pd = l1pd; 3025 PTE_SYNC(pl1pd); 3026 } 3027 } 3028 } 3029 3030 if (PV_BEEN_EXECD(oflags)) 3031 pmap_tlb_flushID_SE(pm, va); 3032 else 3033 if (PV_BEEN_REFD(oflags)) 3034 pmap_tlb_flushD_SE(pm, va); 3035 3036 NPDEBUG(PDB_ENTER, 3037 printf("pmap_enter: is_cached %d cs 0x%08x\n", 3038 is_cached, pm->pm_cstate.cs_all)); 3039 3040 if (pg != NULL) { 3041 simple_lock(&pg->mdpage.pvh_slock); 3042 pmap_vac_me_harder(pg, pm, va); 3043 simple_unlock(&pg->mdpage.pvh_slock); 3044 } 3045 } 3046 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC) 3047 if (pg) { 3048 simple_lock(&pg->mdpage.pvh_slock); 3049 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 3050 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)); 3051 simple_unlock(&pg->mdpage.pvh_slock); 3052 } 3053 #endif 3054 3055 pmap_release_pmap_lock(pm); 3056 PMAP_MAP_TO_HEAD_UNLOCK(); 3057 3058 return (0); 3059 } 3060 3061 /* 3062 * pmap_remove() 3063 * 3064 * pmap_remove is responsible for nuking a number of mappings for a range 3065 * of virtual address space in the current pmap. To do this efficiently 3066 * is interesting, because in a number of cases a wide virtual address 3067 * range may be supplied that contains few actual mappings. So, the 3068 * optimisations are: 3069 * 1. Skip over hunks of address space for which no L1 or L2 entry exists. 3070 * 2. Build up a list of pages we've hit, up to a maximum, so we can 3071 * maybe do just a partial cache clean. This path of execution is 3072 * complicated by the fact that the cache must be flushed _before_ 3073 * the PTE is nuked, being a VAC :-) 3074 * 3. If we're called after UVM calls pmap_remove_all(), we can defer 3075 * all invalidations until pmap_update(), since pmap_remove_all() has 3076 * already flushed the cache. 3077 * 4. Maybe later fast-case a single page, but I don't think this is 3078 * going to make _that_ much difference overall. 3079 */ 3080 3081 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3 3082 3083 void 3084 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva) 3085 { 3086 struct l2_bucket *l2b; 3087 vaddr_t next_bucket; 3088 pt_entry_t *ptep; 3089 u_int cleanlist_idx, total, cnt; 3090 struct { 3091 vaddr_t va; 3092 pt_entry_t *ptep; 3093 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE]; 3094 u_int mappings, is_exec, is_refd; 3095 3096 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx " 3097 "eva=%08lx\n", pm, sva, eva)); 3098 3099 /* 3100 * we lock in the pmap => pv_head direction 3101 */ 3102 PMAP_MAP_TO_HEAD_LOCK(); 3103 pmap_acquire_pmap_lock(pm); 3104 3105 if (pm->pm_remove_all || !pmap_is_cached(pm)) { 3106 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1; 3107 if (pm->pm_cstate.cs_tlb == 0) 3108 pm->pm_remove_all = true; 3109 } else 3110 cleanlist_idx = 0; 3111 3112 total = 0; 3113 3114 while (sva < eva) { 3115 /* 3116 * Do one L2 bucket's worth at a time. 3117 */ 3118 next_bucket = L2_NEXT_BUCKET(sva); 3119 if (next_bucket > eva) 3120 next_bucket = eva; 3121 3122 l2b = pmap_get_l2_bucket(pm, sva); 3123 if (l2b == NULL) { 3124 sva = next_bucket; 3125 continue; 3126 } 3127 3128 ptep = &l2b->l2b_kva[l2pte_index(sva)]; 3129 3130 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){ 3131 struct vm_page *pg; 3132 pt_entry_t pte; 3133 paddr_t pa; 3134 3135 pte = *ptep; 3136 3137 if (pte == 0) { 3138 /* Nothing here, move along */ 3139 continue; 3140 } 3141 3142 pa = l2pte_pa(pte); 3143 is_exec = 0; 3144 is_refd = 1; 3145 3146 /* 3147 * Update flags. In a number of circumstances, 3148 * we could cluster a lot of these and do a 3149 * number of sequential pages in one go. 3150 */ 3151 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) { 3152 struct pv_entry *pv; 3153 simple_lock(&pg->mdpage.pvh_slock); 3154 pv = pmap_remove_pv(pg, pm, sva); 3155 pmap_vac_me_harder(pg, pm, 0); 3156 simple_unlock(&pg->mdpage.pvh_slock); 3157 if (pv != NULL) { 3158 if (pm->pm_remove_all == false) { 3159 is_exec = 3160 PV_BEEN_EXECD(pv->pv_flags); 3161 is_refd = 3162 PV_BEEN_REFD(pv->pv_flags); 3163 } 3164 pool_put(&pmap_pv_pool, pv); 3165 } 3166 } 3167 mappings++; 3168 3169 if (!l2pte_valid(pte)) { 3170 /* 3171 * Ref/Mod emulation is still active for this 3172 * mapping, therefore it is has not yet been 3173 * accessed. No need to frob the cache/tlb. 3174 */ 3175 *ptep = 0; 3176 PTE_SYNC_CURRENT(pm, ptep); 3177 continue; 3178 } 3179 3180 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) { 3181 /* Add to the clean list. */ 3182 cleanlist[cleanlist_idx].ptep = ptep; 3183 cleanlist[cleanlist_idx].va = 3184 sva | (is_exec & 1); 3185 cleanlist_idx++; 3186 } else 3187 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) { 3188 /* Nuke everything if needed. */ 3189 #ifdef PMAP_CACHE_VIVT 3190 pmap_idcache_wbinv_all(pm); 3191 #endif 3192 pmap_tlb_flushID(pm); 3193 3194 /* 3195 * Roll back the previous PTE list, 3196 * and zero out the current PTE. 3197 */ 3198 for (cnt = 0; 3199 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) { 3200 *cleanlist[cnt].ptep = 0; 3201 PTE_SYNC(cleanlist[cnt].ptep); 3202 } 3203 *ptep = 0; 3204 PTE_SYNC(ptep); 3205 cleanlist_idx++; 3206 pm->pm_remove_all = true; 3207 } else { 3208 *ptep = 0; 3209 PTE_SYNC(ptep); 3210 if (pm->pm_remove_all == false) { 3211 if (is_exec) 3212 pmap_tlb_flushID_SE(pm, sva); 3213 else 3214 if (is_refd) 3215 pmap_tlb_flushD_SE(pm, sva); 3216 } 3217 } 3218 } 3219 3220 /* 3221 * Deal with any left overs 3222 */ 3223 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) { 3224 total += cleanlist_idx; 3225 for (cnt = 0; cnt < cleanlist_idx; cnt++) { 3226 if (pm->pm_cstate.cs_all != 0) { 3227 vaddr_t clva = cleanlist[cnt].va & ~1; 3228 if (cleanlist[cnt].va & 1) { 3229 #ifdef PMAP_CACHE_VIVT 3230 pmap_idcache_wbinv_range(pm, 3231 clva, PAGE_SIZE); 3232 #endif 3233 pmap_tlb_flushID_SE(pm, clva); 3234 } else { 3235 #ifdef PMAP_CACHE_VIVT 3236 pmap_dcache_wb_range(pm, 3237 clva, PAGE_SIZE, true, 3238 false); 3239 #endif 3240 pmap_tlb_flushD_SE(pm, clva); 3241 } 3242 } 3243 *cleanlist[cnt].ptep = 0; 3244 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep); 3245 } 3246 3247 /* 3248 * If it looks like we're removing a whole bunch 3249 * of mappings, it's faster to just write-back 3250 * the whole cache now and defer TLB flushes until 3251 * pmap_update() is called. 3252 */ 3253 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE) 3254 cleanlist_idx = 0; 3255 else { 3256 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1; 3257 #ifdef PMAP_CACHE_VIVT 3258 pmap_idcache_wbinv_all(pm); 3259 #endif 3260 pm->pm_remove_all = true; 3261 } 3262 } 3263 3264 pmap_free_l2_bucket(pm, l2b, mappings); 3265 pm->pm_stats.resident_count -= mappings; 3266 } 3267 3268 pmap_release_pmap_lock(pm); 3269 PMAP_MAP_TO_HEAD_UNLOCK(); 3270 } 3271 3272 #ifdef PMAP_CACHE_VIPT 3273 static struct pv_entry * 3274 pmap_kremove_pg(struct vm_page *pg, vaddr_t va) 3275 { 3276 struct pv_entry *pv; 3277 3278 simple_lock(&pg->mdpage.pvh_slock); 3279 KASSERT(arm_cache_prefer_mask == 0 || pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC)); 3280 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0); 3281 3282 pv = pmap_remove_pv(pg, pmap_kernel(), va); 3283 KASSERT(pv); 3284 KASSERT(pv->pv_flags & PVF_KENTRY); 3285 3286 /* 3287 * If we are removing a writeable mapping to a cached exec page, 3288 * if it's the last mapping then clear it execness other sync 3289 * the page to the icache. 3290 */ 3291 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC 3292 && (pv->pv_flags & PVF_WRITE) != 0) { 3293 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) { 3294 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 3295 PMAPCOUNT(exec_discarded_kremove); 3296 } else { 3297 pmap_syncicache_page(pg); 3298 PMAPCOUNT(exec_synced_kremove); 3299 } 3300 } 3301 pmap_vac_me_harder(pg, pmap_kernel(), 0); 3302 simple_unlock(&pg->mdpage.pvh_slock); 3303 3304 return pv; 3305 } 3306 #endif /* PMAP_CACHE_VIPT */ 3307 3308 /* 3309 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping 3310 * 3311 * We assume there is already sufficient KVM space available 3312 * to do this, as we can't allocate L2 descriptor tables/metadata 3313 * from here. 3314 */ 3315 void 3316 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 3317 { 3318 struct l2_bucket *l2b; 3319 pt_entry_t *ptep, opte; 3320 #ifdef PMAP_CACHE_VIVT 3321 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL; 3322 #endif 3323 #ifdef PMAP_CACHE_VIPT 3324 struct vm_page *pg = PHYS_TO_VM_PAGE(pa); 3325 struct vm_page *opg; 3326 struct pv_entry *pv = NULL; 3327 #endif 3328 3329 NPDEBUG(PDB_KENTER, 3330 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n", 3331 va, pa, prot)); 3332 3333 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 3334 KDASSERT(l2b != NULL); 3335 3336 ptep = &l2b->l2b_kva[l2pte_index(va)]; 3337 opte = *ptep; 3338 3339 if (opte == 0) { 3340 PMAPCOUNT(kenter_mappings); 3341 l2b->l2b_occupancy++; 3342 } else { 3343 PMAPCOUNT(kenter_remappings); 3344 #ifdef PMAP_CACHE_VIPT 3345 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 3346 if (opg) { 3347 KASSERT(opg != pg); 3348 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0); 3349 KASSERT((prot & PMAP_KMPAGE) == 0); 3350 simple_lock(&opg->mdpage.pvh_slock); 3351 pv = pmap_kremove_pg(opg, va); 3352 simple_unlock(&opg->mdpage.pvh_slock); 3353 } 3354 #endif 3355 if (l2pte_valid(opte)) { 3356 #ifdef PMAP_CACHE_VIVT 3357 cpu_dcache_wbinv_range(va, PAGE_SIZE); 3358 #endif 3359 cpu_tlb_flushD_SE(va); 3360 cpu_cpwait(); 3361 } 3362 } 3363 3364 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | 3365 pte_l2_s_cache_mode; 3366 PTE_SYNC(ptep); 3367 3368 if (pg) { 3369 if (prot & PMAP_KMPAGE) { 3370 simple_lock(&pg->mdpage.pvh_slock); 3371 KASSERT(pg->mdpage.urw_mappings == 0); 3372 KASSERT(pg->mdpage.uro_mappings == 0); 3373 KASSERT(pg->mdpage.krw_mappings == 0); 3374 KASSERT(pg->mdpage.kro_mappings == 0); 3375 #ifdef PMAP_CACHE_VIPT 3376 KASSERT(pv == NULL); 3377 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0); 3378 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0); 3379 /* if there is a color conflict, evict from cache. */ 3380 if (pmap_is_page_colored_p(pg) 3381 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) { 3382 PMAPCOUNT(vac_color_change); 3383 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY); 3384 } else if (pg->mdpage.pvh_attrs & PVF_MULTCLR) { 3385 /* 3386 * If this page has multiple colors, expunge 3387 * them. 3388 */ 3389 PMAPCOUNT(vac_flush_lots2); 3390 pmap_flush_page(pg, PMAP_FLUSH_SECONDARY); 3391 } 3392 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1; 3393 pg->mdpage.pvh_attrs |= PVF_KMPAGE 3394 | PVF_COLORED | PVF_DIRTY 3395 | (va & arm_cache_prefer_mask); 3396 #endif 3397 #ifdef PMAP_CACHE_VIVT 3398 pg->mdpage.pvh_attrs |= PVF_KMPAGE; 3399 #endif 3400 pmap_kmpages++; 3401 simple_unlock(&pg->mdpage.pvh_slock); 3402 #ifdef PMAP_CACHE_VIPT 3403 } else { 3404 if (pv == NULL) { 3405 pv = pool_get(&pmap_pv_pool, PR_NOWAIT); 3406 KASSERT(pv != NULL); 3407 } 3408 pmap_enter_pv(pg, pv, pmap_kernel(), va, 3409 PVF_WIRED | PVF_KENTRY 3410 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0)); 3411 if ((prot & VM_PROT_WRITE) 3412 && !