xref: /netbsd-src/sys/arch/arm/arm32/pmap.c (revision 8a5e2a50be13e77dd4df5daf258ddceeeeb47ce6)
1 /*	$NetBSD: pmap.c,v 1.154 2005/07/04 00:42:37 bsh Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40  * Copyright (c) 2001 Richard Earnshaw
41  * Copyright (c) 2001-2002 Christopher Gilbert
42  * All rights reserved.
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. The name of the company nor the name of the author may be used to
50  *    endorse or promote products derived from this software without specific
51  *    prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  */
65 
66 /*-
67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
68  * All rights reserved.
69  *
70  * This code is derived from software contributed to The NetBSD Foundation
71  * by Charles M. Hannum.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. All advertising materials mentioning features or use of this software
82  *    must display the following acknowledgement:
83  *        This product includes software developed by the NetBSD
84  *        Foundation, Inc. and its contributors.
85  * 4. Neither the name of The NetBSD Foundation nor the names of its
86  *    contributors may be used to endorse or promote products derived
87  *    from this software without specific prior written permission.
88  *
89  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99  * POSSIBILITY OF SUCH DAMAGE.
100  */
101 
102 /*
103  * Copyright (c) 1994-1998 Mark Brinicombe.
104  * Copyright (c) 1994 Brini.
105  * All rights reserved.
106  *
107  * This code is derived from software written for Brini by Mark Brinicombe
108  *
109  * Redistribution and use in source and binary forms, with or without
110  * modification, are permitted provided that the following conditions
111  * are met:
112  * 1. Redistributions of source code must retain the above copyright
113  *    notice, this list of conditions and the following disclaimer.
114  * 2. Redistributions in binary form must reproduce the above copyright
115  *    notice, this list of conditions and the following disclaimer in the
116  *    documentation and/or other materials provided with the distribution.
117  * 3. All advertising materials mentioning features or use of this software
118  *    must display the following acknowledgement:
119  *	This product includes software developed by Mark Brinicombe.
120  * 4. The name of the author may not be used to endorse or promote products
121  *    derived from this software without specific prior written permission.
122  *
123  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132  *
133  * RiscBSD kernel project
134  *
135  * pmap.c
136  *
137  * Machine dependant vm stuff
138  *
139  * Created      : 20/09/94
140  */
141 
142 /*
143  * Performance improvements, UVM changes, overhauls and part-rewrites
144  * were contributed by Neil A. Carson <neil@causality.com>.
145  */
146 
147 /*
148  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150  * Systems, Inc.
151  *
152  * There are still a few things outstanding at this time:
153  *
154  *   - There are some unresolved issues for MP systems:
155  *
156  *     o The L1 metadata needs a lock, or more specifically, some places
157  *       need to acquire an exclusive lock when modifying L1 translation
158  *       table entries.
159  *
160  *     o When one cpu modifies an L1 entry, and that L1 table is also
161  *       being used by another cpu, then the latter will need to be told
162  *       that a tlb invalidation may be necessary. (But only if the old
163  *       domain number in the L1 entry being over-written is currently
164  *       the active domain on that cpu). I guess there are lots more tlb
165  *       shootdown issues too...
166  *
167  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168  *       MP systems will lose big-time because of the MMU domain hack.
169  *       The only way this can be solved (apart from moving the vector
170  *       page to 0xffff0000) is to reserve the first 1MB of user address
171  *       space for kernel use only. This would require re-linking all
172  *       applications so that the text section starts above this 1MB
173  *       boundary.
174  *
175  *     o Tracking which VM space is resident in the cache/tlb has not yet
176  *       been implemented for MP systems.
177  *
178  *     o Finally, there is a pathological condition where two cpus running
179  *       two separate processes (not lwps) which happen to share an L1
180  *       can get into a fight over one or more L1 entries. This will result
181  *       in a significant slow-down if both processes are in tight loops.
182  */
183 
184 /*
185  * Special compilation symbols
186  * PMAP_DEBUG		- Build in pmap_debug_level code
187  */
188 
189 /* Include header files */
190 
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196 
197 #include <sys/types.h>
198 #include <sys/param.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206 
207 #include <uvm/uvm.h>
208 
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214 
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.154 2005/07/04 00:42:37 bsh Exp $");
216 
217 #ifdef PMAP_DEBUG
218 
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221 
222 /*
223  * for switching to potentially finer grained debugging
224  */
225 #define	PDB_FOLLOW	0x0001
226 #define	PDB_INIT	0x0002
227 #define	PDB_ENTER	0x0004
228 #define	PDB_REMOVE	0x0008
229 #define	PDB_CREATE	0x0010
230 #define	PDB_PTPAGE	0x0020
231 #define	PDB_GROWKERN	0x0040
232 #define	PDB_BITS	0x0080
233 #define	PDB_COLLECT	0x0100
234 #define	PDB_PROTECT	0x0200
235 #define	PDB_MAP_L1	0x0400
236 #define	PDB_BOOTSTRAP	0x1000
237 #define	PDB_PARANOIA	0x2000
238 #define	PDB_WIRING	0x4000
239 #define	PDB_PVDUMP	0x8000
240 #define	PDB_VAC		0x10000
241 #define	PDB_KENTER	0x20000
242 #define	PDB_KREMOVE	0x40000
243 
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define	NPDEBUG(_lev_,_stat_) \
247 	if (pmapdebug & (_lev_)) \
248         	((_stat_))
249 
250 #else	/* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif	/* PMAP_DEBUG */
253 
254 /*
255  * pmap_kernel() points here
256  */
257 struct pmap     kernel_pmap_store;
258 
259 /*
260  * Which pmap is currently 'live' in the cache
261  *
262  * XXXSCW: Fix for SMP ...
263  */
264 union pmap_cache_state *pmap_cache_state;
265 
266 /*
267  * Pool and cache that pmap structures are allocated from.
268  * We use a cache to avoid clearing the pm_l2[] array (1KB)
269  * in pmap_create().
270  */
271 static struct pool pmap_pmap_pool;
272 static struct pool_cache pmap_pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274 
275 /*
276  * Pool of PV structures
277  */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284 
285 /*
286  * Pool and cache of l2_dtable structures.
287  * We use a cache to avoid clearing the structures when they're
288  * allocated. (196 bytes)
289  */
290 static struct pool pmap_l2dtable_pool;
291 static struct pool_cache pmap_l2dtable_cache;
292 static vaddr_t pmap_kernel_l2dtable_kva;
293 
294 /*
295  * Pool and cache of L2 page descriptors.
296  * We use a cache to avoid clearing the descriptor table
297  * when they're allocated. (1KB)
298  */
299 static struct pool pmap_l2ptp_pool;
300 static struct pool_cache pmap_l2ptp_cache;
301 static vaddr_t pmap_kernel_l2ptp_kva;
302 static paddr_t pmap_kernel_l2ptp_phys;
303 
304 /*
305  * pmap copy/zero page, and mem(5) hook point
306  */
307 static pt_entry_t *csrc_pte, *cdst_pte;
308 static vaddr_t csrcp, cdstp;
309 char *memhook;
310 extern caddr_t msgbufaddr;
311 
312 /*
313  * Flag to indicate if pmap_init() has done its thing
314  */
315 boolean_t pmap_initialized;
316 
317 /*
318  * Misc. locking data structures
319  */
320 
321 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
322 static struct lock pmap_main_lock;
323 
324 #define PMAP_MAP_TO_HEAD_LOCK() \
325      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
326 #define PMAP_MAP_TO_HEAD_UNLOCK() \
327      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
328 #define PMAP_HEAD_TO_MAP_LOCK() \
329      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
330 #define PMAP_HEAD_TO_MAP_UNLOCK() \
331      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
332 #else
333 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
334 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
335 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
336 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
337 #endif
338 
339 #define	pmap_acquire_pmap_lock(pm)			\
340 	do {						\
341 		if ((pm) != pmap_kernel())		\
342 			simple_lock(&(pm)->pm_lock);	\
343 	} while (/*CONSTCOND*/0)
344 
345 #define	pmap_release_pmap_lock(pm)			\
346 	do {						\
347 		if ((pm) != pmap_kernel())		\
348 			simple_unlock(&(pm)->pm_lock);	\
349 	} while (/*CONSTCOND*/0)
350 
351 
352 /*
353  * Metadata for L1 translation tables.
354  */
355 struct l1_ttable {
356 	/* Entry on the L1 Table list */
357 	SLIST_ENTRY(l1_ttable) l1_link;
358 
359 	/* Entry on the L1 Least Recently Used list */
360 	TAILQ_ENTRY(l1_ttable) l1_lru;
361 
362 	/* Track how many domains are allocated from this L1 */
363 	volatile u_int l1_domain_use_count;
364 
365 	/*
366 	 * A free-list of domain numbers for this L1.
367 	 * We avoid using ffs() and a bitmap to track domains since ffs()
368 	 * is slow on ARM.
369 	 */
370 	u_int8_t l1_domain_first;
371 	u_int8_t l1_domain_free[PMAP_DOMAINS];
372 
373 	/* Physical address of this L1 page table */
374 	paddr_t l1_physaddr;
375 
376 	/* KVA of this L1 page table */
377 	pd_entry_t *l1_kva;
378 };
379 
380 /*
381  * Convert a virtual address into its L1 table index. That is, the
382  * index used to locate the L2 descriptor table pointer in an L1 table.
383  * This is basically used to index l1->l1_kva[].
384  *
385  * Each L2 descriptor table represents 1MB of VA space.
386  */
387 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
388 
389 /*
390  * L1 Page Tables are tracked using a Least Recently Used list.
391  *  - New L1s are allocated from the HEAD.
392  *  - Freed L1s are added to the TAIl.
393  *  - Recently accessed L1s (where an 'access' is some change to one of
394  *    the userland pmaps which owns this L1) are moved to the TAIL.
395  */
396 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
397 static struct simplelock l1_lru_lock;
398 
399 /*
400  * A list of all L1 tables
401  */
402 static SLIST_HEAD(, l1_ttable) l1_list;
403 
404 /*
405  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
406  *
407  * This is normally 16MB worth L2 page descriptors for any given pmap.
408  * Reference counts are maintained for L2 descriptors so they can be
409  * freed when empty.
410  */
411 struct l2_dtable {
412 	/* The number of L2 page descriptors allocated to this l2_dtable */
413 	u_int l2_occupancy;
414 
415 	/* List of L2 page descriptors */
416 	struct l2_bucket {
417 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
418 		paddr_t l2b_phys;	/* Physical address of same */
419 		u_short l2b_l1idx;	/* This L2 table's L1 index */
420 		u_short l2b_occupancy;	/* How many active descriptors */
421 	} l2_bucket[L2_BUCKET_SIZE];
422 };
423 
424 /*
425  * Given an L1 table index, calculate the corresponding l2_dtable index
426  * and bucket index within the l2_dtable.
427  */
428 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
429 				 (L2_SIZE - 1))
430 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
431 
432 /*
433  * Given a virtual address, this macro returns the
434  * virtual address required to drop into the next L2 bucket.
435  */
436 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
437 
438 /*
439  * L2 allocation.
440  */
441 #define	pmap_alloc_l2_dtable()		\
442 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
443 #define	pmap_free_l2_dtable(l2)		\
444 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
445 #define pmap_alloc_l2_ptp(pap)		\
446 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
447 	    PR_NOWAIT, (pap)))
448 
449 /*
450  * We try to map the page tables write-through, if possible.  However, not
451  * all CPUs have a write-through cache mode, so on those we have to sync
452  * the cache when we frob page tables.
453  *
454  * We try to evaluate this at compile time, if possible.  However, it's
455  * not always possible to do that, hence this run-time var.
456  */
457 int	pmap_needs_pte_sync;
458 
459 /*
460  * Real definition of pv_entry.
461  */
462 struct pv_entry {
463 	struct pv_entry *pv_next;       /* next pv_entry */
464 	pmap_t		pv_pmap;        /* pmap where mapping lies */
465 	vaddr_t		pv_va;          /* virtual address for mapping */
466 	u_int		pv_flags;       /* flags */
467 };
468 
469 /*
470  * Macro to determine if a mapping might be resident in the
471  * instruction cache and/or TLB
472  */
473 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
474 
475 /*
476  * Macro to determine if a mapping might be resident in the
477  * data cache and/or TLB
478  */
479 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
480 
481 /*
482  * Local prototypes
483  */
484 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
485 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
486 			    pt_entry_t **);
487 static boolean_t	pmap_is_current(pmap_t);
488 static boolean_t	pmap_is_cached(pmap_t);
489 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
490 			    pmap_t, vaddr_t, u_int);
491 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
492 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
493 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
494 			    u_int, u_int);
495 
496 static void		pmap_pinit(pmap_t);
497 static int		pmap_pmap_ctor(void *, void *, int);
498 
499 static void		pmap_alloc_l1(pmap_t);
500 static void		pmap_free_l1(pmap_t);
501 static void		pmap_use_l1(pmap_t);
502 
503 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
504 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
505 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
506 static int		pmap_l2ptp_ctor(void *, void *, int);
507 static int		pmap_l2dtable_ctor(void *, void *, int);
508 
509 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
510 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
511 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
512 
513 static void		pmap_clearbit(struct vm_page *, u_int);
514 static int		pmap_clean_page(struct pv_entry *, boolean_t);
515 static void		pmap_page_remove(struct vm_page *);
516 
517 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
518 static vaddr_t		kernel_pt_lookup(paddr_t);
519 
520 
521 /*
522  * External function prototypes
523  */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526 
527 /*
528  * Misc variables
529  */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533 
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536 
537 extern pv_addr_t systempage;
538 
539 /* Function to set the debug level of the pmap code */
540 
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 	pmap_debug_level = level;
546 	printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif	/* PMAP_DEBUG */
549 
550 /*
551  * A bunch of routines to conditionally flush the caches/TLB depending
552  * on whether the specified pmap actually needs to be flushed at any
553  * given time.