(pg->mdpage.pvh_attrs & PVF_NC)) 3413 pg->mdpage.pvh_attrs |= PVF_DIRTY; 3414 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC))); 3415 simple_lock(&pg->mdpage.pvh_slock); 3416 pmap_vac_me_harder(pg, pmap_kernel(), va); 3417 simple_unlock(&pg->mdpage.pvh_slock); 3418 #endif 3419 } 3420 #ifdef PMAP_CACHE_VIPT 3421 } else { 3422 if (pv != NULL) 3423 pool_put(&pmap_pv_pool, pv); 3424 #endif 3425 } 3426 } 3427 3428 void 3429 pmap_kremove(vaddr_t va, vsize_t len) 3430 { 3431 struct l2_bucket *l2b; 3432 pt_entry_t *ptep, *sptep, opte; 3433 vaddr_t next_bucket, eva; 3434 u_int mappings; 3435 struct vm_page *opg; 3436 3437 PMAPCOUNT(kenter_unmappings); 3438 3439 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n", 3440 va, len)); 3441 3442 eva = va + len; 3443 3444 while (va < eva) { 3445 next_bucket = L2_NEXT_BUCKET(va); 3446 if (next_bucket > eva) 3447 next_bucket = eva; 3448 3449 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 3450 KDASSERT(l2b != NULL); 3451 3452 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)]; 3453 mappings = 0; 3454 3455 while (va < next_bucket) { 3456 opte = *ptep; 3457 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); 3458 if (opg) { 3459 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) { 3460 simple_lock(&opg->mdpage.pvh_slock); 3461 KASSERT(opg->mdpage.urw_mappings == 0); 3462 KASSERT(opg->mdpage.uro_mappings == 0); 3463 KASSERT(opg->mdpage.krw_mappings == 0); 3464 KASSERT(opg->mdpage.kro_mappings == 0); 3465 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE; 3466 #ifdef PMAP_CACHE_VIPT 3467 opg->mdpage.pvh_attrs &= ~PVF_WRITE; 3468 #endif 3469 pmap_kmpages--; 3470 simple_unlock(&opg->mdpage.pvh_slock); 3471 #ifdef PMAP_CACHE_VIPT 3472 } else { 3473 pool_put(&pmap_pv_pool, 3474 pmap_kremove_pg(opg, va)); 3475 #endif 3476 } 3477 } 3478 if (l2pte_valid(opte)) { 3479 #ifdef PMAP_CACHE_VIVT 3480 cpu_dcache_wbinv_range(va, PAGE_SIZE); 3481 #endif 3482 cpu_tlb_flushD_SE(va); 3483 } 3484 if (opte) { 3485 *ptep = 0; 3486 mappings++; 3487 } 3488 va += PAGE_SIZE; 3489 ptep++; 3490 } 3491 KDASSERT(mappings <= l2b->l2b_occupancy); 3492 l2b->l2b_occupancy -= mappings; 3493 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep)); 3494 } 3495 cpu_cpwait(); 3496 } 3497 3498 bool 3499 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap) 3500 { 3501 struct l2_dtable *l2; 3502 pd_entry_t *pl1pd, l1pd; 3503 pt_entry_t *ptep, pte; 3504 paddr_t pa; 3505 u_int l1idx; 3506 3507 pmap_acquire_pmap_lock(pm); 3508 3509 l1idx = L1_IDX(va); 3510 pl1pd = &pm->pm_l1->l1_kva[l1idx]; 3511 l1pd = *pl1pd; 3512 3513 if (l1pte_section_p(l1pd)) { 3514 /* 3515 * These should only happen for pmap_kernel() 3516 */ 3517 KDASSERT(pm == pmap_kernel()); 3518 pmap_release_pmap_lock(pm); 3519 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET); 3520 } else { 3521 /* 3522 * Note that we can't rely on the validity of the L1 3523 * descriptor as an indication that a mapping exists. 3524 * We have to look it up in the L2 dtable. 3525 */ 3526 l2 = pm->pm_l2[L2_IDX(l1idx)]; 3527 3528 if (l2 == NULL || 3529 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) { 3530 pmap_release_pmap_lock(pm); 3531 return false; 3532 } 3533 3534 ptep = &ptep[l2pte_index(va)]; 3535 pte = *ptep; 3536 pmap_release_pmap_lock(pm); 3537 3538 if (pte == 0) 3539 return false; 3540 3541 switch (pte & L2_TYPE_MASK) { 3542 case L2_TYPE_L: 3543 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET); 3544 break; 3545 3546 default: 3547 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET); 3548 break; 3549 } 3550 } 3551 3552 if (pap != NULL) 3553 *pap = pa; 3554 3555 return true; 3556 } 3557 3558 void 3559 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 3560 { 3561 struct l2_bucket *l2b; 3562 pt_entry_t *ptep, pte; 3563 vaddr_t next_bucket; 3564 u_int flags; 3565 u_int clr_mask; 3566 int flush; 3567 3568 NPDEBUG(PDB_PROTECT, 3569 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n", 3570 pm, sva, eva, prot)); 3571 3572 if ((prot & VM_PROT_READ) == 0) { 3573 pmap_remove(pm, sva, eva); 3574 return; 3575 } 3576 3577 if (prot & VM_PROT_WRITE) { 3578 /* 3579 * If this is a read->write transition, just ignore it and let 3580 * uvm_fault() take care of it later. 3581 */ 3582 return; 3583 } 3584 3585 PMAP_MAP_TO_HEAD_LOCK(); 3586 pmap_acquire_pmap_lock(pm); 3587 3588 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1; 3589 flags = 0; 3590 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC); 3591 3592 while (sva < eva) { 3593 next_bucket = L2_NEXT_BUCKET(sva); 3594 if (next_bucket > eva) 3595 next_bucket = eva; 3596 3597 l2b = pmap_get_l2_bucket(pm, sva); 3598 if (l2b == NULL) { 3599 sva = next_bucket; 3600 continue; 3601 } 3602 3603 ptep = &l2b->l2b_kva[l2pte_index(sva)]; 3604 3605 while (sva < next_bucket) { 3606 pte = *ptep; 3607 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) { 3608 struct vm_page *pg; 3609 u_int f; 3610 3611 #ifdef PMAP_CACHE_VIVT 3612 /* 3613 * OK, at this point, we know we're doing 3614 * write-protect operation. If the pmap is 3615 * active, write-back the page. 3616 */ 3617 pmap_dcache_wb_range(pm, sva, PAGE_SIZE, 3618 false, false); 3619 #endif 3620 3621 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte)); 3622 pte &= ~L2_S_PROT_W; 3623 *ptep = pte; 3624 PTE_SYNC(ptep); 3625 3626 if (pg != NULL) { 3627 simple_lock(&pg->mdpage.pvh_slock); 3628 f = pmap_modify_pv(pg, pm, sva, 3629 clr_mask, 0); 3630 pmap_vac_me_harder(pg, pm, sva); 3631 simple_unlock(&pg->mdpage.pvh_slock); 3632 } else 3633 f = PVF_REF | PVF_EXEC; 3634 3635 if (flush >= 0) { 3636 flush++; 3637 flags |= f; 3638 } else 3639 if (PV_BEEN_EXECD(f)) 3640 pmap_tlb_flushID_SE(pm, sva); 3641 else 3642 if (PV_BEEN_REFD(f)) 3643 pmap_tlb_flushD_SE(pm, sva); 3644 } 3645 3646 sva += PAGE_SIZE; 3647 ptep++; 3648 } 3649 } 3650 3651 pmap_release_pmap_lock(pm); 3652 PMAP_MAP_TO_HEAD_UNLOCK(); 3653 3654 if (flush) { 3655 if (PV_BEEN_EXECD(flags)) 3656 pmap_tlb_flushID(pm); 3657 else 3658 if (PV_BEEN_REFD(flags)) 3659 pmap_tlb_flushD(pm); 3660 } 3661 } 3662 3663 void 3664 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva) 3665 { 3666 struct l2_bucket *l2b; 3667 pt_entry_t *ptep; 3668 vaddr_t next_bucket; 3669 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva; 3670 3671 NPDEBUG(PDB_EXEC, 3672 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n", 3673 pm, sva, eva)); 3674 3675 PMAP_MAP_TO_HEAD_LOCK(); 3676 pmap_acquire_pmap_lock(pm); 3677 3678 while (sva < eva) { 3679 next_bucket = L2_NEXT_BUCKET(sva); 3680 if (next_bucket > eva) 3681 next_bucket = eva; 3682 3683 l2b = pmap_get_l2_bucket(pm, sva); 3684 if (l2b == NULL) { 3685 sva = next_bucket; 3686 continue; 3687 } 3688 3689 for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; 3690 sva < next_bucket; 3691 sva += page_size, ptep++, page_size = PAGE_SIZE) { 3692 if (l2pte_valid(*ptep)) { 3693 cpu_icache_sync_range(sva, 3694 min(page_size, eva - sva)); 3695 } 3696 } 3697 } 3698 3699 pmap_release_pmap_lock(pm); 3700 PMAP_MAP_TO_HEAD_UNLOCK(); 3701 } 3702 3703 void 3704 pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 3705 { 3706 3707 NPDEBUG(PDB_PROTECT, 3708 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n", 3709 pg, VM_PAGE_TO_PHYS(pg), prot)); 3710 3711 switch(prot) { 3712 case VM_PROT_READ|VM_PROT_WRITE: 3713 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX) 3714 pmap_clearbit(pg, PVF_EXEC); 3715 break; 3716 #endif 3717 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE: 3718 break; 3719 3720 case VM_PROT_READ: 3721 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX) 3722 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC); 3723 break; 3724 #endif 3725 case VM_PROT_READ|VM_PROT_EXECUTE: 3726 pmap_clearbit(pg, PVF_WRITE); 3727 break; 3728 3729 default: 3730 pmap_page_remove(pg); 3731 break; 3732 } 3733 } 3734 3735 /* 3736 * pmap_clear_modify: 3737 * 3738 * Clear the "modified" attribute for a page. 3739 */ 3740 bool 3741 pmap_clear_modify(struct vm_page *pg) 3742 { 3743 bool rv; 3744 3745 if (pg->mdpage.pvh_attrs & PVF_MOD) { 3746 rv = true; 3747 #ifdef PMAP_CACHE_VIPT 3748 /* 3749 * If we are going to clear the modified bit and there are 3750 * no other modified bits set, flush the page to memory and 3751 * mark it clean. 3752 */ 3753 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD) 3754 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY); 3755 #endif 3756 pmap_clearbit(pg, PVF_MOD); 3757 } else 3758 rv = false; 3759 3760 return (rv); 3761 } 3762 3763 /* 3764 * pmap_clear_reference: 3765 * 3766 * Clear the "referenced" attribute for a page. 3767 */ 3768 bool 3769 pmap_clear_reference(struct vm_page *pg) 3770 { 3771 bool rv; 3772 3773 if (pg->mdpage.pvh_attrs & PVF_REF) { 3774 rv = true; 3775 pmap_clearbit(pg, PVF_REF); 3776 } else 3777 rv = false; 3778 3779 return (rv); 3780 } 3781 3782 /* 3783 * pmap_is_modified: 3784 * 3785 * Test if a page has the "modified" attribute. 3786 */ 3787 /* See <arm/arm32/pmap.h> */ 3788 3789 /* 3790 * pmap_is_referenced: 3791 * 3792 * Test if a page has the "referenced" attribute. 3793 */ 3794 /* See <arm/arm32/pmap.h> */ 3795 3796 int 3797 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user) 3798 { 3799 struct l2_dtable *l2; 3800 struct l2_bucket *l2b; 3801 pd_entry_t *pl1pd, l1pd; 3802 pt_entry_t *ptep, pte; 3803 paddr_t pa; 3804 u_int l1idx; 3805 int rv = 0; 3806 3807 PMAP_MAP_TO_HEAD_LOCK(); 3808 pmap_acquire_pmap_lock(pm); 3809 3810 l1idx = L1_IDX(va); 3811 3812 /* 3813 * If there is no l2_dtable for this address, then the process 3814 * has no business accessing it. 3815 * 3816 * Note: This will catch userland processes trying to access 3817 * kernel addresses. 3818 */ 3819 l2 = pm->pm_l2[L2_IDX(l1idx)]; 3820 if (l2 == NULL) 3821 goto out; 3822 3823 /* 3824 * Likewise if there is no L2 descriptor table 3825 */ 3826 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; 3827 if (l2b->l2b_kva == NULL) 3828 goto out; 3829 3830 /* 3831 * Check the PTE itself. 3832 */ 3833 ptep = &l2b->l2b_kva[l2pte_index(va)]; 3834 pte = *ptep; 3835 if (pte == 0) 3836 goto out; 3837 3838 /* 3839 * Catch a userland access to the vector page mapped at 0x0 3840 */ 3841 if (user && (pte & L2_S_PROT_U) == 0) 3842 goto out; 3843 3844 pa = l2pte_pa(pte); 3845 3846 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) { 3847 /* 3848 * This looks like a good candidate for "page modified" 3849 * emulation... 3850 */ 3851 struct pv_entry *pv; 3852 struct vm_page *pg; 3853 3854 /* Extract the physical address of the page */ 3855 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) 3856 goto out; 3857 3858 /* Get the current flags for this page. */ 3859 simple_lock(&pg->mdpage.pvh_slock); 3860 3861 pv = pmap_find_pv(pg, pm, va); 3862 if (pv == NULL) { 3863 simple_unlock(&pg->mdpage.pvh_slock); 3864 goto out; 3865 } 3866 3867 /* 3868 * Do the flags say this page is writable? If not then it 3869 * is a genuine write fault. If yes then the write fault is 3870 * our fault as we did not reflect the write access in the 3871 * PTE. Now we know a write has occurred we can correct this 3872 * and also set the modified bit 3873 */ 3874 if ((pv->pv_flags & PVF_WRITE) == 0) { 3875 simple_unlock(&pg->mdpage.pvh_slock); 3876 goto out; 3877 } 3878 3879 NPDEBUG(PDB_FOLLOW, 3880 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n", 3881 pm, va, VM_PAGE_TO_PHYS(pg))); 3882 3883 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD; 3884 pv->pv_flags |= PVF_REF | PVF_MOD; 3885 #ifdef PMAP_CACHE_VIPT 3886 /* 3887 * If there are cacheable mappings for this page, mark it dirty. 3888 */ 3889 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0) 3890 pg->mdpage.pvh_attrs |= PVF_DIRTY; 3891 #endif 3892 simple_unlock(&pg->mdpage.pvh_slock); 3893 3894 /* 3895 * Re-enable write permissions for the page. No need to call 3896 * pmap_vac_me_harder(), since this is just a 3897 * modified-emulation fault, and the PVF_WRITE bit isn't 3898 * changing. We've already set the cacheable bits based on 3899 * the assumption that we can write to this page. 3900 */ 3901 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W; 3902 PTE_SYNC(ptep); 3903 rv = 1; 3904 } else 3905 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) { 3906 /* 3907 * This looks like a good candidate for "page referenced" 3908 * emulation. 3909 */ 3910 struct pv_entry *pv; 3911 struct vm_page *pg; 3912 3913 /* Extract the physical address of the page */ 3914 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) 3915 goto out; 3916 3917 /* Get the current flags for this page. */ 3918 simple_lock(&pg->mdpage.pvh_slock); 3919 3920 pv = pmap_find_pv(pg, pm, va); 3921 if (pv == NULL) { 3922 simple_unlock(&pg->mdpage.pvh_slock); 3923 goto out; 3924 } 3925 3926 pg->mdpage.pvh_attrs |= PVF_REF; 3927 pv->pv_flags |= PVF_REF; 3928 simple_unlock(&pg->mdpage.pvh_slock); 3929 3930 NPDEBUG(PDB_FOLLOW, 3931 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n", 3932 pm, va, VM_PAGE_TO_PHYS(pg))); 3933 3934 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO; 3935 PTE_SYNC(ptep); 3936 rv = 1; 3937 } 3938 3939 /* 3940 * We know there is a valid mapping here, so simply 3941 * fix up the L1 if necessary. 3942 */ 3943 pl1pd = &pm->pm_l1->l1_kva[l1idx]; 3944 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO; 3945 if (*pl1pd != l1pd) { 3946 *pl1pd = l1pd; 3947 PTE_SYNC(pl1pd); 3948 rv = 1; 3949 } 3950 3951 #ifdef CPU_SA110 3952 /* 3953 * There are bugs in the rev K SA110. This is a check for one 3954 * of them. 3955 */ 3956 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 && 3957 curcpu()->ci_arm_cpurev < 3) { 3958 /* Always current pmap */ 3959 if (l2pte_valid(pte)) { 3960 extern int kernel_debug; 3961 if (kernel_debug & 1) { 3962 struct proc *p = curlwp->l_proc; 3963 printf("prefetch_abort: page is already " 3964 "mapped - pte=%p *pte=%08x\n", ptep, pte); 3965 printf("prefetch_abort: pc=%08lx proc=%p " 3966 "process=%s\n", va, p, p->p_comm); 3967 printf("prefetch_abort: far=%08x fs=%x\n", 3968 cpu_faultaddress(), cpu_faultstatus()); 3969 } 3970 #ifdef DDB 3971 if (kernel_debug & 2) 3972 Debugger(); 3973 #endif 3974 rv = 1; 3975 } 3976 } 3977 #endif /* CPU_SA110 */ 3978 3979 #ifdef DEBUG 3980 /* 3981 * If 'rv == 0' at this point, it generally indicates that there is a 3982 * stale TLB entry for the faulting address. This happens when two or 3983 * more processes are sharing an L1. Since we don't flush the TLB on 3984 * a context switch between such processes, we can take domain faults 3985 * for mappings which exist at the same VA in both processes. EVEN IF 3986 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for 3987 * example. 3988 * 3989 * This is extremely likely to happen if pmap_enter() updated the L1 3990 * entry for a recently entered mapping. In this case, the TLB is 3991 * flushed for the new mapping, but there may still be TLB entries for 3992 * other mappings belonging to other processes in the 1MB range 3993 * covered by the L1 entry. 3994 * 3995 * Since 'rv == 0', we know that the L1 already contains the correct 3996 * value, so the fault must be due to a stale TLB entry. 3997 * 3998 * Since we always need to flush the TLB anyway in the case where we 3999 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with 4000 * stale TLB entries dynamically. 4001 * 4002 * However, the above condition can ONLY happen if the current L1 is 4003 * being shared. If it happens when the L1 is unshared, it indicates 4004 * that other parts of the pmap are not doing their job WRT managing 4005 * the TLB. 4006 */ 4007 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) { 4008 extern int last_fault_code; 4009 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n", 4010 pm, va, ftype); 4011 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n", 4012 l2, l2b, ptep, pl1pd); 4013 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n", 4014 pte, l1pd, last_fault_code); 4015 #ifdef DDB 4016 Debugger(); 4017 #endif 4018 } 4019 #endif 4020 4021 cpu_tlb_flushID_SE(va); 4022 cpu_cpwait(); 4023 4024 rv = 1; 4025 4026 out: 4027 pmap_release_pmap_lock(pm); 4028 PMAP_MAP_TO_HEAD_UNLOCK(); 4029 4030 return (rv); 4031 } 4032 4033 /* 4034 * Routine: pmap_procwr 4035 * 4036 * Function: 4037 * Synchronize caches corresponding to [addr, addr+len) in p. 4038 * 4039 */ 4040 void 4041 pmap_procwr(struct proc *p, vaddr_t va, int len) 4042 { 4043 /* We only need to do anything if it is the current process. */ 4044 if (p == curproc) 4045 cpu_icache_sync_range(va, len); 4046 } 4047 4048 /* 4049 * Routine: pmap_unwire 4050 * Function: Clear the wired attribute for a map/virtual-address pair. 4051 * 4052 * In/out conditions: 4053 * The mapping must already exist in the pmap. 4054 */ 4055 void 4056 pmap_unwire(pmap_t pm, vaddr_t va) 4057 { 4058 struct l2_bucket *l2b; 4059 pt_entry_t *ptep, pte; 4060 struct vm_page *pg; 4061 paddr_t pa; 4062 4063 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va)); 4064 4065 PMAP_MAP_TO_HEAD_LOCK(); 4066 pmap_acquire_pmap_lock(pm); 4067 4068 l2b = pmap_get_l2_bucket(pm, va); 4069 KDASSERT(l2b != NULL); 4070 4071 ptep = &l2b->l2b_kva[l2pte_index(va)]; 4072 pte = *ptep; 4073 4074 /* Extract the physical address of the page */ 4075 pa = l2pte_pa(pte); 4076 4077 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) { 4078 /* Update the wired bit in the pv entry for this page. */ 4079 simple_lock(&pg->mdpage.pvh_slock); 4080 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0); 4081 simple_unlock(&pg->mdpage.pvh_slock); 4082 } 4083 4084 pmap_release_pmap_lock(pm); 4085 PMAP_MAP_TO_HEAD_UNLOCK(); 4086 } 4087 4088 void 4089 pmap_activate(struct lwp *l) 4090 { 4091 extern int block_userspace_access; 4092 pmap_t opm, npm, rpm; 4093 uint32_t odacr, ndacr; 4094 int oldirqstate; 4095 4096 /* 4097 * If activating a non-current lwp or the current lwp is 4098 * already active, just return. 4099 */ 4100 if (l != curlwp || 4101 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true) 4102 return; 4103 4104 npm = l->l_proc->p_vmspace->vm_map.pmap; 4105 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | 4106 (DOMAIN_CLIENT << (npm->pm_domain * 2)); 4107 4108 /* 4109 * If TTB and DACR are unchanged, short-circuit all the 4110 * TLB/cache management stuff. 4111 */ 4112 if (pmap_previous_active_lwp != NULL) { 4113 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap; 4114 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | 4115 (DOMAIN_CLIENT << (opm->pm_domain * 2)); 4116 4117 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr) 4118 goto all_done; 4119 } else 4120 opm = NULL; 4121 4122 PMAPCOUNT(activations); 4123 block_userspace_access = 1; 4124 4125 /* 4126 * If switching to a user vmspace which is different to the 4127 * most recent one, and the most recent one is potentially 4128 * live in the cache, we must write-back and invalidate the 4129 * entire cache. 4130 */ 4131 rpm = pmap_recent_user; 4132 4133 /* 4134 * XXXSCW: There's a corner case here which can leave turds in the cache as 4135 * reported in kern/41058. They're probably left over during tear-down and 4136 * switching away from an exiting process. Until the root cause is identified 4137 * and fixed, zap the cache when switching pmaps. This will result in a few 4138 * unnecessary cache flushes, but that's better than silently corrupting data. 4139 */ 4140 #if 0 4141 if (npm != pmap_kernel() && rpm && npm != rpm && 4142 rpm->pm_cstate.cs_cache) { 4143 rpm->pm_cstate.cs_cache = 0; 4144 #ifdef PMAP_CACHE_VIVT 4145 cpu_idcache_wbinv_all(); 4146 #endif 4147 } 4148 #else 4149 if (rpm) { 4150 rpm->pm_cstate.cs_cache = 0; 4151 if (npm == pmap_kernel()) 4152 pmap_recent_user = NULL; 4153 #ifdef PMAP_CACHE_VIVT 4154 cpu_idcache_wbinv_all(); 4155 #endif 4156 } 4157 #endif 4158 4159 /* No interrupts while we frob the TTB/DACR */ 4160 oldirqstate = disable_interrupts(IF32_bits); 4161 4162 /* 4163 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1 4164 * entry corresponding to 'vector_page' in the incoming L1 table 4165 * before switching to it otherwise subsequent interrupts/exceptions 4166 * (including domain faults!) will jump into hyperspace. 4167 */ 4168 if (npm->pm_pl1vec != NULL) { 4169 cpu_tlb_flushID_SE((u_int)vector_page); 4170 cpu_cpwait(); 4171 *npm->pm_pl1vec = npm->pm_l1vec; 4172 PTE_SYNC(npm->pm_pl1vec); 4173 } 4174 4175 cpu_domains(ndacr); 4176 4177 if (npm == pmap_kernel() || npm == rpm) { 4178 /* 4179 * Switching to a kernel thread, or back to the 4180 * same user vmspace as before... Simply update 4181 * the TTB (no TLB flush required) 4182 */ 4183 __asm volatile("mcr p15, 0, %0, c2, c0, 0" :: 4184 "r"(npm->pm_l1->l1_physaddr)); 4185 cpu_cpwait(); 4186 } else { 4187 /* 4188 * Otherwise, update TTB and flush TLB 4189 */ 4190 cpu_context_switch(npm->pm_l1->l1_physaddr); 4191 if (rpm != NULL) 4192 rpm->pm_cstate.cs_tlb = 0; 4193 } 4194 4195 restore_interrupts(oldirqstate); 4196 4197 block_userspace_access = 0; 4198 4199 all_done: 4200 /* 4201 * The new pmap is resident. Make sure it's marked 4202 * as resident in the cache/TLB. 4203 */ 4204 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 4205 if (npm != pmap_kernel()) 4206 pmap_recent_user = npm; 4207 4208 /* The old pmap is not longer active */ 4209 if (opm != NULL) 4210 opm->pm_activated = false; 4211 4212 /* But the new one is */ 4213 npm->pm_activated = true; 4214 } 4215 4216 void 4217 pmap_deactivate(struct lwp *l) 4218 { 4219 4220 /* 4221 * If the process is exiting, make sure pmap_activate() does 4222 * a full MMU context-switch and cache flush, which we might 4223 * otherwise skip. See PR port-arm/38950. 4224 */ 4225 if (l->l_proc->p_sflag & PS_WEXIT) 4226 pmap_previous_active_lwp = NULL; 4227 4228 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false; 4229 } 4230 4231 void 4232 pmap_update(pmap_t pm) 4233 { 4234 4235 if (pm->pm_remove_all) { 4236 /* 4237 * Finish up the pmap_remove_all() optimisation by flushing 4238 * the TLB. 4239 */ 4240 pmap_tlb_flushID(pm); 4241 pm->pm_remove_all = false; 4242 } 4243 4244 if (pmap_is_current(pm)) { 4245 /* 4246 * If we're dealing with a current userland pmap, move its L1 4247 * to the end of the LRU. 4248 */ 4249 if (pm != pmap_kernel()) 4250 pmap_use_l1(pm); 4251 4252 /* 4253 * We can assume we're done with frobbing the cache/tlb for 4254 * now. Make sure any future pmap ops don't skip cache/tlb 4255 * flushes. 4256 */ 4257 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 4258 } 4259 4260 PMAPCOUNT(updates); 4261 4262 /* 4263 * make sure TLB/cache operations have completed. 4264 */ 4265 cpu_cpwait(); 4266 } 4267 4268 void 4269 pmap_remove_all(pmap_t pm) 4270 { 4271 4272 /* 4273 * The vmspace described by this pmap is about to be torn down. 4274 * Until pmap_update() is called, UVM will only make calls 4275 * to pmap_remove(). We can make life much simpler by flushing 4276 * the cache now, and deferring TLB invalidation to pmap_update(). 4277 */ 4278 #ifdef PMAP_CACHE_VIVT 4279 pmap_idcache_wbinv_all(pm); 4280 #endif 4281 pm->pm_remove_all = true; 4282 } 4283 4284 /* 4285 * Retire the given physical map from service. 4286 * Should only be called if the map contains no valid mappings. 4287 */ 4288 void 4289 pmap_destroy(pmap_t pm) 4290 { 4291 u_int count; 4292 4293 if (pm == NULL) 4294 return; 4295 4296 if (pm->pm_remove_all) { 4297 pmap_tlb_flushID(pm); 4298 pm->pm_remove_all = false; 4299 } 4300 4301 /* 4302 * Drop reference count 4303 */ 4304 mutex_enter(&pm->pm_lock); 4305 count = --pm->pm_obj.uo_refs; 4306 mutex_exit(&pm->pm_lock); 4307 if (count > 0) { 4308 if (pmap_is_current(pm)) { 4309 if (pm != pmap_kernel()) 4310 pmap_use_l1(pm); 4311 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 4312 } 4313 return; 4314 } 4315 4316 /* 4317 * reference count is zero, free pmap resources and then free pmap. 4318 */ 4319 4320 if (vector_page < KERNEL_BASE) { 4321 KDASSERT(!pmap_is_current(pm)); 4322 4323 /* Remove the vector page mapping */ 4324 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE); 4325 pmap_update(pm); 4326 } 4327 4328 LIST_REMOVE(pm, pm_list); 4329 4330 pmap_free_l1(pm); 4331 4332 if (pmap_recent_user == pm) 4333 pmap_recent_user = NULL; 4334 4335 UVM_OBJ_DESTROY(&pm->pm_obj); 4336 4337 /* return the pmap to the pool */ 4338 pool_cache_put(&pmap_cache, pm); 4339 } 4340 4341 4342 /* 4343 * void pmap_reference(pmap_t pm) 4344 * 4345 * Add a reference to the specified pmap. 4346 */ 4347 void 4348 pmap_reference(pmap_t pm) 4349 { 4350 4351 if (pm == NULL) 4352 return; 4353 4354 pmap_use_l1(pm); 4355 4356 mutex_enter(&pm->pm_lock); 4357 pm->pm_obj.uo_refs++; 4358 mutex_exit(&pm->pm_lock); 4359 } 4360 4361 #if ARM_MMU_V6 > 0 4362 4363 static struct evcnt pmap_prefer_nochange_ev = 4364 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange"); 4365 static struct evcnt pmap_prefer_change_ev = 4366 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change"); 4367 4368 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev); 4369 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev); 4370 4371 void 4372 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td) 4373 { 4374 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1); 4375 vaddr_t va = *vap; 4376 vaddr_t diff = (hint - va) & mask; 4377 if (diff == 0) { 4378 pmap_prefer_nochange_ev.ev_count++; 4379 } else { 4380 pmap_prefer_change_ev.ev_count++; 4381 if (__predict_false(td)) 4382 va -= mask + 1; 4383 *vap = va + diff; 4384 } 4385 } 4386 #endif /* ARM_MMU_V6 */ 4387 4388 /* 4389 * pmap_zero_page() 4390 * 4391 * Zero a given physical page by mapping it at a page hook point. 