554  */
555 static __inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558 
559 	if (pm->pm_cstate.cs_tlb_id)
560 		cpu_tlb_flushID_SE(va);
561 }
562 
563 static __inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566 
567 	if (pm->pm_cstate.cs_tlb_d)
568 		cpu_tlb_flushD_SE(va);
569 }
570 
571 static __inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574 
575 	if (pm->pm_cstate.cs_tlb_id) {
576 		cpu_tlb_flushID();
577 		pm->pm_cstate.cs_tlb = 0;
578 	}
579 }
580 
581 static __inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584 
585 	if (pm->pm_cstate.cs_tlb_d) {
586 		cpu_tlb_flushD();
587 		pm->pm_cstate.cs_tlb_d = 0;
588 	}
589 }
590 
591 static __inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594 
595 	if (pm->pm_cstate.cs_cache_id)
596 		cpu_idcache_wbinv_range(va, len);
597 }
598 
599 static __inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601     boolean_t do_inv, boolean_t rd_only)
602 {
603 
604 	if (pm->pm_cstate.cs_cache_d) {
605 		if (do_inv) {
606 			if (rd_only)
607 				cpu_dcache_inv_range(va, len);
608 			else
609 				cpu_dcache_wbinv_range(va, len);
610 		} else
611 		if (!rd_only)
612 			cpu_dcache_wb_range(va, len);
613 	}
614 }
615 
616 static __inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619 
620 	if (pm->pm_cstate.cs_cache_id) {
621 		cpu_idcache_wbinv_all();
622 		pm->pm_cstate.cs_cache = 0;
623 	}
624 }
625 
626 static __inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629 
630 	if (pm->pm_cstate.cs_cache_d) {
631 		cpu_dcache_wbinv_all();
632 		pm->pm_cstate.cs_cache_d = 0;
633 	}
634 }
635 
636 static __inline boolean_t
637 pmap_is_current(pmap_t pm)
638 {
639 
640 	if (pm == pmap_kernel() ||
641 	    (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 		return (TRUE);
643 
644 	return (FALSE);
645 }
646 
647 static __inline boolean_t
648 pmap_is_cached(pmap_t pm)
649 {
650 
651 	if (pm == pmap_kernel() || pmap_cache_state == NULL ||
652 	   pmap_cache_state == &pm->pm_cstate)
653 		return (TRUE);
654 
655 	return (FALSE);
656 }
657 
658 /*
659  * PTE_SYNC_CURRENT:
660  *
661  *     Make sure the pte is written out to RAM.
662  *     We need to do this for one of two cases:
663  *       - We're dealing with the kernel pmap
664  *       - There is no pmap active in the cache/tlb.
665  *       - The specified pmap is 'active' in the cache/tlb.
666  */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define	PTE_SYNC_CURRENT(pm, ptep)	\
669 do {					\
670 	if (PMAP_NEEDS_PTE_SYNC && 	\
671 	    pmap_is_cached(pm))		\
672 		PTE_SYNC(ptep);		\
673 } while (/*CONSTCOND*/0)
674 #else
675 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
676 #endif
677 
678 /*
679  * main pv_entry manipulation functions:
680  *   pmap_enter_pv: enter a mapping onto a vm_page list
681  *   pmap_remove_pv: remove a mappiing from a vm_page list
682  *
683  * NOTE: pmap_enter_pv expects to lock the pvh itself
684  *       pmap_remove_pv expects te caller to lock the pvh before calling
685  */
686 
687 /*
688  * pmap_enter_pv: enter a mapping onto a vm_page lst
689  *
690  * => caller should hold the proper lock on pmap_main_lock
691  * => caller should have pmap locked
692  * => we will gain the lock on the vm_page and allocate the new pv_entry
693  * => caller should adjust ptp's wire_count before calling
694  * => caller should not adjust pmap's wire_count
695  */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698     vaddr_t va, u_int flags)
699 {
700 
701 	NPDEBUG(PDB_PVDUMP,
702 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703 
704 	pve->pv_pmap = pm;
705 	pve->pv_va = va;
706 	pve->pv_flags = flags;
707 
708 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
709 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
710 	pg->mdpage.pvh_list = pve;		/* ... locked list */
711 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 	if (pm == pmap_kernel()) {
713 		if (flags & PVF_WRITE)
714 			pg->mdpage.krw_mappings++;
715 		else
716 			pg->mdpage.kro_mappings++;
717 	} else
718 	if (flags & PVF_WRITE)
719 		pg->mdpage.urw_mappings++;
720 	else
721 		pg->mdpage.uro_mappings++;
722 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
723 
724 	if (pve->pv_flags & PVF_WIRED)
725 		++pm->pm_stats.wired_count;
726 }
727 
728 /*
729  *
730  * pmap_find_pv: Find a pv entry
731  *
732  * => caller should hold lock on vm_page
733  */
734 static __inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 	struct pv_entry *pv;
738 
739 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 		if (pm == pv->pv_pmap && va == pv->pv_va)
741 			break;
742 	}
743 
744 	return (pv);
745 }
746 
747 /*
748  * pmap_remove_pv: try to remove a mapping from a pv_list
749  *
750  * => caller should hold proper lock on pmap_main_lock
751  * => pmap should be locked
752  * => caller should hold lock on vm_page [so that attrs can be adjusted]
753  * => caller should adjust ptp's wire_count and free PTP if needed
754  * => caller should NOT adjust pmap's wire_count
755  * => we return the removed pve
756  */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
759 {
760 	struct pv_entry *pve, **prevptr;
761 
762 	NPDEBUG(PDB_PVDUMP,
763 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764 
765 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
766 	pve = *prevptr;
767 
768 	while (pve) {
769 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
770 			NPDEBUG(PDB_PVDUMP,
771 			    printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 			*prevptr = pve->pv_next;		/* remove it! */
773 			if (pve->pv_flags & PVF_WIRED)
774 			    --pm->pm_stats.wired_count;
775 			if (pm == pmap_kernel()) {
776 				if (pve->pv_flags & PVF_WRITE)
777 					pg->mdpage.krw_mappings--;
778 				else
779 					pg->mdpage.kro_mappings--;
780 			} else
781 			if (pve->pv_flags & PVF_WRITE)
782 				pg->mdpage.urw_mappings--;
783 			else
784 				pg->mdpage.uro_mappings--;
785 			break;
786 		}
787 		prevptr = &pve->pv_next;		/* previous pointer */
788 		pve = pve->pv_next;			/* advance */
789 	}
790 
791 	return(pve);				/* return removed pve */
792 }
793 
794 /*
795  *
796  * pmap_modify_pv: Update pv flags
797  *
798  * => caller should hold lock on vm_page [so that attrs can be adjusted]
799  * => caller should NOT adjust pmap's wire_count
800  * => caller must call pmap_vac_me_harder() if writable status of a page
801  *    may have changed.
802  * => we return the old flags
803  *
804  * Modify a physical-virtual mapping in the pv table
805  */
806 static u_int
807 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
808     u_int clr_mask, u_int set_mask)
809 {
810 	struct pv_entry *npv;
811 	u_int flags, oflags;
812 
813 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
814 		return (0);
815 
816 	NPDEBUG(PDB_PVDUMP,
817 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
818 
819 	/*
820 	 * There is at least one VA mapping this page.
821 	 */
822 
823 	if (clr_mask & (PVF_REF | PVF_MOD))
824 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
825 
826 	oflags = npv->pv_flags;
827 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
828 
829 	if ((flags ^ oflags) & PVF_WIRED) {
830 		if (flags & PVF_WIRED)
831 			++pm->pm_stats.wired_count;
832 		else
833 			--pm->pm_stats.wired_count;
834 	}
835 
836 	if ((flags ^ oflags) & PVF_WRITE) {
837 		if (pm == pmap_kernel()) {
838 			if (flags & PVF_WRITE) {
839 				pg->mdpage.krw_mappings++;
840 				pg->mdpage.kro_mappings--;
841 			} else {
842 				pg->mdpage.kro_mappings++;
843 				pg->mdpage.krw_mappings--;
844 			}
845 		} else
846 		if (flags & PVF_WRITE) {
847 			pg->mdpage.urw_mappings++;
848 			pg->mdpage.uro_mappings--;
849 		} else {
850 			pg->mdpage.uro_mappings++;
851 			pg->mdpage.urw_mappings--;
852 		}
853 	}
854 
855 	return (oflags);
856 }
857 
858 static void
859 pmap_pinit(pmap_t pm)
860 {
861 
862 	if (vector_page < KERNEL_BASE) {
863 		/*
864 		 * Map the vector page.
865 		 */
866 		pmap_enter(pm, vector_page, systempage.pv_pa,
867 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
868 		pmap_update(pm);
869 	}
870 }
871 
872 /*
873  * Allocate an L1 translation table for the specified pmap.
874  * This is called at pmap creation time.
875  */
876 static void
877 pmap_alloc_l1(pmap_t pm)
878 {
879 	struct l1_ttable *l1;
880 	u_int8_t domain;
881 
882 	/*
883 	 * Remove the L1 at the head of the LRU list
884 	 */
885 	simple_lock(&l1_lru_lock);
886 	l1 = TAILQ_FIRST(&l1_lru_list);
887 	KDASSERT(l1 != NULL);
888 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
889 
890 	/*
891 	 * Pick the first available domain number, and update
892 	 * the link to the next number.
893 	 */
894 	domain = l1->l1_domain_first;
895 	l1->l1_domain_first = l1->l1_domain_free[domain];
896 
897 	/*
898 	 * If there are still free domain numbers in this L1,
899 	 * put it back on the TAIL of the LRU list.
900 	 */
901 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
902 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
903 
904 	simple_unlock(&l1_lru_lock);
905 
906 	/*
907 	 * Fix up the relevant bits in the pmap structure
908 	 */
909 	pm->pm_l1 = l1;
910 	pm->pm_domain = domain;
911 }
912 
913 /*
914  * Free an L1 translation table.
915  * This is called at pmap destruction time.
916  */
917 static void
918 pmap_free_l1(pmap_t pm)
919 {
920 	struct l1_ttable *l1 = pm->pm_l1;
921 
922 	simple_lock(&l1_lru_lock);
923 
924 	/*
925 	 * If this L1 is currently on the LRU list, remove it.
926 	 */
927 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
928 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
929 
930 	/*
931 	 * Free up the domain number which was allocated to the pmap
932 	 */
933 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
934 	l1->l1_domain_first = pm->pm_domain;
935 	l1->l1_domain_use_count--;
936 
937 	/*
938 	 * The L1 now must have at least 1 free domain, so add
939 	 * it back to the LRU list. If the use count is zero,
940 	 * put it at the head of the list, otherwise it goes
941 	 * to the tail.
942 	 */
943 	if (l1->l1_domain_use_count == 0)
944 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
945 	else
946 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
947 
948 	simple_unlock(&l1_lru_lock);
949 }
950 
951 static __inline void
952 pmap_use_l1(pmap_t pm)
953 {
954 	struct l1_ttable *l1;
955 
956 	/*
957 	 * Do nothing if we're in interrupt context.
958 	 * Access to an L1 by the kernel pmap must not affect
959 	 * the LRU list.
960 	 */
961 	if (current_intr_depth || pm == pmap_kernel())
962 		return;
963 
964 	l1 = pm->pm_l1;
965 
966 	/*
967 	 * If the L1 is not currently on the LRU list, just return
968 	 */
969 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
970 		return;
971 
972 	simple_lock(&l1_lru_lock);
973 
974 	/*
975 	 * Check the use count again, now that we've acquired the lock
976 	 */
977 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
978 		simple_unlock(&l1_lru_lock);
979 		return;
980 	}
981 
982 	/*
983 	 * Move the L1 to the back of the LRU list
984 	 */
985 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
986 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
987 
988 	simple_unlock(&l1_lru_lock);
989 }
990 
991 /*
992  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
993  *
994  * Free an L2 descriptor table.
995  */
996 static __inline void
997 #ifndef PMAP_INCLUDE_PTE_SYNC
998 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
999 #else
1000 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1001 #endif
1002 {
1003 #ifdef PMAP_INCLUDE_PTE_SYNC
1004 	/*
1005 	 * Note: With a write-back cache, we may need to sync this
1006 	 * L2 table before re-using it.
1007 	 * This is because it may have belonged to a non-current
1008 	 * pmap, in which case the cache syncs would have been
1009 	 * skipped when the pages were being unmapped. If the
1010 	 * L2 table were then to be immediately re-allocated to
1011 	 * the *current* pmap, it may well contain stale mappings
1012 	 * which have not yet been cleared by a cache write-back
1013 	 * and so would still be visible to the mmu.
1014 	 */
1015 	if (need_sync)
1016 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1017 #endif
1018 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1019 }
1020 
1021 /*
1022  * Returns a pointer to the L2 bucket associated with the specified pmap
1023  * and VA, or NULL if no L2 bucket exists for the address.
1024  */
1025 static __inline struct l2_bucket *
1026 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1027 {
1028 	struct l2_dtable *l2;
1029 	struct l2_bucket *l2b;
1030 	u_short l1idx;
1031 
1032 	l1idx = L1_IDX(va);
1033 
1034 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1035 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1036 		return (NULL);
1037 
1038 	return (l2b);
1039 }
1040 
1041 /*
1042  * Returns a pointer to the L2 bucket associated with the specified pmap
1043  * and VA.
1044  *
1045  * If no L2 bucket exists, perform the necessary allocations to put an L2
1046  * bucket/page table in place.
1047  *
1048  * Note that if a new L2 bucket/page was allocated, the caller *must*
1049  * increment the bucket occupancy counter appropriately *before*
1050  * releasing the pmap's lock to ensure no other thread or cpu deallocates
1051  * the bucket/page in the meantime.
1052  */
1053 static struct l2_bucket *
1054 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1055 {
1056 	struct l2_dtable *l2;
1057 	struct l2_bucket *l2b;
1058 	u_short l1idx;
1059 
1060 	l1idx = L1_IDX(va);
1061 
1062 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1063 		/*
1064 		 * No mapping at this address, as there is
1065 		 * no entry in the L1 table.
1066 		 * Need to allocate a new l2_dtable.
1067 		 */
1068 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1069 			return (NULL);
1070 
1071 		/*
1072 		 * Link it into the parent pmap
1073 		 */
1074 		pm->pm_l2[L2_IDX(l1idx)] = l2;
1075 	}
1076 
1077 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1078 
1079 	/*
1080 	 * Fetch pointer to the L2 page table associated with the address.
1081 	 */
1082 	if (l2b->l2b_kva == NULL) {
1083 		pt_entry_t *ptep;
1084 
1085 		/*
1086 		 * No L2 page table has been allocated. Chances are, this
1087 		 * is because we just allocated the l2_dtable, above.
1088 		 */
1089 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1090 			/*
1091 			 * Oops, no more L2 page tables available at this
1092 			 * time. We may need to deallocate the l2_dtable
1093 			 * if we allocated a new one above.
1094 			 */
1095 			if (l2->l2_occupancy == 0) {
1096 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
1097 				pmap_free_l2_dtable(l2);
1098 			}
1099 			return (NULL);
1100 		}
1101 
1102 		l2->l2_occupancy++;
1103 		l2b->l2b_kva = ptep;
1104 		l2b->l2b_l1idx = l1idx;
1105 	}
1106 
1107 	return (l2b);
1108 }
1109 
1110 /*
1111  * One or more mappings in the specified L2 descriptor table have just been
1112  * invalidated.
1113  *
1114  * Garbage collect the metadata and descriptor table itself if necessary.