4392 * In doing the zero page op, the page we zero is mapped cachable, as with 4393 * StrongARM accesses to non-cached pages are non-burst making writing 4394 * _any_ bulk data very slow. 4395 */ 4396 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 4397 void 4398 pmap_zero_page_generic(paddr_t phys) 4399 { 4400 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 4401 struct vm_page *pg = PHYS_TO_VM_PAGE(phys); 4402 #endif 4403 #ifdef PMAP_CACHE_VIPT 4404 /* Choose the last page color it had, if any */ 4405 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 4406 #else 4407 const vsize_t va_offset = 0; 4408 #endif 4409 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT]; 4410 4411 #ifdef DEBUG 4412 if (!SLIST_EMPTY(&pg->mdpage.pvh_list)) 4413 panic("pmap_zero_page: page has mappings"); 4414 #endif 4415 4416 KDASSERT((phys & PGOFSET) == 0); 4417 4418 /* 4419 * Hook in the page, zero it, and purge the cache for that 4420 * zeroed page. Invalidate the TLB as needed. 4421 */ 4422 *ptep = L2_S_PROTO | phys | 4423 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; 4424 PTE_SYNC(ptep); 4425 cpu_tlb_flushD_SE(cdstp + va_offset); 4426 cpu_cpwait(); 4427 bzero_page(cdstp + va_offset); 4428 /* 4429 * Unmap the page. 4430 */ 4431 *ptep = 0; 4432 PTE_SYNC(ptep); 4433 cpu_tlb_flushD_SE(cdstp + va_offset); 4434 #ifdef PMAP_CACHE_VIVT 4435 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE); 4436 #endif 4437 #ifdef PMAP_CACHE_VIPT 4438 /* 4439 * This page is now cache resident so it now has a page color. 4440 * Any contents have been obliterated so clear the EXEC flag. 4441 */ 4442 if (!pmap_is_page_colored_p(pg)) { 4443 PMAPCOUNT(vac_color_new); 4444 pg->mdpage.pvh_attrs |= PVF_COLORED; 4445 } 4446 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) { 4447 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 4448 PMAPCOUNT(exec_discarded_zero); 4449 } 4450 pg->mdpage.pvh_attrs |= PVF_DIRTY; 4451 #endif 4452 } 4453 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 4454 4455 #if ARM_MMU_XSCALE == 1 4456 void 4457 pmap_zero_page_xscale(paddr_t phys) 4458 { 4459 #ifdef DEBUG 4460 struct vm_page *pg = PHYS_TO_VM_PAGE(phys); 4461 4462 if (!SLIST_EMPTY(&pg->mdpage.pvh_list)) 4463 panic("pmap_zero_page: page has mappings"); 4464 #endif 4465 4466 KDASSERT((phys & PGOFSET) == 0); 4467 4468 /* 4469 * Hook in the page, zero it, and purge the cache for that 4470 * zeroed page. Invalidate the TLB as needed. 4471 */ 4472 *cdst_pte = L2_S_PROTO | phys | 4473 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | 4474 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 4475 PTE_SYNC(cdst_pte); 4476 cpu_tlb_flushD_SE(cdstp); 4477 cpu_cpwait(); 4478 bzero_page(cdstp); 4479 xscale_cache_clean_minidata(); 4480 } 4481 #endif /* ARM_MMU_XSCALE == 1 */ 4482 4483 /* pmap_pageidlezero() 4484 * 4485 * The same as above, except that we assume that the page is not 4486 * mapped. This means we never have to flush the cache first. Called 4487 * from the idle loop. 4488 */ 4489 bool 4490 pmap_pageidlezero(paddr_t phys) 4491 { 4492 unsigned int i; 4493 int *ptr; 4494 bool rv = true; 4495 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 4496 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys); 4497 #endif 4498 #ifdef PMAP_CACHE_VIPT 4499 /* Choose the last page color it had, if any */ 4500 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 4501 #else 4502 const vsize_t va_offset = 0; 4503 #endif 4504 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT]; 4505 4506 4507 #ifdef DEBUG 4508 if (!SLIST_EMPTY(&pg->mdpage.pvh_list)) 4509 panic("pmap_pageidlezero: page has mappings"); 4510 #endif 4511 4512 KDASSERT((phys & PGOFSET) == 0); 4513 4514 /* 4515 * Hook in the page, zero it, and purge the cache for that 4516 * zeroed page. Invalidate the TLB as needed. 4517 */ 4518 *ptep = L2_S_PROTO | phys | 4519 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; 4520 PTE_SYNC(ptep); 4521 cpu_tlb_flushD_SE(cdstp + va_offset); 4522 cpu_cpwait(); 4523 4524 for (i = 0, ptr = (int *)(cdstp + va_offset); 4525 i < (PAGE_SIZE / sizeof(int)); i++) { 4526 if (sched_curcpu_runnable_p() != 0) { 4527 /* 4528 * A process has become ready. Abort now, 4529 * so we don't keep it waiting while we 4530 * do slow memory access to finish this 4531 * page. 4532 */ 4533 rv = false; 4534 break; 4535 } 4536 *ptr++ = 0; 4537 } 4538 4539 #ifdef PMAP_CACHE_VIVT 4540 if (rv) 4541 /* 4542 * if we aborted we'll rezero this page again later so don't 4543 * purge it unless we finished it 4544 */ 4545 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE); 4546 #elif defined(PMAP_CACHE_VIPT) 4547 /* 4548 * This page is now cache resident so it now has a page color. 4549 * Any contents have been obliterated so clear the EXEC flag. 4550 */ 4551 if (!pmap_is_page_colored_p(pg)) { 4552 PMAPCOUNT(vac_color_new); 4553 pg->mdpage.pvh_attrs |= PVF_COLORED; 4554 } 4555 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) { 4556 pg->mdpage.pvh_attrs &= ~PVF_EXEC; 4557 PMAPCOUNT(exec_discarded_zero); 4558 } 4559 #endif 4560 /* 4561 * Unmap the page. 4562 */ 4563 *ptep = 0; 4564 PTE_SYNC(ptep); 4565 cpu_tlb_flushD_SE(cdstp + va_offset); 4566 4567 return (rv); 4568 } 4569 4570 /* 4571 * pmap_copy_page() 4572 * 4573 * Copy one physical page into another, by mapping the pages into 4574 * hook points. The same comment regarding cachability as in 4575 * pmap_zero_page also applies here. 4576 */ 4577 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 4578 void 4579 pmap_copy_page_generic(paddr_t src, paddr_t dst) 4580 { 4581 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src); 4582 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG) 4583 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst); 4584 #endif 4585 #ifdef PMAP_CACHE_VIPT 4586 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 4587 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask; 4588 #else 4589 const vsize_t src_va_offset = 0; 4590 const vsize_t dst_va_offset = 0; 4591 #endif 4592 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT]; 4593 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT]; 4594 4595 #ifdef DEBUG 4596 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list)) 4597 panic("pmap_copy_page: dst page has mappings"); 4598 #endif 4599 4600 #ifdef PMAP_CACHE_VIPT 4601 KASSERT(arm_cache_prefer_mask == 0 || src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC)); 4602 #endif 4603 KDASSERT((src & PGOFSET) == 0); 4604 KDASSERT((dst & PGOFSET) == 0); 4605 4606 /* 4607 * Clean the source page. Hold the source page's lock for 4608 * the duration of the copy so that no other mappings can 4609 * be created while we have a potentially aliased mapping. 4610 */ 4611 simple_lock(&src_pg->mdpage.pvh_slock); 4612 #ifdef PMAP_CACHE_VIVT 4613 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true); 4614 #endif 4615 4616 /* 4617 * Map the pages into the page hook points, copy them, and purge 4618 * the cache for the appropriate page. Invalidate the TLB 4619 * as required. 4620 */ 4621 *src_ptep = L2_S_PROTO 4622 | src 4623 #ifdef PMAP_CACHE_VIPT 4624 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode) 4625 #endif 4626 #ifdef PMAP_CACHE_VIVT 4627 | pte_l2_s_cache_mode 4628 #endif 4629 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ); 4630 *dst_ptep = L2_S_PROTO | dst | 4631 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; 4632 PTE_SYNC(src_ptep); 4633 PTE_SYNC(dst_ptep); 4634 cpu_tlb_flushD_SE(csrcp + src_va_offset); 4635 cpu_tlb_flushD_SE(cdstp + dst_va_offset); 4636 cpu_cpwait(); 4637 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset); 4638 #ifdef PMAP_CACHE_VIVT 4639 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE); 4640 #endif 4641 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */ 4642 #ifdef PMAP_CACHE_VIVT 4643 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE); 4644 #endif 4645 /* 4646 * Unmap the pages. 4647 */ 4648 *src_ptep = 0; 4649 *dst_ptep = 0; 4650 PTE_SYNC(src_ptep); 4651 PTE_SYNC(dst_ptep); 4652 cpu_tlb_flushD_SE(csrcp + src_va_offset); 4653 cpu_tlb_flushD_SE(cdstp + dst_va_offset); 4654 #ifdef PMAP_CACHE_VIPT 4655 /* 4656 * Now that the destination page is in the cache, mark it as colored. 4657 * If this was an exec page, discard it. 4658 */ 4659 if (!pmap_is_page_colored_p(dst_pg)) { 4660 PMAPCOUNT(vac_color_new); 4661 dst_pg->mdpage.pvh_attrs |= PVF_COLORED; 4662 } 4663 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) { 4664 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC; 4665 PMAPCOUNT(exec_discarded_copy); 4666 } 4667 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY; 4668 #endif 4669 } 4670 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 4671 4672 #if ARM_MMU_XSCALE == 1 4673 void 4674 pmap_copy_page_xscale(paddr_t src, paddr_t dst) 4675 { 4676 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src); 4677 #ifdef DEBUG 4678 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst); 4679 4680 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list)) 4681 panic("pmap_copy_page: dst page has mappings"); 4682 #endif 4683 4684 KDASSERT((src & PGOFSET) == 0); 4685 KDASSERT((dst & PGOFSET) == 0); 4686 4687 /* 4688 * Clean the source page. Hold the source page's lock for 4689 * the duration of the copy so that no other mappings can 4690 * be created while we have a potentially aliased mapping. 4691 */ 4692 simple_lock(&src_pg->mdpage.pvh_slock); 4693 #ifdef PMAP_CACHE_VIVT 4694 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true); 4695 #endif 4696 4697 /* 4698 * Map the pages into the page hook points, copy them, and purge 4699 * the cache for the appropriate page. Invalidate the TLB 4700 * as required. 4701 */ 4702 *csrc_pte = L2_S_PROTO | src | 4703 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | 4704 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 4705 PTE_SYNC(csrc_pte); 4706 *cdst_pte = L2_S_PROTO | dst | 4707 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | 4708 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */ 4709 PTE_SYNC(cdst_pte); 4710 cpu_tlb_flushD_SE(csrcp); 4711 cpu_tlb_flushD_SE(cdstp); 4712 cpu_cpwait(); 4713 bcopy_page(csrcp, cdstp); 4714 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */ 4715 xscale_cache_clean_minidata(); 4716 } 4717 #endif /* ARM_MMU_XSCALE == 1 */ 4718 4719 /* 4720 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end) 4721 * 4722 * Return the start and end addresses of the kernel's virtual space. 4723 * These values are setup in pmap_bootstrap and are updated as pages 4724 * are allocated. 4725 */ 4726 void 4727 pmap_virtual_space(vaddr_t *start, vaddr_t *end) 4728 { 4729 *start = virtual_avail; 4730 *end = virtual_end; 4731 } 4732 4733 /* 4734 * Helper function for pmap_grow_l2_bucket() 4735 */ 4736 static inline int 4737 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap) 4738 { 4739 struct l2_bucket *l2b; 4740 pt_entry_t *ptep; 4741 paddr_t pa; 4742 4743 if (uvm.page_init_done == false) { 4744 #ifdef PMAP_STEAL_MEMORY 4745 pv_addr_t pv; 4746 pmap_boot_pagealloc(PAGE_SIZE, 4747 #ifdef PMAP_CACHE_VIPT 4748 arm_cache_prefer_mask, 4749 va & arm_cache_prefer_mask, 4750 #else 4751 0, 0, 4752 #endif 4753 &pv); 4754 pa = pv.pv_pa; 4755 #else 4756 if (uvm_page_physget(&pa) == false) 4757 return (1); 4758 #endif /* PMAP_STEAL_MEMORY */ 4759 } else { 4760 struct vm_page *pg; 4761 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 4762 if (pg == NULL) 4763 return (1); 4764 pa = VM_PAGE_TO_PHYS(pg); 4765 #ifdef PMAP_CACHE_VIPT 4766 /* 4767 * This new page must not have any mappings. Enter it via 4768 * pmap_kenter_pa and let that routine do the hard work. 4769 */ 4770 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list)); 4771 pmap_kenter_pa(va, pa, 4772 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0); 4773 #endif 4774 } 4775 4776 if (pap) 4777 *pap = pa; 4778 4779 PMAPCOUNT(pt_mappings); 4780 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 4781 KDASSERT(l2b != NULL); 4782 4783 ptep = &l2b->l2b_kva[l2pte_index(va)]; 4784 *ptep = L2_S_PROTO | pa | cache_mode | 4785 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE); 4786 PTE_SYNC(ptep); 4787 memset((void *)va, 0, PAGE_SIZE); 4788 return (0); 4789 } 4790 4791 /* 4792 * This is the same as pmap_alloc_l2_bucket(), except that it is only 4793 * used by pmap_growkernel(). 4794 */ 4795 static inline struct l2_bucket * 4796 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va) 4797 { 4798 struct l2_dtable *l2; 4799 struct l2_bucket *l2b; 4800 u_short l1idx; 4801 vaddr_t nva; 4802 4803 l1idx = L1_IDX(va); 4804 4805 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) { 4806 /* 4807 * No mapping at this address, as there is 4808 * no entry in the L1 table. 4809 * Need to allocate a new l2_dtable. 4810 */ 4811 nva = pmap_kernel_l2dtable_kva; 4812 if ((nva & PGOFSET) == 0) { 4813 /* 4814 * Need to allocate a backing page 4815 */ 4816 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL)) 4817 return (NULL); 4818 } 4819 4820 l2 = (struct l2_dtable *)nva; 4821 nva += sizeof(struct l2_dtable); 4822 4823 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) { 4824 /* 4825 * The new l2_dtable straddles a page boundary. 4826 * Map in another page to cover it. 4827 */ 4828 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL)) 4829 return (NULL); 4830 } 4831 4832 pmap_kernel_l2dtable_kva = nva; 4833 4834 /* 4835 * Link it into the parent pmap 4836 */ 4837 pm->pm_l2[L2_IDX(l1idx)] = l2; 4838 } 4839 4840 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; 4841 4842 /* 4843 * Fetch pointer to the L2 page table associated with the address. 4844 */ 4845 if (l2b->l2b_kva == NULL) { 4846 pt_entry_t *ptep; 4847 4848 /* 4849 * No L2 page table has been allocated. Chances are, this 4850 * is because we just allocated the l2_dtable, above. 4851 */ 4852 nva = pmap_kernel_l2ptp_kva; 4853 ptep = (pt_entry_t *)nva; 4854 if ((nva & PGOFSET) == 0) { 4855 /* 4856 * Need to allocate a backing page 4857 */ 4858 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt, 4859 &pmap_kernel_l2ptp_phys)) 4860 return (NULL); 4861 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t)); 4862 } 4863 4864 l2->l2_occupancy++; 4865 l2b->l2b_kva = ptep; 4866 l2b->l2b_l1idx = l1idx; 4867 l2b->l2b_phys = pmap_kernel_l2ptp_phys; 4868 4869 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL; 4870 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL; 4871 } 4872 4873 return (l2b); 4874 } 4875 4876 vaddr_t 4877 pmap_growkernel(vaddr_t maxkvaddr) 4878 { 4879 pmap_t kpm = pmap_kernel(); 4880 struct l1_ttable *l1; 4881 struct l2_bucket *l2b; 4882 pd_entry_t *pl1pd; 4883 int s; 4884 4885 if (maxkvaddr <= pmap_curmaxkvaddr) 4886 goto out; /* we are OK */ 4887 4888 NPDEBUG(PDB_GROWKERN, 4889 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n", 4890 pmap_curmaxkvaddr, maxkvaddr)); 4891 4892 KDASSERT(maxkvaddr <= virtual_end); 4893 4894 /* 4895 * whoops! we need to add kernel PTPs 4896 */ 4897 4898 s = splhigh(); /* to be safe */ 4899 mutex_enter(&kpm->pm_lock); 4900 4901 /* Map 1MB at a time */ 4902 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) { 4903 4904 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr); 4905 KDASSERT(l2b != NULL); 4906 4907 /* Distribute new L1 entry to all other L1s */ 4908 SLIST_FOREACH(l1, &l1_list, l1_link) { 4909 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)]; 4910 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) | 4911 L1_C_PROTO; 4912 PTE_SYNC(pl1pd); 4913 } 4914 } 4915 4916 /* 4917 * flush out the cache, expensive but growkernel will happen so 4918 * rarely 4919 */ 4920 cpu_dcache_wbinv_all(); 4921 cpu_tlb_flushD(); 4922 cpu_cpwait(); 4923 4924 mutex_exit(&kpm->pm_lock); 4925 splx(s); 4926 4927 out: 4928 return (pmap_curmaxkvaddr); 4929 } 4930 4931 /************************ Utility routines ****************************/ 4932 4933 /* 4934 * vector_page_setprot: 4935 * 4936 * Manipulate the protection of the vector page. 4937 */ 4938 void 4939 vector_page_setprot(int prot) 4940 { 4941 struct l2_bucket *l2b; 4942 pt_entry_t *ptep; 4943 4944 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page); 4945 KDASSERT(l2b != NULL); 4946 4947 ptep = &l2b->l2b_kva[l2pte_index(vector_page)]; 4948 4949 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot); 4950 PTE_SYNC(ptep); 4951 cpu_tlb_flushD_SE(vector_page); 4952 cpu_cpwait(); 4953 } 4954 4955 /* 4956 * Fetch pointers to the PDE/PTE for the given pmap/VA pair. 4957 * Returns true if the mapping exists, else false. 4958 * 4959 * NOTE: This function is only used by a couple of arm-specific modules. 4960 * It is not safe to take any pmap locks here, since we could be right 4961 * in the middle of debugging the pmap anyway... 4962 * 4963 * It is possible for this routine to return false even though a valid 4964 * mapping does exist. This is because we don't lock, so the metadata 4965 * state may be inconsistent. 4966 * 4967 * NOTE: We can return a NULL *ptp in the case where the L1 pde is 4968 * a "section" mapping. 4969 */ 4970 bool 4971 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp) 4972 { 4973 struct l2_dtable *l2; 4974 pd_entry_t *pl1pd, l1pd; 4975 pt_entry_t *ptep; 4976 u_short l1idx; 4977 4978 if (pm->pm_l1 == NULL) 4979 return false; 4980 4981 l1idx = L1_IDX(va); 4982 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx]; 4983 l1pd = *pl1pd; 4984 4985 if (l1pte_section_p(l1pd)) { 4986 *ptp = NULL; 4987 return true; 4988 } 4989 4990 if (pm->pm_l2 == NULL) 4991 return false; 4992 4993 l2 = pm->pm_l2[L2_IDX(l1idx)]; 4994 4995 if (l2 == NULL || 4996 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) { 4997 return false; 4998 } 4999 5000 *ptp = &ptep[l2pte_index(va)]; 5001 return true; 5002 } 5003 5004 bool 5005 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp) 5006 { 5007 u_short l1idx; 5008 5009 if (pm->pm_l1 == NULL) 5010 return false; 5011 5012 l1idx = L1_IDX(va); 5013 *pdp = &pm->pm_l1->l1_kva[l1idx]; 5014 5015 return true; 5016 } 5017 5018 /************************ Bootstrapping routines ****************************/ 5019 5020 static void 5021 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt) 5022 { 5023 int i; 5024 5025 l1->l1_kva = l1pt; 5026 l1->l1_domain_use_count = 0; 5027 l1->l1_domain_first = 0; 5028 5029 for (i = 0; i < PMAP_DOMAINS; i++) 5030 l1->l1_domain_free[i] = i + 1; 5031 5032 /* 5033 * Copy the kernel's L1 entries to each new L1. 5034 */ 5035 if (pmap_initialized) 5036 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE); 5037 5038 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt, 5039 &l1->l1_physaddr) == false) 5040 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt); 5041 5042 SLIST_INSERT_HEAD(&l1_list, l1, l1_link); 5043 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); 5044 } 5045 5046 /* 5047 * pmap_bootstrap() is called from the board-specific initarm() routine 5048 * once the kernel L1/L2 descriptors tables have been set up. 5049 * 5050 * This is a somewhat convoluted process since pmap bootstrap is, effectively, 5051 * spread over a number of disparate files/functions. 5052 * 5053 * We are passed the following parameters 5054 * - kernel_l1pt 5055 * This is a pointer to the base of the kernel's L1 translation table. 5056 * - vstart 5057 * 1MB-aligned start of managed kernel virtual memory. 5058 * - vend 5059 * 1MB-aligned end of managed kernel virtual memory. 5060 * 5061 * We use the first parameter to build the metadata (struct l1_ttable and 5062 * struct l2_dtable) necessary to track kernel mappings. 5063 */ 5064 #define PMAP_STATIC_L2_SIZE 16 5065 void 5066 pmap_bootstrap(vaddr_t vstart, vaddr_t vend) 5067 { 5068 static struct l1_ttable static_l1; 5069 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE]; 5070 struct l1_ttable *l1 = &static_l1; 5071 struct l2_dtable *l2; 5072 struct l2_bucket *l2b; 5073 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va; 5074 pmap_t pm = pmap_kernel(); 5075 pd_entry_t pde; 5076 pt_entry_t *ptep; 5077 paddr_t pa; 5078 vaddr_t va; 5079 vsize_t size; 5080 int nptes, l1idx, l2idx, l2next = 0; 5081 5082 /* 5083 * Initialise the kernel pmap object 5084 */ 5085 pm->pm_l1 = l1; 5086 pm->pm_domain = PMAP_DOMAIN_KERNEL; 5087 pm->pm_activated = true; 5088 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL; 5089 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1); 5090 5091 /* 5092 * Scan the L1 translation table created by initarm() and create 5093 * the required metadata for all valid mappings found in it. 5094 */ 5095 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) { 5096 pde = l1pt[l1idx]; 5097 5098 /* 5099 * We're only interested in Coarse mappings. 5100 * pmap_extract() can deal with section mappings without 5101 * recourse to checking L2 metadata. 5102 */ 5103 if ((pde & L1_TYPE_MASK) != L1_TYPE_C) 5104 continue; 5105 5106 /* 5107 * Lookup the KVA of this L2 descriptor table 5108 */ 5109 pa = (paddr_t)(pde & L1_C_ADDR_MASK); 5110 ptep = (pt_entry_t *)kernel_pt_lookup(pa); 5111 if (ptep == NULL) { 5112 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx", 5113 (u_int)l1idx << L1_S_SHIFT, pa); 5114 } 5115 5116 /* 5117 * Fetch the associated L2 metadata structure. 5118 * Allocate a new one if necessary. 5119 */ 5120 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) { 5121 if (l2next == PMAP_STATIC_L2_SIZE) 5122 panic("pmap_bootstrap: out of static L2s"); 5123 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++]; 5124 } 5125 5126 /* 5127 * One more L1 slot tracked... 5128 */ 5129 l2->l2_occupancy++; 5130 5131 /* 5132 * Fill in the details of the L2 descriptor in the 5133 * appropriate bucket. 5134 */ 5135 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; 5136 l2b->l2b_kva = ptep; 5137 l2b->l2b_phys = pa; 5138 l2b->l2b_l1idx = l1idx; 5139 5140 /* 5141 * Establish an initial occupancy count for this descriptor 5142 */ 5143 for (l2idx = 0; 5144 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); 5145 l2idx++) { 5146 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) { 5147 l2b->l2b_occupancy++; 5148 } 5149 } 5150 5151 /* 5152 * Make sure the descriptor itself has the correct cache mode. 5153 * If not, fix it, but whine about the problem. Port-meisters 5154 * should consider this a clue to fix up their initarm() 5155 * function. :) 5156 */ 5157 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) { 5158 printf("pmap_bootstrap: WARNING! wrong cache mode for " 5159 "L2 pte @ %p\n", ptep); 5160 } 5161 } 5162 5163 /* 5164 * Ensure the primary (kernel) L1 has the correct cache mode for 5165 * a page table. Bitch if it is not correctly set. 5166 */ 5167 for (va = (vaddr_t)l1pt; 5168 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) { 5169 if (pmap_set_pt_cache_mode(l1pt, va)) 5170 printf("pmap_bootstrap: WARNING! wrong cache mode for " 5171 "primary L1 @ 0x%lx\n", va); 5172 } 5173 5174 cpu_dcache_wbinv_all(); 5175 cpu_tlb_flushID(); 5176 cpu_cpwait(); 5177 5178 /* 5179 * now we allocate the "special" VAs which are used for tmp mappings 5180 * by the pmap (and other modules). we allocate the VAs by advancing 5181 * virtual_avail (note that there are no pages mapped at these VAs). 5182 * 5183 * Managed KVM space start from wherever initarm() tells us. 5184 */ 5185 virtual_avail = vstart; 5186 virtual_end = vend; 5187 5188 #ifdef PMAP_CACHE_VIPT 5189 /* 5190 * If we have a VIPT cache, we need one page/pte per possible alias 5191 * page so we won't violate cache aliasing rules. 5192 */ 5193 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask; 5194 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1; 5195 #else 5196 nptes = 1; 5197 #endif 5198 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte); 5199 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte); 5200 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte); 5201 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte); 5202 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL); 5203 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE, 5204 (void *)&msgbufaddr, NULL); 5205 5206 /* 5207 * Allocate a range of kernel virtual address space to be used 5208 * for L2 descriptor tables and metadata allocation in 5209 * pmap_growkernel(). 5210 */ 5211 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE; 5212 pmap_alloc_specials(&virtual_avail, 5213 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE, 5214 &pmap_kernel_l2ptp_kva, NULL); 5215 5216 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE; 5217 pmap_alloc_specials(&virtual_avail, 5218 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE, 5219 &pmap_kernel_l2dtable_kva, NULL); 5220 5221 /* 5222 * init the static-global locks and global pmap list. 5223 */ 5224 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */ 5225 5226 /* 5227 * We can now initialise the first L1's metadata. 