1115  *
1116  * The pmap lock must be acquired when this is called (not necessary
1117  * for the kernel pmap).
1118  */
1119 static void
1120 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1121 {
1122 	struct l2_dtable *l2;
1123 	pd_entry_t *pl1pd, l1pd;
1124 	pt_entry_t *ptep;
1125 	u_short l1idx;
1126 
1127 	KDASSERT(count <= l2b->l2b_occupancy);
1128 
1129 	/*
1130 	 * Update the bucket's reference count according to how many
1131 	 * PTEs the caller has just invalidated.
1132 	 */
1133 	l2b->l2b_occupancy -= count;
1134 
1135 	/*
1136 	 * Note:
1137 	 *
1138 	 * Level 2 page tables allocated to the kernel pmap are never freed
1139 	 * as that would require checking all Level 1 page tables and
1140 	 * removing any references to the Level 2 page table. See also the
1141 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1142 	 *
1143 	 * We make do with just invalidating the mapping in the L2 table.
1144 	 *
1145 	 * This isn't really a big deal in practice and, in fact, leads
1146 	 * to a performance win over time as we don't need to continually
1147 	 * alloc/free.
1148 	 */
1149 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1150 		return;
1151 
1152 	/*
1153 	 * There are no more valid mappings in this level 2 page table.
1154 	 * Go ahead and NULL-out the pointer in the bucket, then
1155 	 * free the page table.
1156 	 */
1157 	l1idx = l2b->l2b_l1idx;
1158 	ptep = l2b->l2b_kva;
1159 	l2b->l2b_kva = NULL;
1160 
1161 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1162 
1163 	/*
1164 	 * If the L1 slot matches the pmap's domain
1165 	 * number, then invalidate it.
1166 	 */
1167 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1168 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1169 		*pl1pd = 0;
1170 		PTE_SYNC(pl1pd);
1171 	}
1172 
1173 	/*
1174 	 * Release the L2 descriptor table back to the pool cache.
1175 	 */
1176 #ifndef PMAP_INCLUDE_PTE_SYNC
1177 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1178 #else
1179 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1180 #endif
1181 
1182 	/*
1183 	 * Update the reference count in the associated l2_dtable
1184 	 */
1185 	l2 = pm->pm_l2[L2_IDX(l1idx)];
1186 	if (--l2->l2_occupancy > 0)
1187 		return;
1188 
1189 	/*
1190 	 * There are no more valid mappings in any of the Level 1
1191 	 * slots managed by this l2_dtable. Go ahead and NULL-out
1192 	 * the pointer in the parent pmap and free the l2_dtable.
1193 	 */
1194 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
1195 	pmap_free_l2_dtable(l2);
1196 }
1197 
1198 /*
1199  * Pool cache constructors for L2 descriptor tables, metadata and pmap
1200  * structures.
1201  */
1202 static int
1203 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1204 {
1205 #ifndef PMAP_INCLUDE_PTE_SYNC
1206 	struct l2_bucket *l2b;
1207 	pt_entry_t *ptep, pte;
1208 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
1209 
1210 	/*
1211 	 * The mappings for these page tables were initially made using
1212 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1213 	 * mode will not be right for page table mappings. To avoid
1214 	 * polluting the pmap_kenter_pa() code with a special case for
1215 	 * page tables, we simply fix up the cache-mode here if it's not
1216 	 * correct.
1217 	 */
1218 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1219 	KDASSERT(l2b != NULL);
1220 	ptep = &l2b->l2b_kva[l2pte_index(va)];
1221 	pte = *ptep;
1222 
1223 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1224 		/*
1225 		 * Page tables must have the cache-mode set to Write-Thru.
1226 		 */
1227 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1228 		PTE_SYNC(ptep);
1229 		cpu_tlb_flushD_SE(va);
1230 		cpu_cpwait();
1231 	}
1232 #endif
1233 
1234 	memset(v, 0, L2_TABLE_SIZE_REAL);
1235 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1236 	return (0);
1237 }
1238 
1239 static int
1240 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1241 {
1242 
1243 	memset(v, 0, sizeof(struct l2_dtable));
1244 	return (0);
1245 }
1246 
1247 static int
1248 pmap_pmap_ctor(void *arg, void *v, int flags)
1249 {
1250 
1251 	memset(v, 0, sizeof(struct pmap));
1252 	return (0);
1253 }
1254 
1255 /*
1256  * Since we have a virtually indexed cache, we may need to inhibit caching if
1257  * there is more than one mapping and at least one of them is writable.
1258  * Since we purge the cache on every context switch, we only need to check for
1259  * other mappings within the same pmap, or kernel_pmap.
1260  * This function is also called when a page is unmapped, to possibly reenable
1261  * caching on any remaining mappings.
1262  *
1263  * The code implements the following logic, where:
1264  *
1265  * KW = # of kernel read/write pages
1266  * KR = # of kernel read only pages
1267  * UW = # of user read/write pages
1268  * UR = # of user read only pages
1269  *
1270  * KC = kernel mapping is cacheable
1271  * UC = user mapping is cacheable
1272  *
1273  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
1274  *             +---------------------------------------------
1275  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
1276  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
1277  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1278  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
1279  */
1280 
1281 static const int pmap_vac_flags[4][4] = {
1282 	{-1,		0,		0,		PVF_KNC},
1283 	{0,		0,		PVF_NC,		PVF_NC},
1284 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
1285 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
1286 };
1287 
1288 static __inline int
1289 pmap_get_vac_flags(const struct vm_page *pg)
1290 {
1291 	int kidx, uidx;
1292 
1293 	kidx = 0;
1294 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1295 		kidx |= 1;
1296 	if (pg->mdpage.krw_mappings)
1297 		kidx |= 2;
1298 
1299 	uidx = 0;
1300 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1301 		uidx |= 1;
1302 	if (pg->mdpage.urw_mappings)
1303 		uidx |= 2;
1304 
1305 	return (pmap_vac_flags[uidx][kidx]);
1306 }
1307 
1308 static __inline void
1309 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1310 {
1311 	int nattr;
1312 
1313 	nattr = pmap_get_vac_flags(pg);
1314 
1315 	if (nattr < 0) {
1316 		pg->mdpage.pvh_attrs &= ~PVF_NC;
1317 		return;
1318 	}
1319 
1320 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1321 		return;
1322 
1323 	if (pm == pmap_kernel())
1324 		pmap_vac_me_kpmap(pg, pm, va);
1325 	else
1326 		pmap_vac_me_user(pg, pm, va);
1327 
1328 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1329 }
1330 
1331 static void
1332 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1333 {
1334 	u_int u_cacheable, u_entries;
1335 	struct pv_entry *pv;
1336 	pmap_t last_pmap = pm;
1337 
1338 	/*
1339 	 * Pass one, see if there are both kernel and user pmaps for
1340 	 * this page.  Calculate whether there are user-writable or
1341 	 * kernel-writable pages.
1342 	 */
1343 	u_cacheable = 0;
1344 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1345 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1346 			u_cacheable++;
1347 	}
1348 
1349 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1350 
1351 	/*
1352 	 * We know we have just been updating a kernel entry, so if
1353 	 * all user pages are already cacheable, then there is nothing
1354 	 * further to do.
1355 	 */
1356 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1357 		return;
1358 
1359 	if (u_entries) {
1360 		/*
1361 		 * Scan over the list again, for each entry, if it
1362 		 * might not be set correctly, call pmap_vac_me_user
1363 		 * to recalculate the settings.
1364 		 */
1365 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1366 			/*
1367 			 * We know kernel mappings will get set
1368 			 * correctly in other calls.  We also know
1369 			 * that if the pmap is the same as last_pmap
1370 			 * then we've just handled this entry.
1371 			 */
1372 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1373 				continue;
1374 
1375 			/*
1376 			 * If there are kernel entries and this page
1377 			 * is writable but non-cacheable, then we can
1378 			 * skip this entry also.
1379 			 */
1380 			if (pg->mdpage.k_mappings &&
1381 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1382 			    (PVF_NC | PVF_WRITE))
1383 				continue;
1384 
1385 			/*
1386 			 * Similarly if there are no kernel-writable
1387 			 * entries and the page is already
1388 			 * read-only/cacheable.
1389 			 */
1390 			if (pg->mdpage.krw_mappings == 0 &&
1391 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1392 				continue;
1393 
1394 			/*
1395 			 * For some of the remaining cases, we know
1396 			 * that we must recalculate, but for others we
1397 			 * can't tell if they are correct or not, so
1398 			 * we recalculate anyway.
1399 			 */
1400 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1401 		}
1402 
1403 		if (pg->mdpage.k_mappings == 0)
1404 			return;
1405 	}
1406 
1407 	pmap_vac_me_user(pg, pm, va);
1408 }
1409 
1410 static void
1411 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1412 {
1413 	pmap_t kpmap = pmap_kernel();
1414 	struct pv_entry *pv, *npv;
1415 	struct l2_bucket *l2b;
1416 	pt_entry_t *ptep, pte;
1417 	u_int entries = 0;
1418 	u_int writable = 0;
1419 	u_int cacheable_entries = 0;
1420 	u_int kern_cacheable = 0;
1421 	u_int other_writable = 0;
1422 
1423 	/*
1424 	 * Count mappings and writable mappings in this pmap.
1425 	 * Include kernel mappings as part of our own.
1426 	 * Keep a pointer to the first one.
1427 	 */
1428 	for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1429 		/* Count mappings in the same pmap */
1430 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1431 			if (entries++ == 0)
1432 				npv = pv;
1433 
1434 			/* Cacheable mappings */
1435 			if ((pv->pv_flags & PVF_NC) == 0) {
1436 				cacheable_entries++;
1437 				if (kpmap == pv->pv_pmap)
1438 					kern_cacheable++;
1439 			}
1440 
1441 			/* Writable mappings */
1442 			if (pv->pv_flags & PVF_WRITE)
1443 				++writable;
1444 		} else
1445 		if (pv->pv_flags & PVF_WRITE)
1446 			other_writable = 1;
1447 	}
1448 
1449 	/*
1450 	 * Enable or disable caching as necessary.
1451 	 * Note: the first entry might be part of the kernel pmap,
1452 	 * so we can't assume this is indicative of the state of the
1453 	 * other (maybe non-kpmap) entries.
1454 	 */
1455 	if ((entries > 1 && writable) ||
1456 	    (entries > 0 && pm == kpmap && other_writable)) {
1457 		if (cacheable_entries == 0)
1458 			return;
1459 
1460 		for (pv = npv; pv; pv = pv->pv_next) {
1461 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1462 			    (pv->pv_flags & PVF_NC))
1463 				continue;
1464 
1465 			pv->pv_flags |= PVF_NC;
1466 
1467 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1468 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1469 			pte = *ptep & ~L2_S_CACHE_MASK;
1470 
1471 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1472 			    l2pte_valid(pte)) {
1473 				if (PV_BEEN_EXECD(pv->pv_flags)) {
1474 					pmap_idcache_wbinv_range(pv->pv_pmap,
1475 					    pv->pv_va, PAGE_SIZE);
1476 					pmap_tlb_flushID_SE(pv->pv_pmap,
1477 					    pv->pv_va);
1478 				} else
1479 				if (PV_BEEN_REFD(pv->pv_flags)) {
1480 					pmap_dcache_wb_range(pv->pv_pmap,
1481 					    pv->pv_va, PAGE_SIZE, TRUE,
1482 					    (pv->pv_flags & PVF_WRITE) == 0);
1483 					pmap_tlb_flushD_SE(pv->pv_pmap,
1484 					    pv->pv_va);
1485 				}
1486 			}
1487 
1488 			*ptep = pte;
1489 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1490 		}
1491 		cpu_cpwait();
1492 	} else
1493 	if (entries > cacheable_entries) {
1494 		/*
1495 		 * Turn cacheing back on for some pages.  If it is a kernel
1496 		 * page, only do so if there are no other writable pages.
1497 		 */
1498 		for (pv = npv; pv; pv = pv->pv_next) {
1499 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1500 			    (kpmap != pv->pv_pmap || other_writable)))
1501 				continue;
1502 
1503 			pv->pv_flags &= ~PVF_NC;
1504 
1505 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1506 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1507 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1508 
1509 			if (l2pte_valid(pte)) {
1510 				if (PV_BEEN_EXECD(pv->pv_flags)) {
1511 					pmap_tlb_flushID_SE(pv->pv_pmap,
1512 					    pv->pv_va);
1513 				} else
1514 				if (PV_BEEN_REFD(pv->pv_flags)) {
1515 					pmap_tlb_flushD_SE(pv->pv_pmap,
1516 					    pv->pv_va);
1517 				}
1518 			}
1519 
1520 			*ptep = pte;
1521 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1522 		}
1523 	}
1524 }
1525 
1526 /*
1527  * Modify pte bits for all ptes corresponding to the given physical address.
1528  * We use `maskbits' rather than `clearbits' because we're always passing
1529  * constants and the latter would require an extra inversion at run-time.
1530  */
1531 static void
1532 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1533 {
1534 	struct l2_bucket *l2b;
1535 	struct pv_entry *pv;
1536 	pt_entry_t *ptep, npte, opte;
1537 	pmap_t pm;
1538 	vaddr_t va;
1539 	u_int oflags;
1540 
1541 	NPDEBUG(PDB_BITS,
1542 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1543 	    pg, pg->phys_addr, maskbits));
1544 
1545 	PMAP_HEAD_TO_MAP_LOCK();
1546 	simple_lock(&pg->mdpage.pvh_slock);
1547 
1548 	/*
1549 	 * Clear saved attributes (modify, reference)
1550 	 */
1551 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1552 
1553 	if (pg->mdpage.pvh_list == NULL) {
1554 		simple_unlock(&pg->mdpage.pvh_slock);
1555 		PMAP_HEAD_TO_MAP_UNLOCK();
1556 		return;
1557 	}
1558 
1559 	/*
1560 	 * Loop over all current mappings setting/clearing as appropos
1561 	 */
1562 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1563 		va = pv->pv_va;
1564 		pm = pv->pv_pmap;
1565 		oflags = pv->pv_flags;
1566 		pv->pv_flags &= ~maskbits;
1567 
1568 		pmap_acquire_pmap_lock(pm);
1569 
1570 		l2b = pmap_get_l2_bucket(pm, va);
1571 		KDASSERT(l2b != NULL);
1572 
1573 		ptep = &l2b->l2b_kva[l2pte_index(va)];
1574 		npte = opte = *ptep;
1575 
1576 		NPDEBUG(PDB_BITS,
1577 		    printf(
1578 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1579 		    pv, pv->pv_pmap, pv->pv_va, oflags));
1580 
1581 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1582 			if ((pv->pv_flags & PVF_NC)) {
1583 				/*
1584 				 * Entry is not cacheable:
1585 				 *
1586 				 * Don't turn caching on again if this is a
1587 				 * modified emulation. This would be
1588 				 * inconsitent with the settings created by
1589 				 * pmap_vac_me_harder(). Otherwise, it's safe
1590 				 * to re-enable cacheing.