5228 */ 5229 SLIST_INIT(&l1_list); 5230 TAILQ_INIT(&l1_lru_list); 5231 simple_lock_init(&l1_lru_lock); 5232 pmap_init_l1(l1, l1pt); 5233 5234 /* Set up vector page L1 details, if necessary */ 5235 if (vector_page < KERNEL_BASE) { 5236 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)]; 5237 l2b = pmap_get_l2_bucket(pm, vector_page); 5238 KDASSERT(l2b != NULL); 5239 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO | 5240 L1_C_DOM(pm->pm_domain); 5241 } else 5242 pm->pm_pl1vec = NULL; 5243 5244 /* 5245 * Initialize the pmap cache 5246 */ 5247 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0, 5248 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL); 5249 LIST_INIT(&pmap_pmaps); 5250 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list); 5251 5252 /* 5253 * Initialize the pv pool. 5254 */ 5255 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl", 5256 &pmap_bootstrap_pv_allocator, IPL_NONE); 5257 5258 /* 5259 * Initialize the L2 dtable pool and cache. 5260 */ 5261 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0, 5262 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL); 5263 5264 /* 5265 * Initialise the L2 descriptor table pool and cache 5266 */ 5267 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0, 5268 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE, 5269 pmap_l2ptp_ctor, NULL, NULL); 5270 5271 cpu_dcache_wbinv_all(); 5272 } 5273 5274 static int 5275 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va) 5276 { 5277 pd_entry_t *pdep, pde; 5278 pt_entry_t *ptep, pte; 5279 vaddr_t pa; 5280 int rv = 0; 5281 5282 /* 5283 * Make sure the descriptor itself has the correct cache mode 5284 */ 5285 pdep = &kl1[L1_IDX(va)]; 5286 pde = *pdep; 5287 5288 if (l1pte_section_p(pde)) { 5289 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) { 5290 *pdep = (pde & ~L1_S_CACHE_MASK) | 5291 pte_l1_s_cache_mode_pt; 5292 PTE_SYNC(pdep); 5293 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep)); 5294 rv = 1; 5295 } 5296 } else { 5297 pa = (paddr_t)(pde & L1_C_ADDR_MASK); 5298 ptep = (pt_entry_t *)kernel_pt_lookup(pa); 5299 if (ptep == NULL) 5300 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep); 5301 5302 ptep = &ptep[l2pte_index(va)]; 5303 pte = *ptep; 5304 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { 5305 *ptep = (pte & ~L2_S_CACHE_MASK) | 5306 pte_l2_s_cache_mode_pt; 5307 PTE_SYNC(ptep); 5308 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep)); 5309 rv = 1; 5310 } 5311 } 5312 5313 return (rv); 5314 } 5315 5316 static void 5317 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep) 5318 { 5319 vaddr_t va = *availp; 5320 struct l2_bucket *l2b; 5321 5322 if (ptep) { 5323 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 5324 if (l2b == NULL) 5325 panic("pmap_alloc_specials: no l2b for 0x%lx", va); 5326 5327 if (ptep) 5328 *ptep = &l2b->l2b_kva[l2pte_index(va)]; 5329 } 5330 5331 *vap = va; 5332 *availp = va + (PAGE_SIZE * pages); 5333 } 5334 5335 void 5336 pmap_init(void) 5337 { 5338 5339 /* 5340 * Set the available memory vars - These do not map to real memory 5341 * addresses and cannot as the physical memory is fragmented. 5342 * They are used by ps for %mem calculations. 5343 * One could argue whether this should be the entire memory or just 5344 * the memory that is useable in a user process. 5345 */ 5346 avail_start = ptoa(vm_physmem[0].start); 5347 avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end); 5348 5349 /* 5350 * Now we need to free enough pv_entry structures to allow us to get 5351 * the kmem_map/kmem_object allocated and inited (done after this 5352 * function is finished). to do this we allocate one bootstrap page out 5353 * of kernel_map and use it to provide an initial pool of pv_entry 5354 * structures. we never free this page. 5355 */ 5356 pool_setlowat(&pmap_pv_pool, 5357 (PAGE_SIZE / sizeof(struct pv_entry)) * 2); 5358 5359 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE); 5360 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 5361 UVM_KMF_WIRED|UVM_KMF_ZERO); 5362 5363 pmap_initialized = true; 5364 } 5365 5366 static vaddr_t last_bootstrap_page = 0; 5367 static void *free_bootstrap_pages = NULL; 5368 5369 static void * 5370 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags) 5371 { 5372 extern void *pool_page_alloc(struct pool *, int); 5373 vaddr_t new_page; 5374 void *rv; 5375 5376 if (pmap_initialized) 5377 return (pool_page_alloc(pp, flags)); 5378 5379 if (free_bootstrap_pages) { 5380 rv = free_bootstrap_pages; 5381 free_bootstrap_pages = *((void **)rv); 5382 return (rv); 5383 } 5384 5385 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 5386 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT)); 5387 5388 KASSERT(new_page > last_bootstrap_page); 5389 last_bootstrap_page = new_page; 5390 return ((void *)new_page); 5391 } 5392 5393 static void 5394 pmap_bootstrap_pv_page_free(struct pool *pp, void *v) 5395 { 5396 extern void pool_page_free(struct pool *, void *); 5397 5398 if ((vaddr_t)v <= last_bootstrap_page) { 5399 *((void **)v) = free_bootstrap_pages; 5400 free_bootstrap_pages = v; 5401 return; 5402 } 5403 5404 if (pmap_initialized) { 5405 pool_page_free(pp, v); 5406 return; 5407 } 5408 } 5409 5410 /* 5411 * pmap_postinit() 5412 * 5413 * This routine is called after the vm and kmem subsystems have been 5414 * initialised. This allows the pmap code to perform any initialisation 5415 * that can only be done one the memory allocation is in place. 5416 */ 5417 void 5418 pmap_postinit(void) 5419 { 5420 extern paddr_t physical_start, physical_end; 5421 struct l2_bucket *l2b; 5422 struct l1_ttable *l1; 5423 struct pglist plist; 5424 struct vm_page *m; 5425 pd_entry_t *pl1pt; 5426 pt_entry_t *ptep, pte; 5427 vaddr_t va, eva; 5428 u_int loop, needed; 5429 int error; 5430 5431 pool_cache_setlowat(&pmap_l2ptp_cache, 5432 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4); 5433 pool_cache_setlowat(&pmap_l2dtable_cache, 5434 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2); 5435 5436 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0); 5437 needed -= 1; 5438 5439 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK); 5440 5441 for (loop = 0; loop < needed; loop++, l1++) { 5442 /* Allocate a L1 page table */ 5443 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY); 5444 if (va == 0) 5445 panic("Cannot allocate L1 KVM"); 5446 5447 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, 5448 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK); 5449 if (error) 5450 panic("Cannot allocate L1 physical pages"); 5451 5452 m = TAILQ_FIRST(&plist); 5453 eva = va + L1_TABLE_SIZE; 5454 pl1pt = (pd_entry_t *)va; 5455 5456 while (m && va < eva) { 5457 paddr_t pa = VM_PAGE_TO_PHYS(m); 5458 5459 pmap_kenter_pa(va, pa, 5460 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0); 5461 5462 /* 5463 * Make sure the L1 descriptor table is mapped 5464 * with the cache-mode set to write-through. 5465 */ 5466 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 5467 KDASSERT(l2b != NULL); 5468 ptep = &l2b->l2b_kva[l2pte_index(va)]; 5469 pte = *ptep; 5470 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt; 5471 *ptep = pte; 5472 PTE_SYNC(ptep); 5473 cpu_tlb_flushD_SE(va); 5474 5475 va += PAGE_SIZE; 5476 m = TAILQ_NEXT(m, pageq.queue); 5477 } 5478 5479 #ifdef DIAGNOSTIC 5480 if (m) 5481 panic("pmap_alloc_l1pt: pglist not empty"); 5482 #endif /* DIAGNOSTIC */ 5483 5484 pmap_init_l1(l1, pl1pt); 5485 } 5486 5487 #ifdef DEBUG 5488 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n", 5489 needed); 5490 #endif 5491 } 5492 5493 /* 5494 * Note that the following routines are used by board-specific initialisation 5495 * code to configure the initial kernel page tables. 5496 * 5497 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that 5498 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the 5499 * behaviour of the old pmap, and provides an easy migration path for 5500 * initial bring-up of the new pmap on existing ports. Fortunately, 5501 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and 5502 * will be deprecated. 5503 * 5504 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page 5505 * tables. 5506 */ 5507 5508 /* 5509 * This list exists for the benefit of pmap_map_chunk(). It keeps track 5510 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can 5511 * find them as necessary. 5512 * 5513 * Note that the data on this list MUST remain valid after initarm() returns, 5514 * as pmap_bootstrap() uses it to contruct L2 table metadata. 5515 */ 5516 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list); 5517 5518 static vaddr_t 5519 kernel_pt_lookup(paddr_t pa) 5520 { 5521 pv_addr_t *pv; 5522 5523 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) { 5524 #ifndef ARM32_NEW_VM_LAYOUT 5525 if (pv->pv_pa == (pa & ~PGOFSET)) 5526 return (pv->pv_va | (pa & PGOFSET)); 5527 #else 5528 if (pv->pv_pa == pa) 5529 return (pv->pv_va); 5530 #endif 5531 } 5532 return (0); 5533 } 5534 5535 /* 5536 * pmap_map_section: 5537 * 5538 * Create a single section mapping. 5539 */ 5540 void 5541 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache) 5542 { 5543 pd_entry_t *pde = (pd_entry_t *) l1pt; 5544 pd_entry_t fl; 5545 5546 KASSERT(((va | pa) & L1_S_OFFSET) == 0); 5547 5548 switch (cache) { 5549 case PTE_NOCACHE: 5550 default: 5551 fl = 0; 5552 break; 5553 5554 case PTE_CACHE: 5555 fl = pte_l1_s_cache_mode; 5556 break; 5557 5558 case PTE_PAGETABLE: 5559 fl = pte_l1_s_cache_mode_pt; 5560 break; 5561 } 5562 5563 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa | 5564 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL); 5565 PTE_SYNC(&pde[va >> L1_S_SHIFT]); 5566 } 5567 5568 /* 5569 * pmap_map_entry: 5570 * 5571 * Create a single page mapping. 5572 */ 5573 void 5574 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache) 5575 { 5576 pd_entry_t *pde = (pd_entry_t *) l1pt; 5577 pt_entry_t fl; 5578 pt_entry_t *pte; 5579 5580 KASSERT(((va | pa) & PGOFSET) == 0); 5581 5582 switch (cache) { 5583 case PTE_NOCACHE: 5584 default: 5585 fl = 0; 5586 break; 5587 5588 case PTE_CACHE: 5589 fl = pte_l2_s_cache_mode; 5590 break; 5591 5592 case PTE_PAGETABLE: 5593 fl = pte_l2_s_cache_mode_pt; 5594 break; 5595 } 5596 5597 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C) 5598 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va); 5599 5600 #ifndef ARM32_NEW_VM_LAYOUT 5601 pte = (pt_entry_t *) 5602 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME); 5603 #else 5604 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK); 5605 #endif 5606 if (pte == NULL) 5607 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va); 5608 5609 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot); 5610 #ifndef ARM32_NEW_VM_LAYOUT 5611 pte += (va >> PGSHIFT) & 0x3ff; 5612 #else 5613 pte += l2pte_index(va); 5614 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl; 5615 #endif 5616 *pte = fl; 5617 PTE_SYNC(pte); 5618 } 5619 5620 /* 5621 * pmap_link_l2pt: 5622 * 5623 * Link the L2 page table specified by "l2pv" into the L1 5624 * page table at the slot for "va". 5625 */ 5626 void 5627 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv) 5628 { 5629 pd_entry_t *pde = (pd_entry_t *) l1pt, proto; 5630 u_int slot = va >> L1_S_SHIFT; 5631 5632 #ifndef ARM32_NEW_VM_LAYOUT 5633 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0); 5634 KASSERT((l2pv->pv_pa & PGOFSET) == 0); 5635 #endif 5636 5637 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO; 5638 5639 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000); 5640 #ifdef ARM32_NEW_VM_LAYOUT 5641 PTE_SYNC(&pde[slot]); 5642 #else 5643 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400); 5644 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800); 5645 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00); 5646 PTE_SYNC_RANGE(&pde[slot + 0], 4); 5647 #endif 5648 5649 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list); 5650 } 5651 5652 /* 5653 * pmap_map_chunk: 5654 * 5655 * Map a chunk of memory using the most efficient mappings 5656 * possible (section, large page, small page) into the 5657 * provided L1 and L2 tables at the specified virtual address. 