1591 				 *
1592 				 * There's no need to call pmap_vac_me_harder()
1593 				 * here: all pages are losing their write
1594 				 * permission.
1595 				 */
1596 				if (maskbits & PVF_WRITE) {
1597 					npte |= pte_l2_s_cache_mode;
1598 					pv->pv_flags &= ~PVF_NC;
1599 				}
1600 			} else
1601 			if (opte & L2_S_PROT_W) {
1602 				/*
1603 				 * Entry is writable/cacheable: check if pmap
1604 				 * is current if it is flush it, otherwise it
1605 				 * won't be in the cache
1606 				 */
1607 				if (PV_BEEN_EXECD(oflags))
1608 					pmap_idcache_wbinv_range(pm, pv->pv_va,
1609 					    PAGE_SIZE);
1610 				else
1611 				if (PV_BEEN_REFD(oflags))
1612 					pmap_dcache_wb_range(pm, pv->pv_va,
1613 					    PAGE_SIZE,
1614 					    (maskbits & PVF_REF) ? TRUE : FALSE,
1615 					    FALSE);
1616 			}
1617 
1618 			/* make the pte read only */
1619 			npte &= ~L2_S_PROT_W;
1620 
1621 			if (maskbits & PVF_WRITE) {
1622 				/*
1623 				 * Keep alias accounting up to date
1624 				 */
1625 				if (pv->pv_pmap == pmap_kernel()) {
1626 					if (oflags & PVF_WRITE) {
1627 						pg->mdpage.krw_mappings--;
1628 						pg->mdpage.kro_mappings++;
1629 					}
1630 				} else
1631 				if (oflags & PVF_WRITE) {
1632 					pg->mdpage.urw_mappings--;
1633 					pg->mdpage.uro_mappings++;
1634 				}
1635 			}
1636 		}
1637 
1638 		if (maskbits & PVF_REF) {
1639 			if ((pv->pv_flags & PVF_NC) == 0 &&
1640 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1641 				/*
1642 				 * Check npte here; we may have already
1643 				 * done the wbinv above, and the validity
1644 				 * of the PTE is the same for opte and
1645 				 * npte.
1646 				 */
1647 				if (npte & L2_S_PROT_W) {
1648 					if (PV_BEEN_EXECD(oflags))
1649 						pmap_idcache_wbinv_range(pm,
1650 						    pv->pv_va, PAGE_SIZE);
1651 					else
1652 					if (PV_BEEN_REFD(oflags))
1653 						pmap_dcache_wb_range(pm,
1654 						    pv->pv_va, PAGE_SIZE,
1655 						    TRUE, FALSE);
1656 				} else
1657 				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1658 					/* XXXJRT need idcache_inv_range */
1659 					if (PV_BEEN_EXECD(oflags))
1660 						pmap_idcache_wbinv_range(pm,
1661 						    pv->pv_va, PAGE_SIZE);
1662 					else
1663 					if (PV_BEEN_REFD(oflags))
1664 						pmap_dcache_wb_range(pm,
1665 						    pv->pv_va, PAGE_SIZE,
1666 						    TRUE, TRUE);
1667 				}
1668 			}
1669 
1670 			/*
1671 			 * Make the PTE invalid so that we will take a
1672 			 * page fault the next time the mapping is
1673 			 * referenced.
1674 			 */
1675 			npte &= ~L2_TYPE_MASK;
1676 			npte |= L2_TYPE_INV;
1677 		}
1678 
1679 		if (npte != opte) {
1680 			*ptep = npte;
1681 			PTE_SYNC(ptep);
1682 			/* Flush the TLB entry if a current pmap. */
1683 			if (PV_BEEN_EXECD(oflags))
1684 				pmap_tlb_flushID_SE(pm, pv->pv_va);
1685 			else
1686 			if (PV_BEEN_REFD(oflags))
1687 				pmap_tlb_flushD_SE(pm, pv->pv_va);
1688 		}
1689 
1690 		pmap_release_pmap_lock(pm);
1691 
1692 		NPDEBUG(PDB_BITS,
1693 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1694 		    pm, va, opte, npte));
1695 	}
1696 
1697 	simple_unlock(&pg->mdpage.pvh_slock);
1698 	PMAP_HEAD_TO_MAP_UNLOCK();
1699 }
1700 
1701 /*
1702  * pmap_clean_page()
1703  *
1704  * This is a local function used to work out the best strategy to clean
1705  * a single page referenced by its entry in the PV table. It's used by
1706  * pmap_copy_page, pmap_zero page and maybe some others later on.
1707  *
1708  * Its policy is effectively:
1709  *  o If there are no mappings, we don't bother doing anything with the cache.
1710  *  o If there is one mapping, we clean just that page.
1711  *  o If there are multiple mappings, we clean the entire cache.
1712  *
1713  * So that some functions can be further optimised, it returns 0 if it didn't
1714  * clean the entire cache, or 1 if it did.
1715  *
1716  * XXX One bug in this routine is that if the pv_entry has a single page
1717  * mapped at 0x00000000 a whole cache clean will be performed rather than
1718  * just the 1 page. Since this should not occur in everyday use and if it does
1719  * it will just result in not the most efficient clean for the page.
1720  */
1721 static int
1722 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1723 {
1724 	pmap_t pm, pm_to_clean = NULL;
1725 	struct pv_entry *npv;
1726 	u_int cache_needs_cleaning = 0;
1727 	u_int flags = 0;
1728 	vaddr_t page_to_clean = 0;
1729 
1730 	if (pv == NULL) {
1731 		/* nothing mapped in so nothing to flush */
1732 		return (0);
1733 	}
1734 
1735 	/*
1736 	 * Since we flush the cache each time we change to a different
1737 	 * user vmspace, we only need to flush the page if it is in the
1738 	 * current pmap.
1739 	 */
1740 	if (curproc)
1741 		pm = curproc->p_vmspace->vm_map.pmap;
1742 	else
1743 		pm = pmap_kernel();
1744 
1745 	for (npv = pv; npv; npv = npv->pv_next) {
1746 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1747 			flags |= npv->pv_flags;
1748 			/*
1749 			 * The page is mapped non-cacheable in
1750 			 * this map.  No need to flush the cache.
1751 			 */
1752 			if (npv->pv_flags & PVF_NC) {
1753 #ifdef DIAGNOSTIC
1754 				if (cache_needs_cleaning)
1755 					panic("pmap_clean_page: "
1756 					    "cache inconsistency");
1757 #endif
1758 				break;
1759 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1760 				continue;
1761 			if (cache_needs_cleaning) {
1762 				page_to_clean = 0;
1763 				break;
1764 			} else {
1765 				page_to_clean = npv->pv_va;
1766 				pm_to_clean = npv->pv_pmap;
1767 			}
1768 			cache_needs_cleaning = 1;
1769 		}
1770 	}
1771 
1772 	if (page_to_clean) {
1773 		if (PV_BEEN_EXECD(flags))
1774 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1775 			    PAGE_SIZE);
1776 		else
1777 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1778 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1779 	} else if (cache_needs_cleaning) {
1780 		if (PV_BEEN_EXECD(flags))
1781 			pmap_idcache_wbinv_all(pm);
1782 		else
1783 			pmap_dcache_wbinv_all(pm);
1784 		return (1);
1785 	}
1786 	return (0);
1787 }
1788 
1789 /*
1790  * Routine:	pmap_page_remove
1791  * Function:
1792  *		Removes this physical page from
1793  *		all physical maps in which it resides.
1794  *		Reflects back modify bits to the pager.
1795  */
1796 static void
1797 pmap_page_remove(struct vm_page *pg)
1798 {
1799 	struct l2_bucket *l2b;
1800 	struct pv_entry *pv, *npv;
1801 	pmap_t pm, curpm;
1802 	pt_entry_t *ptep, pte;
1803 	boolean_t flush;
1804 	u_int flags;
1805 
1806 	NPDEBUG(PDB_FOLLOW,
1807 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
1808 
1809 	PMAP_HEAD_TO_MAP_LOCK();
1810 	simple_lock(&pg->mdpage.pvh_slock);
1811 
1812 	pv = pg->mdpage.pvh_list;
1813 	if (pv == NULL) {
1814 		simple_unlock(&pg->mdpage.pvh_slock);
1815 		PMAP_HEAD_TO_MAP_UNLOCK();
1816 		return;
1817 	}
1818 
1819 	/*
1820 	 * Clear alias counts
1821 	 */
1822 	pg->mdpage.k_mappings = 0;
1823 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1824 
1825 	flush = FALSE;
1826 	flags = 0;
1827 	if (curproc)
1828 		curpm = curproc->p_vmspace->vm_map.pmap;
1829 	else
1830 		curpm = pmap_kernel();
1831 
1832 	pmap_clean_page(pv, FALSE);
1833 
1834 	while (pv) {
1835 		pm = pv->pv_pmap;
1836 		if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1837 			flush = TRUE;
1838 
1839 		pmap_acquire_pmap_lock(pm);
1840 
1841 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1842 		KDASSERT(l2b != NULL);
1843 
1844 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1845 		pte = *ptep;
1846 
1847 		/*
1848 		 * Update statistics
1849 		 */
1850 		--pm->pm_stats.resident_count;
1851 
1852 		/* Wired bit */
1853 		if (pv->pv_flags & PVF_WIRED)
1854 			--pm->pm_stats.wired_count;
1855 
1856 		flags |= pv->pv_flags;
1857 
1858 		/*
1859 		 * Invalidate the PTEs.
1860 		 */
1861 		*ptep = 0;
1862 		PTE_SYNC_CURRENT(pm, ptep);
1863 		pmap_free_l2_bucket(pm, l2b, 1);
1864 
1865 		npv = pv->pv_next;
1866 		pool_put(&pmap_pv_pool, pv);
1867 		pv = npv;
1868 		pmap_release_pmap_lock(pm);
1869 	}
1870 	pg->mdpage.pvh_list = NULL;
1871 	simple_unlock(&pg->mdpage.pvh_slock);
1872 	PMAP_HEAD_TO_MAP_UNLOCK();
1873 
1874 	if (flush) {
1875 		/*
1876 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1877 		 * would need a subsequent call to pmap_update() to ensure
1878 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
1879 		 * required to do that (see pmap(9)), so we can't modify
1880 		 * the current pmap's state.
1881 		 */
1882 		if (PV_BEEN_EXECD(flags))
1883 			cpu_tlb_flushID();
1884 		else
1885 			cpu_tlb_flushD();
1886 	}
1887 	cpu_cpwait();
1888 }
1889 
1890 /*
1891  * pmap_t pmap_create(void)
1892  *
1893  *      Create a new pmap structure from scratch.
1894  */
1895 pmap_t
1896 pmap_create(void)
1897 {
1898 	pmap_t pm;
1899 
1900 	pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1901 
1902 	simple_lock_init(&pm->pm_lock);
1903 	pm->pm_obj.pgops = NULL;	/* currently not a mappable object */
1904 	TAILQ_INIT(&pm->pm_obj.memq);
1905 	pm->pm_obj.uo_npages = 0;
1906 	pm->pm_obj.uo_refs = 1;
1907 	pm->pm_stats.wired_count = 0;
1908 	pm->pm_stats.resident_count = 1;
1909 	pm->pm_cstate.cs_all = 0;
1910 	pmap_alloc_l1(pm);
1911 
1912 	/*
1913 	 * Note: The pool cache ensures that the pm_l2[] array is already
1914 	 * initialised to zero.
1915 	 */
1916 
1917 	pmap_pinit(pm);
1918 
1919 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1920 
1921 	return (pm);
1922 }
1923 
1924 /*
1925  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1926  *     int flags)
1927  *
1928  *      Insert the given physical page (p) at
1929  *      the specified virtual address (v) in the
1930  *      target physical map with the protection requested.
1931  *
1932  *      NB:  This is the only routine which MAY NOT lazy-evaluate
1933  *      or lose information.  That is, this routine must actually
1934  *      insert this page into the given map NOW.
1935  */
1936 int
1937 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1938 {
1939 	struct l2_bucket *l2b;
1940 	struct vm_page *pg, *opg;
1941 	struct pv_entry *pve;
1942 	pt_entry_t *ptep, npte, opte;
1943 	u_int nflags;
1944 	u_int oflags;
1945 
1946 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1947 
1948 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1949 	KDASSERT(((va | pa) & PGOFSET) == 0);
1950 
1951 	/*
1952 	 * Get a pointer to the page.  Later on in this function, we
1953 	 * test for a managed page by checking pg != NULL.
1954 	 */
1955 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1956 
1957 	nflags = 0;
1958 	if (prot & VM_PROT_WRITE)
1959 		nflags |= PVF_WRITE;
1960 	if (prot & VM_PROT_EXECUTE)
1961 		nflags |= PVF_EXEC;
1962 	if (flags & PMAP_WIRED)
1963 		nflags |= PVF_WIRED;
1964 
1965 	PMAP_MAP_TO_HEAD_LOCK();
1966 	pmap_acquire_pmap_lock(pm);
1967 
1968 	/*
1969 	 * Fetch the L2 bucket which maps this page, allocating one if
1970 	 * necessary for user pmaps.
1971 	 */
1972 	if (pm == pmap_kernel())
1973 		l2b = pmap_get_l2_bucket(pm, va);
1974 	else
1975 		l2b = pmap_alloc_l2_bucket(pm, va);
1976 	if (l2b == NULL) {
1977 		if (flags & PMAP_CANFAIL) {
1978 			pmap_release_pmap_lock(pm);
1979 			PMAP_MAP_TO_HEAD_UNLOCK();
1980 			return (ENOMEM);
1981 		}
1982 		panic("pmap_enter: failed to allocate L2 bucket");
1983 	}
1984 	ptep = &l2b->l2b_kva[l2pte_index(va)];
1985 	opte = *ptep;
1986 	npte = pa;
1987 	oflags = 0;
1988 
1989 	if (opte) {
1990 		/*
1991 		 * There is already a mapping at this address.
1992 		 * If the physical address is different, lookup the
1993 		 * vm_page.
1994 		 */
1995 		if (l2pte_pa(opte) != pa)
1996 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
1997 		else
1998 			opg = pg;
1999 	} else
2000 		opg = NULL;
2001 
2002 	if (pg) {
2003 		/*
2004 		 * This is to be a managed mapping.
2005 		 */
2006 		if ((flags & VM_PROT_ALL) ||
2007 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
2008 			/*
2009 			 * - The access type indicates that we don't need
2010 			 *   to do referenced emulation.