5658 */ 5659 vsize_t 5660 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size, 5661 int prot, int cache) 5662 { 5663 pd_entry_t *pde = (pd_entry_t *) l1pt; 5664 pt_entry_t *pte, f1, f2s, f2l; 5665 vsize_t resid; 5666 int i; 5667 5668 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1); 5669 5670 if (l1pt == 0) 5671 panic("pmap_map_chunk: no L1 table provided"); 5672 5673 #ifdef VERBOSE_INIT_ARM 5674 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx " 5675 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache); 5676 #endif 5677 5678 switch (cache) { 5679 case PTE_NOCACHE: 5680 default: 5681 f1 = 0; 5682 f2l = 0; 5683 f2s = 0; 5684 break; 5685 5686 case PTE_CACHE: 5687 f1 = pte_l1_s_cache_mode; 5688 f2l = pte_l2_l_cache_mode; 5689 f2s = pte_l2_s_cache_mode; 5690 break; 5691 5692 case PTE_PAGETABLE: 5693 f1 = pte_l1_s_cache_mode_pt; 5694 f2l = pte_l2_l_cache_mode_pt; 5695 f2s = pte_l2_s_cache_mode_pt; 5696 break; 5697 } 5698 5699 size = resid; 5700 5701 while (resid > 0) { 5702 /* See if we can use a section mapping. */ 5703 if (L1_S_MAPPABLE_P(va, pa, resid)) { 5704 #ifdef VERBOSE_INIT_ARM 5705 printf("S"); 5706 #endif 5707 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa | 5708 L1_S_PROT(PTE_KERNEL, prot) | f1 | 5709 L1_S_DOM(PMAP_DOMAIN_KERNEL); 5710 PTE_SYNC(&pde[va >> L1_S_SHIFT]); 5711 va += L1_S_SIZE; 5712 pa += L1_S_SIZE; 5713 resid -= L1_S_SIZE; 5714 continue; 5715 } 5716 5717 /* 5718 * Ok, we're going to use an L2 table. Make sure 5719 * one is actually in the corresponding L1 slot 5720 * for the current VA. 5721 */ 5722 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C) 5723 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va); 5724 5725 #ifndef ARM32_NEW_VM_LAYOUT 5726 pte = (pt_entry_t *) 5727 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME); 5728 #else 5729 pte = (pt_entry_t *) kernel_pt_lookup( 5730 pde[L1_IDX(va)] & L1_C_ADDR_MASK); 5731 #endif 5732 if (pte == NULL) 5733 panic("pmap_map_chunk: can't find L2 table for VA" 5734 "0x%08lx", va); 5735 5736 /* See if we can use a L2 large page mapping. */ 5737 if (L2_L_MAPPABLE_P(va, pa, resid)) { 5738 #ifdef VERBOSE_INIT_ARM 5739 printf("L"); 5740 #endif 5741 for (i = 0; i < 16; i++) { 5742 #ifndef ARM32_NEW_VM_LAYOUT 5743 pte[((va >> PGSHIFT) & 0x3f0) + i] = 5744 L2_L_PROTO | pa | 5745 L2_L_PROT(PTE_KERNEL, prot) | f2l; 5746 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]); 5747 #else 5748 pte[l2pte_index(va) + i] = 5749 L2_L_PROTO | pa | 5750 L2_L_PROT(PTE_KERNEL, prot) | f2l; 5751 PTE_SYNC(&pte[l2pte_index(va) + i]); 5752 #endif 5753 } 5754 va += L2_L_SIZE; 5755 pa += L2_L_SIZE; 5756 resid -= L2_L_SIZE; 5757 continue; 5758 } 5759 5760 /* Use a small page mapping. */ 5761 #ifdef VERBOSE_INIT_ARM 5762 printf("P"); 5763 #endif 5764 #ifndef ARM32_NEW_VM_LAYOUT 5765 pte[(va >> PGSHIFT) & 0x3ff] = 5766 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s; 5767 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]); 5768 #else 5769 pte[l2pte_index(va)] = 5770 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s; 5771 PTE_SYNC(&pte[l2pte_index(va)]); 5772 #endif 5773 va += PAGE_SIZE; 5774 pa += PAGE_SIZE; 5775 resid -= PAGE_SIZE; 5776 } 5777 #ifdef VERBOSE_INIT_ARM 5778 printf("\n"); 5779 #endif 5780 return (size); 5781 } 5782 5783 /********************** Static device map routines ***************************/ 5784 5785 static const struct pmap_devmap *pmap_devmap_table; 5786 5787 /* 5788 * Register the devmap table. This is provided in case early console 5789 * initialization needs to register mappings created by bootstrap code 5790 * before pmap_devmap_bootstrap() is called. 5791 */ 5792 void 5793 pmap_devmap_register(const struct pmap_devmap *table) 5794 { 5795 5796 pmap_devmap_table = table; 5797 } 5798 5799 /* 5800 * Map all of the static regions in the devmap table, and remember 5801 * the devmap table so other parts of the kernel can look up entries 5802 * later. 5803 */ 5804 void 5805 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table) 5806 { 5807 int i; 5808 5809 pmap_devmap_table = table; 5810 5811 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 5812 #ifdef VERBOSE_INIT_ARM 5813 printf("devmap: %08lx -> %08lx @ %08lx\n", 5814 pmap_devmap_table[i].pd_pa, 5815 pmap_devmap_table[i].pd_pa + 5816 pmap_devmap_table[i].pd_size - 1, 5817 pmap_devmap_table[i].pd_va); 5818 #endif 5819 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va, 5820 pmap_devmap_table[i].pd_pa, 5821 pmap_devmap_table[i].pd_size, 5822 pmap_devmap_table[i].pd_prot, 5823 pmap_devmap_table[i].pd_cache); 5824 } 5825 } 5826 5827 const struct pmap_devmap * 5828 pmap_devmap_find_pa(paddr_t pa, psize_t size) 5829 { 5830 uint64_t endpa; 5831 int i; 5832 5833 if (pmap_devmap_table == NULL) 5834 return (NULL); 5835 5836 endpa = (uint64_t)pa + (uint64_t)(size - 1); 5837 5838 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 5839 if (pa >= pmap_devmap_table[i].pd_pa && 5840 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa + 5841 (uint64_t)(pmap_devmap_table[i].pd_size - 1)) 5842 return (&pmap_devmap_table[i]); 5843 } 5844 5845 return (NULL); 5846 } 5847 5848 const struct pmap_devmap * 5849 pmap_devmap_find_va(vaddr_t va, vsize_t size) 5850 { 5851 int i; 5852 5853 if (pmap_devmap_table == NULL) 5854 return (NULL); 5855 5856 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { 5857 if (va >= pmap_devmap_table[i].pd_va && 5858 va + size - 1 <= pmap_devmap_table[i].pd_va + 5859 pmap_devmap_table[i].pd_size - 1) 5860 return (&pmap_devmap_table[i]); 5861 } 5862 5863 return (NULL); 5864 } 5865 5866 /********************** PTE initialization routines **************************/ 5867 5868 /* 5869 * These routines are called when the CPU type is identified to set up 5870 * the PTE prototypes, cache modes, etc. 5871 * 5872 * The variables are always here, just in case modules need to reference 5873 * them (though, they shouldn't). 5874 */ 5875 5876 pt_entry_t pte_l1_s_cache_mode; 5877 pt_entry_t pte_l1_s_cache_mode_pt; 5878 pt_entry_t pte_l1_s_cache_mask; 5879 5880 pt_entry_t pte_l2_l_cache_mode; 5881 pt_entry_t pte_l2_l_cache_mode_pt; 5882 pt_entry_t pte_l2_l_cache_mask; 5883 5884 pt_entry_t pte_l2_s_cache_mode; 5885 pt_entry_t pte_l2_s_cache_mode_pt; 5886 pt_entry_t pte_l2_s_cache_mask; 5887 5888 pt_entry_t pte_l2_s_prot_u; 5889 pt_entry_t pte_l2_s_prot_w; 5890 pt_entry_t pte_l2_s_prot_mask; 5891 5892 pt_entry_t pte_l1_s_proto; 5893 pt_entry_t pte_l1_c_proto; 5894 pt_entry_t pte_l2_s_proto; 5895 5896 void (*pmap_copy_page_func)(paddr_t, paddr_t); 5897 void (*pmap_zero_page_func)(paddr_t); 5898 5899 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 5900 void 5901 pmap_pte_init_generic(void) 5902 { 5903 5904 pte_l1_s_cache_mode = L1_S_B|L1_S_C; 5905 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic; 5906 5907 pte_l2_l_cache_mode = L2_B|L2_C; 5908 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic; 5909 5910 pte_l2_s_cache_mode = L2_B|L2_C; 5911 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic; 5912 5913 /* 5914 * If we have a write-through cache, set B and C. If 5915 * we have a write-back cache, then we assume setting 5916 * only C will make those pages write-through. 5917 */ 5918 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) { 5919 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; 5920 pte_l2_l_cache_mode_pt = L2_B|L2_C; 5921 pte_l2_s_cache_mode_pt = L2_B|L2_C; 5922 } else { 5923 #if ARM_MMU_V6 > 1 5924 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */ 5925 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */ 5926 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */ 5927 #else 5928 pte_l1_s_cache_mode_pt = L1_S_C; 5929 pte_l2_l_cache_mode_pt = L2_C; 5930 pte_l2_s_cache_mode_pt = L2_C; 5931 #endif 5932 } 5933 5934 pte_l2_s_prot_u = L2_S_PROT_U_generic; 5935 pte_l2_s_prot_w = L2_S_PROT_W_generic; 5936 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic; 5937 5938 pte_l1_s_proto = L1_S_PROTO_generic; 5939 pte_l1_c_proto = L1_C_PROTO_generic; 5940 pte_l2_s_proto = L2_S_PROTO_generic; 5941 5942 pmap_copy_page_func = pmap_copy_page_generic; 5943 pmap_zero_page_func = pmap_zero_page_generic; 5944 } 5945 5946 #if defined(CPU_ARM8) 5947 void 5948 pmap_pte_init_arm8(void) 5949 { 5950 5951 /* 5952 * ARM8 is compatible with generic, but we need to use 5953 * the page tables uncached. 5954 */ 5955 pmap_pte_init_generic(); 5956 5957 pte_l1_s_cache_mode_pt = 0; 5958 pte_l2_l_cache_mode_pt = 0; 5959 pte_l2_s_cache_mode_pt = 0; 5960 } 5961 #endif /* CPU_ARM8 */ 5962 5963 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH) 5964 void 5965 pmap_pte_init_arm9(void) 5966 { 5967 5968 /* 5969 * ARM9 is compatible with generic, but we want to use 5970 * write-through caching for now. 5971 */ 5972 pmap_pte_init_generic(); 5973 5974 pte_l1_s_cache_mode = L1_S_C; 5975 pte_l2_l_cache_mode = L2_C; 5976 pte_l2_s_cache_mode = L2_C; 5977 5978 pte_l1_s_cache_mode_pt = L1_S_C; 5979 pte_l2_l_cache_mode_pt = L2_C; 5980 pte_l2_s_cache_mode_pt = L2_C; 5981 } 5982 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */ 5983 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */ 5984 5985 #if defined(CPU_ARM10) 5986 void 5987 pmap_pte_init_arm10(void) 5988 { 5989 5990 /* 5991 * ARM10 is compatible with generic, but we want to use 5992 * write-through caching for now. 5993 */ 5994 pmap_pte_init_generic(); 5995 5996 pte_l1_s_cache_mode = L1_S_B | L1_S_C; 5997 pte_l2_l_cache_mode = L2_B | L2_C; 5998 pte_l2_s_cache_mode = L2_B | L2_C; 5999 6000 pte_l1_s_cache_mode_pt = L1_S_C; 6001 pte_l2_l_cache_mode_pt = L2_C; 6002 pte_l2_s_cache_mode_pt = L2_C; 6003 6004 } 6005 #endif /* CPU_ARM10 */ 6006 6007 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH) 6008 void 6009 pmap_pte_init_arm11(void) 6010 { 6011 6012 /* 6013 * ARM11 is compatible with generic, but we want to use 6014 * write-through caching for now. 6015 */ 6016 pmap_pte_init_generic(); 6017 6018 pte_l1_s_cache_mode = L1_S_C; 6019 pte_l2_l_cache_mode = L2_C; 6020 pte_l2_s_cache_mode = L2_C; 6021 6022 pte_l1_s_cache_mode_pt = L1_S_C; 6023 pte_l2_l_cache_mode_pt = L2_C; 6024 pte_l2_s_cache_mode_pt = L2_C; 6025 } 6026 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */ 6027 6028 #if ARM_MMU_SA1 == 1 6029 void 6030 pmap_pte_init_sa1(void) 6031 { 6032 6033 /* 6034 * The StrongARM SA-1 cache does not have a write-through 6035 * mode. So, do the generic initialization, then reset 6036 * the page table cache mode to B=1,C=1, and note that 6037 * the PTEs need to be sync'd. 6038 */ 6039 pmap_pte_init_generic(); 6040 6041 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; 6042 pte_l2_l_cache_mode_pt = L2_B|L2_C; 6043 pte_l2_s_cache_mode_pt = L2_B|L2_C; 6044 6045 pmap_needs_pte_sync = 1; 6046 } 6047 #endif /* ARM_MMU_SA1 == 1*/ 6048 6049 #if ARM_MMU_XSCALE == 1 6050 #if (ARM_NMMUS > 1) 6051 static u_int xscale_use_minidata; 6052 #endif 6053 6054 void 6055 pmap_pte_init_xscale(void) 6056 { 6057 uint32_t auxctl; 6058 int write_through = 0; 6059 6060 pte_l1_s_cache_mode = L1_S_B|L1_S_C; 6061 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale; 6062 6063 pte_l2_l_cache_mode = L2_B|L2_C; 6064 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale; 6065 6066 pte_l2_s_cache_mode = L2_B|L2_C; 6067 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale; 6068 6069 pte_l1_s_cache_mode_pt = L1_S_C; 6070 pte_l2_l_cache_mode_pt = L2_C; 6071 pte_l2_s_cache_mode_pt = L2_C; 6072 6073 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE 6074 /* 6075 * The XScale core has an enhanced mode where writes that 6076 * miss the cache cause a cache line to be allocated. This 6077 * is significantly faster than the traditional, write-through 6078 * behavior of this case. 6079 */ 6080 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X); 6081 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X); 6082 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X); 6083 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */ 6084 6085 #ifdef XSCALE_CACHE_WRITE_THROUGH 6086 /* 6087 * Some versions of the XScale core have various bugs in 6088 * their cache units, the work-around for which is to run 6089 * the cache in write-through mode. Unfortunately, this 6090 * has a major (negative) impact on performance. So, we 6091 * go ahead and run fast-and-loose, in the hopes that we 6092 * don't line up the planets in a way that will trip the 6093 * bugs. 6094 * 6095 * However, we give you the option to be slow-but-correct. 6096 */ 6097 write_through = 1; 6098 #elif defined(XSCALE_CACHE_WRITE_BACK) 6099 /* force write back cache mode */ 6100 write_through = 0; 6101 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270) 6102 /* 6103 * Intel PXA2[15]0 processors are known to have a bug in 6104 * write-back cache on revision 4 and earlier (stepping 6105 * A[01] and B[012]). Fixed for C0 and later. 