2011 			 * OR
2012 			 * - The physical page has already been referenced
2013 			 *   so no need to re-do referenced emulation here.
2014 			 */
2015 			npte |= L2_S_PROTO;
2016 
2017 			nflags |= PVF_REF;
2018 
2019 			if ((prot & VM_PROT_WRITE) != 0 &&
2020 			    ((flags & VM_PROT_WRITE) != 0 ||
2021 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2022 				/*
2023 				 * This is a writable mapping, and the
2024 				 * page's mod state indicates it has
2025 				 * already been modified. Make it
2026 				 * writable from the outset.
2027 				 */
2028 				npte |= L2_S_PROT_W;
2029 				nflags |= PVF_MOD;
2030 			}
2031 		} else {
2032 			/*
2033 			 * Need to do page referenced emulation.
2034 			 */
2035 			npte |= L2_TYPE_INV;
2036 		}
2037 
2038 		npte |= pte_l2_s_cache_mode;
2039 
2040 		if (pg == opg) {
2041 			/*
2042 			 * We're changing the attrs of an existing mapping.
2043 			 */
2044 			simple_lock(&pg->mdpage.pvh_slock);
2045 			oflags = pmap_modify_pv(pg, pm, va,
2046 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
2047 			    PVF_MOD | PVF_REF, nflags);
2048 			simple_unlock(&pg->mdpage.pvh_slock);
2049 
2050 			/*
2051 			 * We may need to flush the cache if we're
2052 			 * doing rw-ro...
2053 			 */
2054 			if (pm->pm_cstate.cs_cache_d &&
2055 			    (oflags & PVF_NC) == 0 &&
2056 			    (opte & L2_S_PROT_W) != 0 &&
2057 			    (prot & VM_PROT_WRITE) == 0)
2058 				cpu_dcache_wb_range(va, PAGE_SIZE);
2059 		} else {
2060 			/*
2061 			 * New mapping, or changing the backing page
2062 			 * of an existing mapping.
2063 			 */
2064 			if (opg) {
2065 				/*
2066 				 * Replacing an existing mapping with a new one.
2067 				 * It is part of our managed memory so we
2068 				 * must remove it from the PV list
2069 				 */
2070 				simple_lock(&opg->mdpage.pvh_slock);
2071 				pve = pmap_remove_pv(opg, pm, va);
2072 				pmap_vac_me_harder(opg, pm, 0);
2073 				simple_unlock(&opg->mdpage.pvh_slock);
2074 				oflags = pve->pv_flags;
2075 
2076 				/*
2077 				 * If the old mapping was valid (ref/mod
2078 				 * emulation creates 'invalid' mappings
2079 				 * initially) then make sure to frob
2080 				 * the cache.
2081 				 */
2082 				if ((oflags & PVF_NC) == 0 &&
2083 				    l2pte_valid(opte)) {
2084 					if (PV_BEEN_EXECD(oflags)) {
2085 						pmap_idcache_wbinv_range(pm, va,
2086 						    PAGE_SIZE);
2087 					} else
2088 					if (PV_BEEN_REFD(oflags)) {
2089 						pmap_dcache_wb_range(pm, va,
2090 						    PAGE_SIZE, TRUE,
2091 						    (oflags & PVF_WRITE) == 0);
2092 					}
2093 				}
2094 			} else
2095 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2096 				if ((flags & PMAP_CANFAIL) == 0)
2097 					panic("pmap_enter: no pv entries");
2098 
2099 				if (pm != pmap_kernel())
2100 					pmap_free_l2_bucket(pm, l2b, 0);
2101 				pmap_release_pmap_lock(pm);
2102 				PMAP_MAP_TO_HEAD_UNLOCK();
2103 				NPDEBUG(PDB_ENTER,
2104 				    printf("pmap_enter: ENOMEM\n"));
2105 				return (ENOMEM);
2106 			}
2107 
2108 			pmap_enter_pv(pg, pve, pm, va, nflags);
2109 		}
2110 	} else {
2111 		/*
2112 		 * We're mapping an unmanaged page.
2113 		 * These are always readable, and possibly writable, from
2114 		 * the get go as we don't need to track ref/mod status.
2115 		 */
2116 		npte |= L2_S_PROTO;
2117 		if (prot & VM_PROT_WRITE)
2118 			npte |= L2_S_PROT_W;
2119 
2120 		/*
2121 		 * Make sure the vector table is mapped cacheable
2122 		 */
2123 		if (pm != pmap_kernel() && va == vector_page)
2124 			npte |= pte_l2_s_cache_mode;
2125 
2126 		if (opg) {
2127 			/*
2128 			 * Looks like there's an existing 'managed' mapping
2129 			 * at this address.
2130 			 */
2131 			simple_lock(&opg->mdpage.pvh_slock);
2132 			pve = pmap_remove_pv(opg, pm, va);
2133 			pmap_vac_me_harder(opg, pm, 0);
2134 			simple_unlock(&opg->mdpage.pvh_slock);
2135 			oflags = pve->pv_flags;
2136 
2137 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2138 				if (PV_BEEN_EXECD(oflags))
2139 					pmap_idcache_wbinv_range(pm, va,
2140 					    PAGE_SIZE);
2141 				else
2142 				if (PV_BEEN_REFD(oflags))
2143 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2144 					    TRUE, (oflags & PVF_WRITE) == 0);
2145 			}
2146 			pool_put(&pmap_pv_pool, pve);
2147 		}
2148 	}
2149 
2150 	/*
2151 	 * Make sure userland mappings get the right permissions
2152 	 */
2153 	if (pm != pmap_kernel() && va != vector_page)
2154 		npte |= L2_S_PROT_U;
2155 
2156 	/*
2157 	 * Keep the stats up to date
2158 	 */
2159 	if (opte == 0) {
2160 		l2b->l2b_occupancy++;
2161 		pm->pm_stats.resident_count++;
2162 	}
2163 
2164 	NPDEBUG(PDB_ENTER,
2165 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2166 
2167 	/*
2168 	 * If this is just a wiring change, the two PTEs will be
2169 	 * identical, so there's no need to update the page table.
2170 	 */
2171 	if (npte != opte) {
2172 		boolean_t is_cached = pmap_is_cached(pm);
2173 
2174 		*ptep = npte;
2175 		if (is_cached) {
2176 			/*
2177 			 * We only need to frob the cache/tlb if this pmap
2178 			 * is current
2179 			 */
2180 			PTE_SYNC(ptep);
2181 			if (va != vector_page && l2pte_valid(npte)) {
2182 				/*
2183 				 * This mapping is likely to be accessed as
2184 				 * soon as we return to userland. Fix up the
2185 				 * L1 entry to avoid taking another
2186 				 * page/domain fault.
2187 				 */
2188 				pd_entry_t *pl1pd, l1pd;
2189 
2190 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2191 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2192 				    L1_C_PROTO;
2193 				if (*pl1pd != l1pd) {
2194 					*pl1pd = l1pd;
2195 					PTE_SYNC(pl1pd);
2196 				}
2197 			}
2198 		}
2199 
2200 		if (PV_BEEN_EXECD(oflags))
2201 			pmap_tlb_flushID_SE(pm, va);
2202 		else
2203 		if (PV_BEEN_REFD(oflags))
2204 			pmap_tlb_flushD_SE(pm, va);
2205 
2206 		NPDEBUG(PDB_ENTER,
2207 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
2208 		    is_cached, pm->pm_cstate.cs_all));
2209 
2210 		if (pg != NULL) {
2211 			simple_lock(&pg->mdpage.pvh_slock);
2212 			pmap_vac_me_harder(pg, pm, va);
2213 			simple_unlock(&pg->mdpage.pvh_slock);
2214 		}
2215 	}
2216 
2217 	pmap_release_pmap_lock(pm);
2218 	PMAP_MAP_TO_HEAD_UNLOCK();
2219 
2220 	return (0);
2221 }
2222 
2223 /*
2224  * pmap_remove()
2225  *
2226  * pmap_remove is responsible for nuking a number of mappings for a range
2227  * of virtual address space in the current pmap. To do this efficiently
2228  * is interesting, because in a number of cases a wide virtual address
2229  * range may be supplied that contains few actual mappings. So, the
2230  * optimisations are:
2231  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
2232  *  2. Build up a list of pages we've hit, up to a maximum, so we can
2233  *     maybe do just a partial cache clean. This path of execution is
2234  *     complicated by the fact that the cache must be flushed _before_
2235  *     the PTE is nuked, being a VAC :-)
2236  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
2237  *     all invalidations until pmap_update(), since pmap_remove_all() has
2238  *     already flushed the cache.
2239  *  4. Maybe later fast-case a single page, but I don't think this is
2240  *     going to make _that_ much difference overall.
2241  */
2242 
2243 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
2244 
2245 void
2246 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
2247 {
2248 	struct l2_bucket *l2b;
2249 	vaddr_t next_bucket;
2250 	pt_entry_t *ptep;
2251 	u_int cleanlist_idx, total, cnt;
2252 	struct {
2253 		vaddr_t va;
2254 		pt_entry_t *pte;
2255 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2256 	u_int mappings, is_exec, is_refd;
2257 
2258 	NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2259 	    pm, sva, eva));
2260 
2261 	/*
2262 	 * we lock in the pmap => pv_head direction
2263 	 */
2264 	PMAP_MAP_TO_HEAD_LOCK();
2265 	pmap_acquire_pmap_lock(pm);
2266 
2267 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2268 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2269 		if (pm->pm_cstate.cs_tlb == 0)
2270 			pm->pm_remove_all = TRUE;
2271 	} else
2272 		cleanlist_idx = 0;
2273 
2274 	total = 0;
2275 
2276 	while (sva < eva) {
2277 		/*
2278 		 * Do one L2 bucket's worth at a time.
2279 		 */
2280 		next_bucket = L2_NEXT_BUCKET(sva);
2281 		if (next_bucket > eva)
2282 			next_bucket = eva;
2283 
2284 		l2b = pmap_get_l2_bucket(pm, sva);
2285 		if (l2b == NULL) {
2286 			sva = next_bucket;
2287 			continue;
2288 		}
2289 
2290 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
2291 		mappings = 0;
2292 
2293 		while (sva < next_bucket) {
2294 			struct vm_page *pg;
2295 			pt_entry_t pte;
2296 			paddr_t pa;
2297 
2298 			pte = *ptep;
2299 
2300 			if (pte == 0) {
2301 				/*
2302 				 * Nothing here, move along
2303 				 */
2304 				sva += PAGE_SIZE;
2305 				ptep++;
2306 				continue;
2307 			}
2308 
2309 			pm->pm_stats.resident_count--;
2310 			pa = l2pte_pa(pte);
2311 			is_exec = 0;
2312 			is_refd = 1;
2313 
2314 			/*
2315 			 * Update flags. In a number of circumstances,
2316 			 * we could cluster a lot of these and do a
2317 			 * number of sequential pages in one go.
2318 			 */
2319 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2320 				struct pv_entry *pve;
2321 				simple_lock(&pg->mdpage.pvh_slock);
2322 				pve = pmap_remove_pv(pg, pm, sva);
2323 				pmap_vac_me_harder(pg, pm, 0);
2324 				simple_unlock(&pg->mdpage.pvh_slock);
2325 				if (pve != NULL) {
2326 					if (pm->pm_remove_all == FALSE) {
2327 						is_exec =
2328 						   PV_BEEN_EXECD(pve->pv_flags);
2329 						is_refd =
2330 						   PV_BEEN_REFD(pve->pv_flags);
2331 					}
2332 					pool_put(&pmap_pv_pool, pve);
2333 				}
2334 			}
2335 
2336 			if (!l2pte_valid(pte)) {
2337 				*ptep = 0;
2338 				PTE_SYNC_CURRENT(pm, ptep);
2339 				sva += PAGE_SIZE;
2340 				ptep++;
2341 				mappings++;
2342 				continue;
2343 			}
2344 
2345 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2346 				/* Add to the clean list. */
2347 				cleanlist[cleanlist_idx].pte = ptep;
2348 				cleanlist[cleanlist_idx].va =
2349 				    sva | (is_exec & 1);
2350 				cleanlist_idx++;
2351 			} else
2352 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2353 				/* Nuke everything if needed. */
2354 				pmap_idcache_wbinv_all(pm);
2355 				pmap_tlb_flushID(pm);
2356 
2357 				/*
2358 				 * Roll back the previous PTE list,
2359 				 * and zero out the current PTE.
2360 				 */
2361 				for (cnt = 0;
2362 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2363 					*cleanlist[cnt].pte = 0;
2364 				}
2365 				*ptep = 0;
2366 				PTE_SYNC(ptep);
2367 				cleanlist_idx++;
2368 				pm->pm_remove_all = TRUE;
2369 			} else {
2370 				*ptep = 0;
2371 				PTE_SYNC(ptep);
2372 				if (pm->pm_remove_all == FALSE) {
2373 					if (is_exec)
2374 						pmap_tlb_flushID_SE(pm, sva);
2375 					else
2376 					if (is_refd)
2377 						pmap_tlb_flushD_SE(pm, sva);
2378 				}
2379 			}
2380 
2381 			sva += PAGE_SIZE;
2382 			ptep++;
2383 			mappings++;
2384 		}
2385 
2386 		/*
2387 		 * Deal with any left overs
2388 		 */
2389 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2390 			total += cleanlist_idx;
2391 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2392 				if (pm->pm_cstate.cs_all != 0) {
2393 					vaddr_t clva = cleanlist[cnt].va & ~1;
2394 					if (cleanlist[cnt].va & 1) {
2395 						pmap_idcache_wbinv_range(pm,
2396 						    clva, PAGE_SIZE);
2397 						pmap_tlb_flushID_SE(pm, clva);
2398 					} else {
2399 						pmap_dcache_wb_range(pm,
2400 						    clva, PAGE_SIZE, TRUE,
2401 						    FALSE);
2402 						pmap_tlb_flushD_SE(pm, clva);
2403 					}
2404 				}
2405 				*cleanlist[cnt].pte = 0;
2406 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2407 			}
2408 
2409 			/*
2410 			 * If it looks like we're removing a whole bunch
2411 			 * of mappings, it's faster to just write-back
2412 			 * the whole cache now and defer TLB flushes until
2413 			 * pmap_update() is called.
2414 			 */
2415 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2416 				cleanlist_idx = 0;
2417 			else {
2418 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2419 				pmap_idcache_wbinv_all(pm);
2420 				pm->pm_remove_all = TRUE;
2421 			}
2422 		}
2423 
2424 		pmap_free_l2_bucket(pm, l2b, mappings);
2425 	}
2426 
2427 	pmap_release_pmap_lock(pm);
2428 	PMAP_MAP_TO_HEAD_UNLOCK();
2429 }
2430 
2431 /*
2432  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2433  *
2434  * We assume there is already sufficient KVM space available
2435  * to do this, as we can't allocate L2 descriptor tables/metadata
2436  * from here.
2437  */
2438 void
2439 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2440 {
2441 	struct l2_bucket *l2b;
2442 	pt_entry_t *ptep, opte;
2443 
2444 	NPDEBUG(PDB_KENTER,
2445 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2446 	    va, pa, prot));
2447 
2448 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2449 	KDASSERT(l2b != NULL);
2450 
2451 	ptep = &l2b->l2b_kva[l2pte_index(va)];
2452 	opte = *ptep;
2453 
2454 	if (l2pte_valid(opte)) {
2455 		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2456 		cpu_tlb_flushD_SE(va);
2457 		cpu_cpwait();
2458 	} else
2459 	if (opte == 0)
2460 		l2b->l2b_occupancy++;
2461 
2462 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2463 	    pte_l2_s_cache_mode;
2464 	PTE_SYNC(ptep);
2465 }
2466 
2467 void
2468 pmap_kremove(vaddr_t va, vsize_t len)
2469 {
2470 	struct l2_bucket *l2b;
2471 	pt_entry_t *ptep, *sptep, opte;
2472 	vaddr_t next_bucket, eva;
2473 	u_int mappings;
2474 
2475 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2476 	    va, len));
2477 
2478 	eva = va + len;
2479 
2480 	while (va < eva) {
2481 		next_bucket = L2_NEXT_BUCKET(va);
2482 		if (next_bucket > eva)
2483 			next_bucket = eva;
2484 
2485 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2486 		KDASSERT(l2b != NULL);
2487 
2488 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2489 		mappings = 0;
2490 
2491 		while (va < next_bucket) {
2492 			opte = *ptep;
2493 			if (l2pte_valid(opte)) {
2494 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
2495 				cpu_tlb_flushD_SE(va);
2496 			}
2497 			if (opte) {
2498 				*ptep = 0;
2499 				mappings++;
2500 			}
2501 			va += PAGE_SIZE;
2502 			ptep++;
2503 		}
2504 		KDASSERT(mappings <= l2b->l2b_occupancy);
2505 		l2b->l2b_occupancy -= mappings;
2506 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2507 	}
2508 	cpu_cpwait();
2509 }
2510 
2511 boolean_t
2512 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2513 {
2514 	struct l2_dtable *l2;
2515 	pd_entry_t *pl1pd, l1pd;
2516 	pt_entry_t *ptep, pte;
2517 	paddr_t pa;
2518 	u_int l1idx;
2519 
2520 	pmap_acquire_pmap_lock(pm);
2521 
2522 	l1idx = L1_IDX(va);
2523 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
2524 	l1pd = *pl1pd;
2525 
2526 	if (l1pte_section_p(l1pd)) {
2527 		/*
2528 		 * These should only happen for pmap_kernel()
2529 		 */
2530 		KDASSERT(pm == pmap_kernel());
2531 		pmap_release_pmap_lock(pm);
2532 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2533 	} else {
2534 		/*
2535 		 * Note that we can't rely on the validity of the L1
2536 		 * descriptor as an indication that a mapping exists.
2537 		 * We have to look it up in the L2 dtable.
2538 		 */
2539 		l2 = pm->pm_l2[L2_IDX(l1idx)];
2540 
2541 		if (l2 == NULL ||
2542 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2543 			pmap_release_pmap_lock(pm);
2544 			return (FALSE);
2545 		}
2546 
2547 		ptep = &ptep[l2pte_index(va)];
2548 		pte = *ptep;
2549 		pmap_release_pmap_lock(pm);
2550 
2551 		if (pte == 0)
2552 			return (FALSE);
2553 
2554 		switch (pte & L2_TYPE_MASK) {
2555 		case L2_TYPE_L:
2556 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2557 			break;
2558 
2559 		default:
2560 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2561 			break;
2562 		}
2563 	}
2564 
2565 	if (pap != NULL)
2566 		*pap = pa;
2567 
2568 	return (TRUE);
2569 }
2570 
2571 void
2572 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2573 {
2574 	struct l2_bucket *l2b;
2575 	pt_entry_t *ptep, pte;
2576 	vaddr_t next_bucket;
2577 	u_int flags;
2578 	int flush;
2579 
2580 	NPDEBUG(PDB_PROTECT,
2581 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2582 	    pm, sva, eva, prot));
2583 
2584 	if ((prot & VM_PROT_READ) == 0) {
2585 		pmap_remove(pm, sva, eva);
2586 		return;
2587 	}
2588 
2589 	if (prot & VM_PROT_WRITE) {
2590 		/*
2591 		 * If this is a read->write transition, just ignore it and let
2592 		 * uvm_fault() take care of it later.
2593 		 */
2594 		return;
2595 	}
2596 
2597 	PMAP_MAP_TO_HEAD_LOCK();
2598 	pmap_acquire_pmap_lock(pm);
2599 
2600 	/*
2601 	 * OK, at this point, we know we're doing write-protect operation.
2602 	 * If the pmap is active, write-back the range.
2603 	 */
2604 	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2605 
2606 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2607 	flags = 0;
2608 
2609 	while (sva < eva) {
2610 		next_bucket = L2_NEXT_BUCKET(sva);
2611 		if (next_bucket > eva)
2612 			next_bucket = eva;
2613 
2614 		l2b = pmap_get_l2_bucket(pm, sva);
2615 		if (l2b == NULL) {
2616 			sva = next_bucket;
2617 			continue;
2618 		}
2619 
2620 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
2621 
2622 		while (sva < next_bucket) {
2623 			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2624 				struct vm_page *pg;
2625 				u_int f;
2626 
2627 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2628 				pte &= ~L2_S_PROT_W;
2629 				*ptep = pte;
2630 				PTE_SYNC(ptep);
2631 
2632 				if (pg != NULL) {
2633 					simple_lock(&pg->mdpage.pvh_slock);
2634 					f = pmap_modify_pv(pg, pm, sva,
2635 					    PVF_WRITE, 0);
2636 					pmap_vac_me_harder(pg, pm, sva);
2637 					simple_unlock(&pg->mdpage.pvh_slock);
2638 				} else
2639 					f = PVF_REF | PVF_EXEC;
2640 
2641 				if (flush >= 0) {
2642 					flush++;
2643 					flags |= f;
2644 				} else
2645 				if (PV_BEEN_EXECD(f))
2646 					pmap_tlb_flushID_SE(pm, sva);
2647 				else
2648 				if (PV_BEEN_REFD(f))
2649 					pmap_tlb_flushD_SE(pm, sva);
2650 			}
2651 
2652 			sva += PAGE_SIZE;
2653 			ptep++;
2654 		}
2655 	}
2656 
2657 	pmap_release_pmap_lock(pm);
2658 	PMAP_MAP_TO_HEAD_UNLOCK();
2659 
2660 	if (flush) {
2661 		if (PV_BEEN_EXECD(flags))
2662 			pmap_tlb_flushID(pm);
2663 		else
2664 		if (PV_BEEN_REFD(flags))
2665 			pmap_tlb_flushD(pm);
2666 	}
2667 }
2668 
2669 void
2670 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2671 {
2672 
2673 	NPDEBUG(PDB_PROTECT,
2674 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2675 	    pg, pg->phys_addr, prot));
2676 
2677 	switch(prot) {
2678 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2679 	case VM_PROT_READ|VM_PROT_WRITE:
2680 		return;
2681 
2682 	case VM_PROT_READ:
2683 	case VM_PROT_READ|VM_PROT_EXECUTE:
2684 		pmap_clearbit(pg, PVF_WRITE);
2685 		break;
2686 
2687 	default:
2688 		pmap_page_remove(pg);
2689 		break;
2690 	}
2691 }
2692 
2693 /*
2694  * pmap_clear_modify:
2695  *
2696  *	Clear the "modified" attribute for a page.
2697  */
2698 boolean_t
2699 pmap_clear_modify(struct vm_page *pg)
2700 {
2701 	boolean_t rv;
2702 
2703 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
2704 		rv = TRUE;
2705 		pmap_clearbit(pg, PVF_MOD);
2706 	} else
2707 		rv = FALSE;
2708 
2709 	return (rv);
2710 }
2711 
2712 /*
2713  * pmap_clear_reference:
2714  *
2715  *	Clear the "referenced" attribute for a page.
2716  */
2717 boolean_t
2718 pmap_clear_reference(struct vm_page *pg)
2719 {
2720 	boolean_t rv;
2721 
2722 	if (pg->mdpage.pvh_attrs & PVF_REF) {
2723 		rv = TRUE;
2724 		pmap_clearbit(pg, PVF_REF);
2725 	} else
2726 		rv = FALSE;
2727 
2728 	return (rv);
2729 }
2730 
2731 /*
2732  * pmap_is_modified:
2733  *
2734  *	Test if a page has the "modified" attribute.
2735  */
2736 /* See <arm/arm32/pmap.h> */
2737 
2738 /*
2739  * pmap_is_referenced:
2740  *
2741  *	Test if a page has the "referenced" attribute.
2742  */
2743 /* See <arm/arm32/pmap.h> */
2744 
2745 int
2746 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2747 {
2748 	struct l2_dtable *l2;
2749 	struct l2_bucket *l2b;
2750 	pd_entry_t *pl1pd, l1pd;
2751 	pt_entry_t *ptep, pte;
2752 	paddr_t pa;
2753 	u_int l1idx;
2754 	int rv = 0;
2755 
2756 	PMAP_MAP_TO_HEAD_LOCK();
2757 	pmap_acquire_pmap_lock(pm);
2758 
2759 	l1idx = L1_IDX(va);
2760 
2761 	/*
2762 	 * If there is no l2_dtable for this address, then the process
2763 	 * has no business accessing it.
2764 	 *
2765 	 * Note: This will catch userland processes trying to access
2766 	 * kernel addresses.
2767 	 */
2768 	l2 = pm->pm_l2[L2_IDX(l1idx)];
2769 	if (l2 == NULL)
2770 		goto out;
2771 
2772 	/*
2773 	 * Likewise if there is no L2 descriptor table
2774 	 */
2775 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2776 	if (l2b->l2b_kva == NULL)
2777 		goto out;
2778 
2779 	/*
2780 	 * Check the PTE itself.
2781 	 */
2782 	ptep = &l2b->l2b_kva[l2pte_index(va)];
2783 	pte = *ptep;
2784 	if (pte == 0)
2785 		goto out;
2786 
2787 	/*
2788 	 * Catch a userland access to the vector page mapped at 0x0
2789 	 */
2790 	if (user && (pte & L2_S_PROT_U) == 0)
2791 		goto out;
2792 
2793 	pa = l2pte_pa(pte);
2794 
2795 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2796 		/*
2797 		 * This looks like a good candidate for "page modified"
2798 		 * emulation...
2799 		 */
2800 		struct pv_entry *pv;
2801 		struct vm_page *pg;
2802 
2803 		/* Extract the physical address of the page */
2804 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2805 			goto out;
2806 
2807 		/* Get the current flags for this page. */
2808 		simple_lock(&pg->mdpage.pvh_slock);
2809 
2810 		pv = pmap_find_pv(pg, pm, va);
2811 		if (pv == NULL) {
2812 	    		simple_unlock(&pg->mdpage.pvh_slock);
2813 			goto out;
2814 		}
2815 
2816 		/*
2817 		 * Do the flags say this page is writable? If not then it
2818 		 * is a genuine write fault. If yes then the write fault is
2819 		 * our fault as we did not reflect the write access in the
2820 		 * PTE. Now we know a write has occurred we can correct this
2821 		 * and also set the modified bit
2822 		 */
2823 		if ((pv->pv_flags & PVF_WRITE) == 0) {
2824 		    	simple_unlock(&pg->mdpage.pvh_slock);
2825 			goto out;
2826 		}
2827 
2828 		NPDEBUG(PDB_FOLLOW,
2829 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2830 		    pm, va, pg->phys_addr));
2831 
2832 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2833 		pv->pv_flags |= PVF_REF | PVF_MOD;
2834 		simple_unlock(&pg->mdpage.pvh_slock);
2835 
2836 		/*
2837 		 * Re-enable write permissions for the page.  No need to call
2838 		 * pmap_vac_me_harder(), since this is just a
2839 		 * modified-emulation fault, and the PVF_WRITE bit isn't
2840 		 * changing. We've already set the cacheable bits based on
2841 		 * the assumption that we can write to this page.
2842 		 */
2843 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2844 		PTE_SYNC(ptep);
2845 		rv = 1;
2846 	} else
2847 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2848 		/*
2849 		 * This looks like a good candidate for "page referenced"
2850 		 * emulation.
2851 		 */
2852 		struct pv_entry *pv;
2853 		struct vm_page *pg;
2854 
2855 		/* Extract the physical address of the page */
2856 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2857 			goto out;
2858 
2859 		/* Get the current flags for this page. */
2860 		simple_lock(&pg->mdpage.pvh_slock);
2861 
2862 		pv = pmap_find_pv(pg, pm, va);
2863 		if (pv == NULL) {
2864 	    		simple_unlock(&pg->mdpage.pvh_slock);
2865 			goto out;
2866 		}
2867 
2868 		pg->mdpage.pvh_attrs |= PVF_REF;
2869 		pv->pv_flags |= PVF_REF;
2870 		simple_unlock(&pg->mdpage.pvh_slock);
2871 
2872 		NPDEBUG(PDB_FOLLOW,
2873 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2874 		    pm, va, pg->phys_addr));
2875 
2876 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2877 		PTE_SYNC(ptep);
2878 		rv = 1;
2879 	}
2880 
2881 	/*
2882 	 * We know there is a valid mapping here, so simply
2883 	 * fix up the L1 if necessary.
2884 	 */
2885 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
2886 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2887 	if (*pl1pd != l1pd) {
2888 		*pl1pd = l1pd;
2889 		PTE_SYNC(pl1pd);
2890 		rv = 1;
2891 	}
2892 
2893 #ifdef CPU_SA110
2894 	/*
2895 	 * There are bugs in the rev K SA110.  This is a check for one
2896 	 * of them.