6106 */ 6107 { 6108 uint32_t id, type; 6109 6110 id = cpufunc_id(); 6111 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK); 6112 6113 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) { 6114 if ((id & CPU_ID_REVISION_MASK) < 5) { 6115 /* write through for stepping A0-1 and B0-2 */ 6116 write_through = 1; 6117 } 6118 } 6119 } 6120 #endif /* XSCALE_CACHE_WRITE_THROUGH */ 6121 6122 if (write_through) { 6123 pte_l1_s_cache_mode = L1_S_C; 6124 pte_l2_l_cache_mode = L2_C; 6125 pte_l2_s_cache_mode = L2_C; 6126 } 6127 6128 #if (ARM_NMMUS > 1) 6129 xscale_use_minidata = 1; 6130 #endif 6131 6132 pte_l2_s_prot_u = L2_S_PROT_U_xscale; 6133 pte_l2_s_prot_w = L2_S_PROT_W_xscale; 6134 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale; 6135 6136 pte_l1_s_proto = L1_S_PROTO_xscale; 6137 pte_l1_c_proto = L1_C_PROTO_xscale; 6138 pte_l2_s_proto = L2_S_PROTO_xscale; 6139 6140 pmap_copy_page_func = pmap_copy_page_xscale; 6141 pmap_zero_page_func = pmap_zero_page_xscale; 6142 6143 /* 6144 * Disable ECC protection of page table access, for now. 6145 */ 6146 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl)); 6147 auxctl &= ~XSCALE_AUXCTL_P; 6148 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl)); 6149 } 6150 6151 /* 6152 * xscale_setup_minidata: 6153 * 6154 * Set up the mini-data cache clean area. We require the 6155 * caller to allocate the right amount of physically and 6156 * virtually contiguous space. 6157 */ 6158 void 6159 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa) 6160 { 6161 extern vaddr_t xscale_minidata_clean_addr; 6162 extern vsize_t xscale_minidata_clean_size; /* already initialized */ 6163 pd_entry_t *pde = (pd_entry_t *) l1pt; 6164 pt_entry_t *pte; 6165 vsize_t size; 6166 uint32_t auxctl; 6167 6168 xscale_minidata_clean_addr = va; 6169 6170 /* Round it to page size. */ 6171 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME; 6172 6173 for (; size != 0; 6174 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) { 6175 #ifndef ARM32_NEW_VM_LAYOUT 6176 pte = (pt_entry_t *) 6177 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME); 6178 #else 6179 pte = (pt_entry_t *) kernel_pt_lookup( 6180 pde[L1_IDX(va)] & L1_C_ADDR_MASK); 6181 #endif 6182 if (pte == NULL) 6183 panic("xscale_setup_minidata: can't find L2 table for " 6184 "VA 0x%08lx", va); 6185 #ifndef ARM32_NEW_VM_LAYOUT 6186 pte[(va >> PGSHIFT) & 0x3ff] = 6187 #else 6188 pte[l2pte_index(va)] = 6189 #endif 6190 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | 6191 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); 6192 } 6193 6194 /* 6195 * Configure the mini-data cache for write-back with 6196 * read/write-allocate. 6197 * 6198 * NOTE: In order to reconfigure the mini-data cache, we must 6199 * make sure it contains no valid data! In order to do that, 6200 * we must issue a global data cache invalidate command! 6201 * 6202 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED! 6203 * THIS IS VERY IMPORTANT! 6204 */ 6205 6206 /* Invalidate data and mini-data. */ 6207 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0)); 6208 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl)); 6209 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA; 6210 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl)); 6211 } 6212 6213 /* 6214 * Change the PTEs for the specified kernel mappings such that they 6215 * will use the mini data cache instead of the main data cache. 6216 */ 6217 void 6218 pmap_uarea(vaddr_t va) 6219 { 6220 struct l2_bucket *l2b; 6221 pt_entry_t *ptep, *sptep, pte; 6222 vaddr_t next_bucket, eva; 6223 6224 #if (ARM_NMMUS > 1) 6225 if (xscale_use_minidata == 0) 6226 return; 6227 #endif 6228 6229 eva = va + USPACE; 6230 6231 while (va < eva) { 6232 next_bucket = L2_NEXT_BUCKET(va); 6233 if (next_bucket > eva) 6234 next_bucket = eva; 6235 6236 l2b = pmap_get_l2_bucket(pmap_kernel(), va); 6237 KDASSERT(l2b != NULL); 6238 6239 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)]; 6240 6241 while (va < next_bucket) { 6242 pte = *ptep; 6243 if (!l2pte_minidata(pte)) { 6244 cpu_dcache_wbinv_range(va, PAGE_SIZE); 6245 cpu_tlb_flushD_SE(va); 6246 *ptep = pte & ~L2_B; 6247 } 6248 ptep++; 6249 va += PAGE_SIZE; 6250 } 6251 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep)); 6252 } 6253 cpu_cpwait(); 6254 } 6255 #endif /* ARM_MMU_XSCALE == 1 */ 6256 6257 /* 6258 * return the PA of the current L1 table, for use when handling a crash dump 6259 */ 6260 uint32_t pmap_kernel_L1_addr(void) 6261 { 6262 return pmap_kernel()->pm_l1->l1_physaddr; 6263 } 6264 6265 #if defined(DDB) 6266 /* 6267 * A couple of ddb-callable functions for dumping pmaps 6268 */ 6269 void pmap_dump_all(void); 6270 void pmap_dump(pmap_t); 6271 6272 void 6273 pmap_dump_all(void) 6274 { 6275 pmap_t pm; 6276 6277 LIST_FOREACH(pm, &pmap_pmaps, pm_list) { 6278 if (pm == pmap_kernel()) 6279 continue; 6280 pmap_dump(pm); 6281 printf("\n"); 6282 } 6283 } 6284 6285 static pt_entry_t ncptes[64]; 6286 static void pmap_dump_ncpg(pmap_t); 6287 6288 void 6289 pmap_dump(pmap_t pm) 6290 { 6291 struct l2_dtable *l2; 6292 struct l2_bucket *l2b; 6293 pt_entry_t *ptep, pte; 6294 vaddr_t l2_va, l2b_va, va; 6295 int i, j, k, occ, rows = 0; 6296 6297 if (pm == pmap_kernel()) 6298 printf("pmap_kernel (%p): ", pm); 6299 else 6300 printf("user pmap (%p): ", pm); 6301 6302 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva); 6303 6304 l2_va = 0; 6305 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) { 6306 l2 = pm->pm_l2[i]; 6307 6308 if (l2 == NULL || l2->l2_occupancy == 0) 6309 continue; 6310 6311 l2b_va = l2_va; 6312 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) { 6313 l2b = &l2->l2_bucket[j]; 6314 6315 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL) 6316 continue; 6317 6318 ptep = l2b->l2b_kva; 6319 6320 for (k = 0; k < 256 && ptep[k] == 0; k++) 6321 ; 6322 6323 k &= ~63; 6324 occ = l2b->l2b_occupancy; 6325 va = l2b_va + (k * 4096); 6326 for (; k < 256; k++, va += 0x1000) { 6327 char ch = ' '; 6328 if ((k % 64) == 0) { 6329 if ((rows % 8) == 0) { 6330 printf( 6331 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n"); 6332 } 6333 printf("%08lx: ", va); 6334 } 6335 6336 ncptes[k & 63] = 0; 6337 pte = ptep[k]; 6338 if (pte == 0) { 6339 ch = '.'; 6340 } else { 6341 occ--; 6342 switch (pte & 0x0c) { 6343 case 0x00: 6344 ch = 'D'; /* No cache No buff */ 6345 break; 6346 case 0x04: 6347 ch = 'B'; /* No cache buff */ 6348 break; 6349 case 0x08: 6350 if (pte & 0x40) 6351 ch = 'm'; 6352 else 6353 ch = 'C'; /* Cache No buff */ 6354 break; 6355 case 0x0c: 6356 ch = 'F'; /* Cache Buff */ 6357 break; 6358 } 6359 6360 if ((pte & L2_S_PROT_U) == L2_S_PROT_U) 6361 ch += 0x20; 6362 6363 if ((pte & 0xc) == 0) 6364 ncptes[k & 63] = pte; 6365 } 6366 6367 if ((k % 64) == 63) { 6368 rows++; 6369 printf("%c\n", ch); 6370 pmap_dump_ncpg(pm); 6371 if (occ == 0) 6372 break; 6373 } else 6374 printf("%c", ch); 6375 } 6376 } 6377 } 6378 } 6379 6380 static void 6381 pmap_dump_ncpg(pmap_t pm) 6382 { 6383 struct vm_page *pg; 6384 struct pv_entry *pv; 6385 int i; 6386 6387 for (i = 0; i < 63; i++) { 6388 if (ncptes[i] == 0) 6389 continue; 6390 6391 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i])); 6392 if (pg == NULL) 6393 continue; 6394 6395 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n", 6396 VM_PAGE_TO_PHYS(pg), 6397 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings, 6398 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings); 6399 6400 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) { 6401 printf(" %c va 0x%08lx, flags 0x%x\n", 6402 (pm == pv->pv_pmap) ? '*' : ' ', 6403 pv->pv_va, pv->pv_flags); 6404 } 6405 } 6406 } 6407 #endif 6408 6409 #ifdef PMAP_STEAL_MEMORY 6410 void 6411 pmap_boot_pageadd(pv_addr_t *newpv) 6412 { 6413 pv_addr_t *pv, *npv; 6414 6415 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) { 6416 if (newpv->pv_pa < pv->pv_va) { 6417 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa); 6418 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) { 6419 newpv->pv_size += pv->pv_size; 6420 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list); 6421 } 6422 pv = NULL; 6423 } else { 6424 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL; 6425 pv = npv) { 6426 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa); 6427 KASSERT(pv->pv_pa < newpv->pv_pa); 6428 if (newpv->pv_pa > npv->pv_pa) 6429 continue; 6430 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) { 6431 pv->pv_size += newpv->pv_size; 6432 return; 6433 } 6434 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa) 6435 break; 6436 newpv->pv_size += npv->pv_size; 6437 SLIST_INSERT_AFTER(pv, newpv, pv_list); 6438 SLIST_REMOVE_AFTER(newpv, pv_list); 6439 return; 6440 } 6441 } 6442 } 6443 6444 if (pv) { 6445 SLIST_INSERT_AFTER(pv, newpv, pv_list); 6446 } else { 6447 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list); 6448 } 6449 } 6450 6451 void 6452 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match, 6453 pv_addr_t *rpv) 6454 { 6455 pv_addr_t *pv, **pvp; 6456 struct vm_physseg *ps; 6457 size_t i; 6458 6459 KASSERT(amount & PGOFSET); 6460 KASSERT((mask & PGOFSET) == 0); 6461 KASSERT((match & PGOFSET) == 0); 6462 KASSERT(amount != 0); 6463 6464 for (pvp = &SLIST_FIRST(&pmap_boot_freeq); 6465 (pv = *pvp) != NULL; 6466 pvp = &SLIST_NEXT(pv, pv_list)) { 6467 pv_addr_t *newpv; 6468 psize_t off; 6469 /* 6470 * If this entry is too small to satify the request... 6471 */ 6472 KASSERT(pv->pv_size > 0); 6473 if (pv->pv_size < amount) 6474 continue; 6475 6476 for (off = 0; off <= mask; off += PAGE_SIZE) { 6477 if (((pv->pv_pa + off) & mask) == match 6478 && off + amount <= pv->pv_size) 6479 break; 6480 } 6481 if (off > mask) 6482 continue; 6483 6484 rpv->pv_va = pv->pv_va + off; 6485 rpv->pv_pa = pv->pv_pa + off; 6486 rpv->pv_size = amount; 6487 pv->pv_size -= amount; 6488 if (pv->pv_size == 0) { 6489 KASSERT(off == 0); 6490 KASSERT((vaddr_t) pv == rpv->pv_va); 6491 *pvp = SLIST_NEXT(pv, pv_list); 6492 } else if (off == 0) { 6493 KASSERT((vaddr_t) pv == rpv->pv_va); 6494 newpv = (pv_addr_t *) (rpv->pv_va + amount); 6495 *newpv = *pv; 6496 newpv->pv_pa += amount; 6497 newpv->pv_va += amount; 6498 *pvp = newpv; 6499 } else if (off < pv->pv_size) { 6500 newpv = (pv_addr_t *) (rpv->pv_va + amount); 6501 *newpv = *pv; 6502 newpv->pv_size -= off; 6503 newpv->pv_pa += off + amount; 6504 newpv->pv_va += off + amount; 6505 6506 SLIST_NEXT(pv, pv_list) = newpv; 6507 pv->pv_size = off; 6508 } else { 6509 KASSERT((vaddr_t) pv != rpv->pv_va); 6510 } 6511 memset((void *)rpv->pv_va, 0, amount); 6512 return; 6513 } 6514 6515 if (vm_nphysseg == 0) 6516 panic("pmap_boot_pagealloc: couldn't allocate memory"); 6517 6518 for (pvp = &SLIST_FIRST(&pmap_boot_freeq); 6519 (pv = *pvp) != NULL; 6520 pvp = &SLIST_NEXT(pv, pv_list)) { 6521 if (SLIST_NEXT(pv, pv_list) == NULL) 6522 break; 6523 } 6524 KASSERT(mask == 0); 6525 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) { 6526 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size) 6527 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) { 6528 rpv->pv_va = pv->pv_va; 6529 rpv->pv_pa = pv->pv_pa; 6530 rpv->pv_size = amount; 6531 *pvp = NULL; 6532 pmap_map_chunk(kernel_l1pt.pv_va, 6533 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa), 6534 ptoa(ps->avail_start), 6535 amount - pv->pv_size, 6536 VM_PROT_READ|VM_PROT_WRITE, 6537 PTE_CACHE); 6538 ps->avail_start += atop(amount - pv->pv_size); 6539 /* 6540 * If we consumed the entire physseg, remove it. 6541 */ 6542 if (ps->avail_start == ps->avail_end) { 6543 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++) 6544 ps[0] = ps[1]; 6545 } 6546 memset((void *)rpv->pv_va, 0, rpv->pv_size); 6547 return; 6548 } 6549 } 6550 6551 panic("pmap_boot_pagealloc: couldn't allocate memory"); 6552 } 6553 6554 vaddr_t 6555 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp) 6556 { 6557 pv_addr_t pv; 6558 6559 pmap_boot_pagealloc(size, 0, 0, &pv); 6560 6561 return pv.pv_va; 6562 } 6563 #endif /* PMAP_STEAL_MEMORY */ 6564 6565 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup") 6566 { 6567 sysctl_createv(clog, 0, NULL, NULL, 6568 CTLFLAG_PERMANENT, 6569 CTLTYPE_NODE, "machdep", NULL, 6570 NULL, 0, NULL, 0, 6571 CTL_MACHDEP, CTL_EOL); 6572 6573 sysctl_createv(clog, 0, NULL, NULL, 6574 CTLFLAG_PERMANENT, 6575 CTLTYPE_INT, "kmpages", 6576 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"), 6577 NULL, 0, &pmap_kmpages, 0, 6578 CTL_MACHDEP, CTL_CREATE, CTL_EOL); 6579 } 6580