2897 	 */
2898 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2899 	    curcpu()->ci_arm_cpurev < 3) {
2900 		/* Always current pmap */
2901 		if (l2pte_valid(pte)) {
2902 			extern int kernel_debug;
2903 			if (kernel_debug & 1) {
2904 				struct proc *p = curlwp->l_proc;
2905 				printf("prefetch_abort: page is already "
2906 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
2907 				printf("prefetch_abort: pc=%08lx proc=%p "
2908 				    "process=%s\n", va, p, p->p_comm);
2909 				printf("prefetch_abort: far=%08x fs=%x\n",
2910 				    cpu_faultaddress(), cpu_faultstatus());
2911 			}
2912 #ifdef DDB
2913 			if (kernel_debug & 2)
2914 				Debugger();
2915 #endif
2916 			rv = 1;
2917 		}
2918 	}
2919 #endif /* CPU_SA110 */
2920 
2921 #ifdef DEBUG
2922 	/*
2923 	 * If 'rv == 0' at this point, it generally indicates that there is a
2924 	 * stale TLB entry for the faulting address. This happens when two or
2925 	 * more processes are sharing an L1. Since we don't flush the TLB on
2926 	 * a context switch between such processes, we can take domain faults
2927 	 * for mappings which exist at the same VA in both processes. EVEN IF
2928 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2929 	 * example.
2930 	 *
2931 	 * This is extremely likely to happen if pmap_enter() updated the L1
2932 	 * entry for a recently entered mapping. In this case, the TLB is
2933 	 * flushed for the new mapping, but there may still be TLB entries for
2934 	 * other mappings belonging to other processes in the 1MB range
2935 	 * covered by the L1 entry.
2936 	 *
2937 	 * Since 'rv == 0', we know that the L1 already contains the correct
2938 	 * value, so the fault must be due to a stale TLB entry.
2939 	 *
2940 	 * Since we always need to flush the TLB anyway in the case where we
2941 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2942 	 * stale TLB entries dynamically.
2943 	 *
2944 	 * However, the above condition can ONLY happen if the current L1 is
2945 	 * being shared. If it happens when the L1 is unshared, it indicates
2946 	 * that other parts of the pmap are not doing their job WRT managing
2947 	 * the TLB.
2948 	 */
2949 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2950 		extern int last_fault_code;
2951 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2952 		    pm, va, ftype);
2953 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2954 		    l2, l2b, ptep, pl1pd);
2955 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2956 		    pte, l1pd, last_fault_code);
2957 #ifdef DDB
2958 		Debugger();
2959 #endif
2960 	}
2961 #endif
2962 
2963 	cpu_tlb_flushID_SE(va);
2964 	cpu_cpwait();
2965 
2966 	rv = 1;
2967 
2968 out:
2969 	pmap_release_pmap_lock(pm);
2970 	PMAP_MAP_TO_HEAD_UNLOCK();
2971 
2972 	return (rv);
2973 }
2974 
2975 /*
2976  * pmap_collect: free resources held by a pmap
2977  *
2978  * => optional function.
2979  * => called when a process is swapped out to free memory.
2980  */
2981 void
2982 pmap_collect(pmap_t pm)
2983 {
2984 	/*
2985 	 * Nothing to do.
2986 	 * We don't even need to free-up the process' L1.
2987 	 */
2988 }
2989 
2990 /*
2991  * Routine:	pmap_procwr
2992  *
2993  * Function:
2994  *	Synchronize caches corresponding to [addr, addr+len) in p.
2995  *
2996  */
2997 void
2998 pmap_procwr(struct proc *p, vaddr_t va, int len)
2999 {
3000 	/* We only need to do anything if it is the current process. */
3001 	if (p == curproc)
3002 		cpu_icache_sync_range(va, len);
3003 }
3004 
3005 /*
3006  * Routine:	pmap_unwire
3007  * Function:	Clear the wired attribute for a map/virtual-address pair.
3008  *
3009  * In/out conditions:
3010  *		The mapping must already exist in the pmap.
3011  */
3012 void
3013 pmap_unwire(pmap_t pm, vaddr_t va)
3014 {
3015 	struct l2_bucket *l2b;
3016 	pt_entry_t *ptep, pte;
3017 	struct vm_page *pg;
3018 	paddr_t pa;
3019 
3020 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3021 
3022 	PMAP_MAP_TO_HEAD_LOCK();
3023 	pmap_acquire_pmap_lock(pm);
3024 
3025 	l2b = pmap_get_l2_bucket(pm, va);
3026 	KDASSERT(l2b != NULL);
3027 
3028 	ptep = &l2b->l2b_kva[l2pte_index(va)];
3029 	pte = *ptep;
3030 
3031 	/* Extract the physical address of the page */
3032 	pa = l2pte_pa(pte);
3033 
3034 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3035 		/* Update the wired bit in the pv entry for this page. */
3036 		simple_lock(&pg->mdpage.pvh_slock);
3037 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3038 		simple_unlock(&pg->mdpage.pvh_slock);
3039 	}
3040 
3041 	pmap_release_pmap_lock(pm);
3042 	PMAP_MAP_TO_HEAD_UNLOCK();
3043 }
3044 
3045 void
3046 pmap_activate(struct lwp *l)
3047 {
3048 	pmap_t pm;
3049 	struct pcb *pcb;
3050 	int s;
3051 
3052 	pm = l->l_proc->p_vmspace->vm_map.pmap;
3053 	pcb = &l->l_addr->u_pcb;
3054 
3055 	pmap_set_pcb_pagedir(pm, pcb);
3056 
3057 	if (l == curlwp) {
3058 		u_int cur_dacr, cur_ttb;
3059 
3060 		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3061 		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3062 
3063 		cur_ttb &= ~(L1_TABLE_SIZE - 1);
3064 
3065 		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3066 		    cur_dacr == pcb->pcb_dacr) {
3067 			/*
3068 			 * No need to switch address spaces.
3069 			 */
3070 			return;
3071 		}
3072 
3073 		s = splhigh();
3074 		pmap_acquire_pmap_lock(pm);
3075 		disable_interrupts(I32_bit | F32_bit);
3076 
3077 		/*
3078 		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3079 		 * to 'vector_page' in the incoming L1 table before switching
3080 		 * to it otherwise subsequent interrupts/exceptions (including
3081 		 * domain faults!) will jump into hyperspace.
3082 		 */
3083 		if (pcb->pcb_pl1vec) {
3084 			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
3085 			/*
3086 			 * Don't need to PTE_SYNC() at this point since
3087 			 * cpu_setttb() is about to flush both the cache
3088 			 * and the TLB.
3089 			 */
3090 		}
3091 
3092 		cpu_domains(pcb->pcb_dacr);
3093 		cpu_setttb(pcb->pcb_pagedir);
3094 
3095 		enable_interrupts(I32_bit | F32_bit);
3096 
3097 		/*
3098 		 * Flag any previous userland pmap as being NOT
3099 		 * resident in the cache/tlb.
3100 		 */
3101 		if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3102 			pmap_cache_state->cs_all = 0;
3103 
3104 		/*
3105 		 * The new pmap, however, IS resident.
3106 		 */
3107 		pmap_cache_state = &pm->pm_cstate;
3108 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3109 		pmap_release_pmap_lock(pm);
3110 		splx(s);
3111 	}
3112 }
3113 
3114 void
3115 pmap_deactivate(struct lwp *l)
3116 {
3117 }
3118 
3119 void
3120 pmap_update(pmap_t pm)
3121 {
3122 
3123 	if (pm->pm_remove_all) {
3124 		/*
3125 		 * Finish up the pmap_remove_all() optimisation by flushing
3126 		 * the TLB.
3127 		 */
3128 		pmap_tlb_flushID(pm);
3129 		pm->pm_remove_all = FALSE;
3130 	}
3131 
3132 	if (pmap_is_current(pm)) {
3133 		/*
3134 		 * If we're dealing with a current userland pmap, move its L1
3135 		 * to the end of the LRU.
3136 		 */
3137 		if (pm != pmap_kernel())
3138 			pmap_use_l1(pm);
3139 
3140 		/*
3141 		 * We can assume we're done with frobbing the cache/tlb for
3142 		 * now. Make sure any future pmap ops don't skip cache/tlb
3143 		 * flushes.
3144 		 */
3145 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3146 	}
3147 
3148 	/*
3149 	 * make sure TLB/cache operations have completed.
3150 	 */
3151 	cpu_cpwait();
3152 }
3153 
3154 void
3155 pmap_remove_all(pmap_t pm)
3156 {
3157 
3158 	/*
3159 	 * The vmspace described by this pmap is about to be torn down.
3160 	 * Until pmap_update() is called, UVM will only make calls
3161 	 * to pmap_remove(). We can make life much simpler by flushing
3162 	 * the cache now, and deferring TLB invalidation to pmap_update().
3163 	 */
3164 	pmap_idcache_wbinv_all(pm);
3165 	pm->pm_remove_all = TRUE;
3166 }
3167 
3168 /*
3169  * Retire the given physical map from service.
3170  * Should only be called if the map contains no valid mappings.
3171  */
3172 void
3173 pmap_destroy(pmap_t pm)
3174 {
3175 	u_int count;
3176 
3177 	if (pm == NULL)
3178 		return;
3179 
3180 	if (pm->pm_remove_all) {
3181 		pmap_tlb_flushID(pm);
3182 		pm->pm_remove_all = FALSE;
3183 	}
3184 
3185 	/*
3186 	 * Drop reference count
3187 	 */
3188 	simple_lock(&pm->pm_lock);
3189 	count = --pm->pm_obj.uo_refs;
3190 	simple_unlock(&pm->pm_lock);
3191 	if (count > 0) {
3192 		if (pmap_is_current(pm)) {
3193 			if (pm != pmap_kernel())
3194 				pmap_use_l1(pm);
3195 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3196 		}
3197 		return;
3198 	}
3199 
3200 	/*
3201 	 * reference count is zero, free pmap resources and then free pmap.
3202 	 */
3203 
3204 	if (vector_page < KERNEL_BASE) {
3205 		struct pcb *pcb = &lwp0.l_addr->u_pcb;
3206 
3207 		if (pmap_is_current(pm)) {
3208 			/*
3209 			 * Frob the L1 entry corresponding to the vector
3210 			 * page so that it contains the kernel pmap's domain
3211 			 * number. This will ensure pmap_remove() does not
3212 			 * pull the current vector page out from under us.
3213 			 */
3214 			disable_interrupts(I32_bit | F32_bit);
3215 			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
3216 			cpu_domains(pcb->pcb_dacr);
3217 			cpu_setttb(pcb->pcb_pagedir);
3218 			enable_interrupts(I32_bit | F32_bit);
3219 		}
3220 
3221 		/* Remove the vector page mapping */
3222 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3223 		pmap_update(pm);
3224 
3225 		/*
3226 		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
3227 		 * since this process has no remaining mappings of its own.
3228 		 */
3229 		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
3230 		curpcb->pcb_l1vec = pcb->pcb_l1vec;
3231 		curpcb->pcb_dacr = pcb->pcb_dacr;
3232 		curpcb->pcb_pagedir = pcb->pcb_pagedir;
3233 	}
3234 
3235 	LIST_REMOVE(pm, pm_list);
3236 
3237 	pmap_free_l1(pm);
3238 
3239 	/* return the pmap to the pool */
3240 	pool_cache_put(&pmap_pmap_cache, pm);
3241 }
3242 
3243 
3244 /*
3245  * void pmap_reference(pmap_t pm)
3246  *
3247  * Add a reference to the specified pmap.
3248  */
3249 void
3250 pmap_reference(pmap_t pm)
3251 {
3252 
3253 	if (pm == NULL)
3254 		return;
3255 
3256 	pmap_use_l1(pm);
3257 
3258 	simple_lock(&pm->pm_lock);
3259 	pm->pm_obj.uo_refs++;
3260 	simple_unlock(&pm->pm_lock);
3261 }
3262 
3263 /*
3264  * pmap_zero_page()
3265  *
3266  * Zero a given physical page by mapping it at a page hook point.
3267  * In doing the zero page op, the page we zero is mapped cachable, as with
3268  * StrongARM accesses to non-cached pages are non-burst making writing
3269  * _any_ bulk data very slow.
3270  */
3271 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3272 void
3273 pmap_zero_page_generic(paddr_t phys)
3274 {
3275 #ifdef DEBUG
3276 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3277 
3278 	if (pg->mdpage.pvh_list != NULL)
3279 		panic("pmap_zero_page: page has mappings");
3280 #endif
3281 
3282 	KDASSERT((phys & PGOFSET) == 0);
3283 
3284 	/*
3285 	 * Hook in the page, zero it, and purge the cache for that
3286 	 * zeroed page. Invalidate the TLB as needed.
3287 	 */
3288 	*cdst_pte = L2_S_PROTO | phys |
3289 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3290 	PTE_SYNC(cdst_pte);
3291 	cpu_tlb_flushD_SE(cdstp);
3292 	cpu_cpwait();
3293 	bzero_page(cdstp);
3294 	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3295 }
3296 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3297 
3298 #if ARM_MMU_XSCALE == 1
3299 void
3300 pmap_zero_page_xscale(paddr_t phys)
3301 {
3302 #ifdef DEBUG
3303 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3304 
3305 	if (pg->mdpage.pvh_list != NULL)
3306 		panic("pmap_zero_page: page has mappings");
3307 #endif
3308 
3309 	KDASSERT((phys & PGOFSET) == 0);
3310 
3311 	/*
3312 	 * Hook in the page, zero it, and purge the cache for that
3313 	 * zeroed page. Invalidate the TLB as needed.
3314 	 */
3315 	*cdst_pte = L2_S_PROTO | phys |
3316 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3317 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
3318 	PTE_SYNC(cdst_pte);
3319 	cpu_tlb_flushD_SE(cdstp);
3320 	cpu_cpwait();
3321 	bzero_page(cdstp);
3322 	xscale_cache_clean_minidata();
3323 }
3324 #endif /* ARM_MMU_XSCALE == 1 */
3325 
3326 /* pmap_pageidlezero()
3327  *
3328  * The same as above, except that we assume that the page is not
3329  * mapped.  This means we never have to flush the cache first.  Called
3330  * from the idle loop.
3331  */
3332 boolean_t
3333 pmap_pageidlezero(paddr_t phys)
3334 {
3335 	unsigned int i;
3336 	int *ptr;
3337 	boolean_t rv = TRUE;
3338 #ifdef DEBUG
3339 	struct vm_page *pg;
3340 
3341 	pg = PHYS_TO_VM_PAGE(phys);
3342 	if (pg->mdpage.pvh_list != NULL)
3343 		panic("pmap_pageidlezero: page has mappings");
3344 #endif
3345 
3346 	KDASSERT((phys & PGOFSET) == 0);
3347 
3348 	/*
3349 	 * Hook in the page, zero it, and purge the cache for that
3350 	 * zeroed page. Invalidate the TLB as needed.
3351 	 */
3352 	*cdst_pte = L2_S_PROTO | phys |
3353 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3354 	PTE_SYNC(cdst_pte);
3355 	cpu_tlb_flushD_SE(cdstp);
3356 	cpu_cpwait();
3357 
3358 	for (i = 0, ptr = (int *)cdstp;
3359 			i < (PAGE_SIZE / sizeof(int)); i++) {
3360 		if (sched_whichqs != 0) {
3361 			/*
3362 			 * A process has become ready.  Abort now,
3363 			 * so we don't keep it waiting while we
3364 			 * do slow memory access to finish this
3365 			 * page.
3366 			 */
3367 			rv = FALSE;
3368 			break;
3369 		}
3370 		*ptr++ = 0;
3371 	}
3372 
3373 	if (rv)
3374 		/*
3375 		 * if we aborted we'll rezero this page again later so don't
3376 		 * purge it unless we finished it
3377 		 */
3378 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3379 
3380 	return (rv);
3381 }
3382 
3383 /*
3384  * pmap_copy_page()
3385  *
3386  * Copy one physical page into another, by mapping the pages into
3387  * hook points. The same comment regarding cachability as in
3388  * pmap_zero_page also applies here.
3389  */
3390 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3391 void
3392 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3393 {
3394 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3395 #ifdef DEBUG
3396 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3397 
3398 	if (dst_pg->mdpage.pvh_list != NULL)
3399 		panic("pmap_copy_page: dst page has mappings");
3400 #endif
3401 
3402 	KDASSERT((src & PGOFSET) == 0);
3403 	KDASSERT((dst & PGOFSET) == 0);
3404 
3405 	/*
3406 	 * Clean the source page.  Hold the source page's lock for
3407 	 * the duration of the copy so that no other mappings can
3408 	 * be created while we have a potentially aliased mapping.
3409 	 */
3410 	simple_lock(&src_pg->mdpage.pvh_slock);
3411 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3412 
3413 	/*
3414 	 * Map the pages into the page hook points, copy them, and purge
3415 	 * the cache for the appropriate page. Invalidate the TLB
3416 	 * as required.
3417 	 */
3418 	*csrc_pte = L2_S_PROTO | src |
3419 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3420 	PTE_SYNC(csrc_pte);
3421 	*cdst_pte = L2_S_PROTO | dst |
3422 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3423 	PTE_SYNC(cdst_pte);
3424 	cpu_tlb_flushD_SE(csrcp);
3425 	cpu_tlb_flushD_SE(cdstp);
3426 	cpu_cpwait();
3427 	bcopy_page(csrcp, cdstp);
3428 	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3429 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3430 	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3431 }
3432 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3433 
3434 #if ARM_MMU_XSCALE == 1
3435 void
3436 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3437 {
3438 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3439 #ifdef DEBUG
3440 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3441 
3442 	if (dst_pg->mdpage.pvh_list != NULL)
3443 		panic("pmap_copy_page: dst page has mappings");
3444 #endif
3445 
3446 	KDASSERT((src & PGOFSET) == 0);
3447 	KDASSERT((dst & PGOFSET) == 0);
3448 
3449 	/*
3450 	 * Clean the source page.  Hold the source page's lock for
3451 	 * the duration of the copy so that no other mappings can
3452 	 * be created while we have a potentially aliased mapping.
3453 	 */
3454 	simple_lock(&src_pg->mdpage.pvh_slock);
3455 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3456 
3457 	/*
3458 	 * Map the pages into the page hook points, copy them, and purge
3459 	 * the cache for the appropriate page. Invalidate the TLB
3460 	 * as required.
3461 	 */
3462 	*csrc_pte = L2_S_PROTO | src |
3463 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3464 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
3465 	PTE_SYNC(csrc_pte);
3466 	*cdst_pte = L2_S_PROTO | dst |
3467 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3468 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
3469 	PTE_SYNC(cdst_pte);
3470 	cpu_tlb_flushD_SE(csrcp);
3471 	cpu_tlb_flushD_SE(cdstp);
3472 	cpu_cpwait();
3473 	bcopy_page(csrcp, cdstp);
3474 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3475 	xscale_cache_clean_minidata();
3476 }
3477 #endif /* ARM_MMU_XSCALE == 1 */
3478 
3479 /*
3480  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3481  *
3482  * Return the start and end addresses of the kernel's virtual space.
3483  * These values are setup in pmap_bootstrap and are updated as pages
3484  * are allocated.
3485  */
3486 void
3487 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3488 {
3489 	*start = virtual_avail;
3490 	*end = virtual_end;
3491 }
3492 
3493 /*
3494  * Helper function for pmap_grow_l2_bucket()
3495  */
3496 static __inline int
3497 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3498 {
3499 	struct l2_bucket *l2b;
3500 	pt_entry_t *ptep;
3501 	paddr_t pa;
3502 
3503 	if (uvm.page_init_done == FALSE) {
3504 		if (uvm_page_physget(&pa) == FALSE)
3505 			return (1);
3506 	} else {
3507 		struct vm_page *pg;
3508 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3509 		if (pg == NULL)
3510 			return (1);
3511 		pa = VM_PAGE_TO_PHYS(pg);
3512 	}
3513 
3514 	if (pap)
3515 		*pap = pa;
3516 
3517 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3518 	KDASSERT(l2b != NULL);
3519 
3520 	ptep = &l2b->l2b_kva[l2pte_index(va)];
3521 	*ptep = L2_S_PROTO | pa | cache_mode |
3522 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3523 	PTE_SYNC(ptep);
3524 	memset((void *)va, 0, PAGE_SIZE);
3525 	return (0);
3526 }
3527 
3528 /*
3529  * This is the same as pmap_alloc_l2_bucket(), except that it is only
3530  * used by pmap_growkernel().
3531  */
3532 static __inline struct l2_bucket *
3533 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3534 {
3535 	struct l2_dtable *l2;
3536 	struct l2_bucket *l2b;
3537 	u_short l1idx;
3538 	vaddr_t nva;
3539 
3540 	l1idx = L1_IDX(va);
3541 
3542 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3543 		/*
3544 		 * No mapping at this address, as there is
3545 		 * no entry in the L1 table.
3546 		 * Need to allocate a new l2_dtable.
3547 		 */
3548 		nva = pmap_kernel_l2dtable_kva;
3549 		if ((nva & PGOFSET) == 0) {
3550 			/*
3551 			 * Need to allocate a backing page
3552 			 */
3553 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3554 				return (NULL);
3555 		}
3556 
3557 		l2 = (struct l2_dtable *)nva;
3558 		nva += sizeof(struct l2_dtable);
3559 
3560 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3561 			/*
3562 			 * The new l2_dtable straddles a page boundary.
3563 			 * Map in another page to cover it.
3564 			 */
3565 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3566 				return (NULL);
3567 		}
3568 
3569 		pmap_kernel_l2dtable_kva = nva;
3570 
3571 		/*
3572 		 * Link it into the parent pmap
3573 		 */
3574 		pm->pm_l2[L2_IDX(l1idx)] = l2;
3575 	}
3576 
3577 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3578 
3579 	/*
3580 	 * Fetch pointer to the L2 page table associated with the address.
3581 	 */
3582 	if (l2b->l2b_kva == NULL) {
3583 		pt_entry_t *ptep;
3584 
3585 		/*
3586 		 * No L2 page table has been allocated. Chances are, this
3587 		 * is because we just allocated the l2_dtable, above.
3588 		 */
3589 		nva = pmap_kernel_l2ptp_kva;
3590 		ptep = (pt_entry_t *)nva;
3591 		if ((nva & PGOFSET) == 0) {
3592 			/*
3593 			 * Need to allocate a backing page
3594 			 */
3595 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3596 			    &pmap_kernel_l2ptp_phys))
3597 				return (NULL);
3598 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3599 		}
3600 
3601 		l2->l2_occupancy++;
3602 		l2b->l2b_kva = ptep;
3603 		l2b->l2b_l1idx = l1idx;
3604 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3605 
3606 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3607 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3608 	}
3609 
3610 	return (l2b);
3611 }
3612 
3613 vaddr_t
3614 pmap_growkernel(vaddr_t maxkvaddr)
3615 {
3616 	pmap_t kpm = pmap_kernel();
3617 	struct l1_ttable *l1;
3618 	struct l2_bucket *l2b;
3619 	pd_entry_t *pl1pd;
3620 	int s;
3621 
3622 	if (maxkvaddr <= pmap_curmaxkvaddr)
3623 		goto out;		/* we are OK */
3624 
3625 	NPDEBUG(PDB_GROWKERN,
3626 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3627 	    pmap_curmaxkvaddr, maxkvaddr));
3628 
3629 	KDASSERT(maxkvaddr <= virtual_end);
3630 
3631 	/*
3632 	 * whoops!   we need to add kernel PTPs
3633 	 */
3634 
3635 	s = splhigh();	/* to be safe */
3636 	simple_lock(&kpm->pm_lock);
3637 
3638 	/* Map 1MB at a time */
3639 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3640 
3641 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3642 		KDASSERT(l2b != NULL);
3643 
3644 		/* Distribute new L1 entry to all other L1s */
3645 		SLIST_FOREACH(l1, &l1_list, l1_link) {
3646 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3647 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3648 			    L1_C_PROTO;
3649 			PTE_SYNC(pl1pd);
3650 		}
3651 	}
3652 
3653 	/*
3654 	 * flush out the cache, expensive but growkernel will happen so
3655 	 * rarely
3656 	 */
3657 	cpu_dcache_wbinv_all();
3658 	cpu_tlb_flushD();
3659 	cpu_cpwait();
3660 
3661 	simple_unlock(&kpm->pm_lock);
3662 	splx(s);
3663 
3664 out:
3665 	return (pmap_curmaxkvaddr);
3666 }
3667 
3668 /************************ Utility routines ****************************/
3669 
3670 /*
3671  * vector_page_setprot:
3672  *
3673  *	Manipulate the protection of the vector page.
3674  */
3675 void
3676 vector_page_setprot(int prot)
3677 {
3678 	struct l2_bucket *l2b;
3679 	pt_entry_t *ptep;
3680 
3681 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3682 	KDASSERT(l2b != NULL);
3683 
3684 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3685 
3686 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3687 	PTE_SYNC(ptep);
3688 	cpu_tlb_flushD_SE(vector_page);
3689 	cpu_cpwait();
3690 }
3691 
3692 /*
3693  * This is used to stuff certain critical values into the PCB where they
3694  * can be accessed quickly from cpu_switch() et al.
3695  */
3696 void
3697 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3698 {
3699 	struct l2_bucket *l2b;
3700 
3701 	KDASSERT(pm->pm_l1);
3702 
3703 	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3704 	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3705 	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
3706 	pcb->pcb_cstate = (void *)&pm->pm_cstate;
3707 
3708 	if (vector_page < KERNEL_BASE) {
3709 		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3710 		l2b = pmap_get_l2_bucket(pm, vector_page);
3711 		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3712 		    L1_C_DOM(pm->pm_domain);
3713 	} else
3714 		pcb->pcb_pl1vec = NULL;
3715 }
3716 
3717 /*
3718  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3719  * Returns TRUE if the mapping exists, else FALSE.
3720  *
3721  * NOTE: This function is only used by a couple of arm-specific modules.
3722  * It is not safe to take any pmap locks here, since we could be right
3723  * in the middle of debugging the pmap anyway...
3724  *
3725  * It is possible for this routine to return FALSE even though a valid
3726  * mapping does exist. This is because we don't lock, so the metadata
3727  * state may be inconsistent.
3728  *
3729  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3730  * a "section" mapping.
3731  */
3732 boolean_t
3733 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3734 {
3735 	struct l2_dtable *l2;
3736 	pd_entry_t *pl1pd, l1pd;
3737 	pt_entry_t *ptep;
3738 	u_short l1idx;
3739 
3740 	if (pm->pm_l1 == NULL)
3741 		return (FALSE);
3742 
3743 	l1idx = L1_IDX(va);
3744 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3745 	l1pd = *pl1pd;
3746 
3747 	if (l1pte_section_p(l1pd)) {
3748 		*ptp = NULL;
3749 		return (TRUE);
3750 	}
3751 
3752 	if (pm->pm_l2 == NULL)
3753 		return (FALSE);
3754 
3755 	l2 = pm->pm_l2[L2_IDX(l1idx)];
3756 
3757 	if (l2 == NULL ||
3758 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3759 		return (FALSE);
3760 	}
3761 
3762 	*ptp = &ptep[l2pte_index(va)];
3763 	return (TRUE);
3764 }
3765 
3766 boolean_t
3767 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3768 {
3769 	u_short l1idx;
3770 
3771 	if (pm->pm_l1 == NULL)
3772 		return (FALSE);
3773 
3774 	l1idx = L1_IDX(va);
3775 	*pdp = &pm->pm_l1->l1_kva[l1idx];
3776 
3777 	return (TRUE);
3778 }
3779 
3780 /************************ Bootstrapping routines ****************************/
3781 
3782 static void
3783 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3784 {
3785 	int i;
3786 
3787 	l1->l1_kva = l1pt;
3788 	l1->l1_domain_use_count = 0;
3789 	l1->l1_domain_first = 0;
3790 
3791 	for (i = 0; i < PMAP_DOMAINS; i++)
3792 		l1->l1_domain_free[i] = i + 1;
3793 
3794 	/*
3795 	 * Copy the kernel's L1 entries to each new L1.
3796 	 */
3797 	if (pmap_initialized)
3798 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3799 
3800 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3801 	    &l1->l1_physaddr) == FALSE)
3802 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3803 
3804 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3805 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3806 }
3807 
3808 /*
3809  * pmap_bootstrap() is called from the board-specific initarm() routine
3810  * once the kernel L1/L2 descriptors tables have been set up.
3811  *
3812  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3813  * spread over a number of disparate files/functions.
3814  *
3815  * We are passed the following parameters
3816  *  - kernel_l1pt
3817  *    This is a pointer to the base of the kernel's L1 translation table.
3818  *  - vstart
3819  *    1MB-aligned start of managed kernel virtual memory.
3820  *  - vend
3821  *    1MB-aligned end of managed kernel virtual memory.
3822  *
3823  * We use the first parameter to build the metadata (struct l1_ttable and
3824  * struct l2_dtable) necessary to track kernel mappings.
3825  */
3826 #define	PMAP_STATIC_L2_SIZE 16
3827 void
3828 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3829 {
3830 	static struct l1_ttable static_l1;
3831 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3832 	struct l1_ttable *l1 = &static_l1;
3833 	struct l2_dtable *l2;
3834 	struct l2_bucket *l2b;
3835 	pmap_t pm = pmap_kernel();
3836 	pd_entry_t pde;
3837 	pt_entry_t *ptep;
3838 	paddr_t pa;
3839 	vaddr_t va;
3840 	vsize_t size;
3841 	int l1idx, l2idx, l2next = 0;
3842 
3843 	/*
3844 	 * Initialise the kernel pmap object
3845 	 */
3846 	pm->pm_l1 = l1;
3847 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
3848 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3849 	simple_lock_init(&pm->pm_lock);
3850 	pm->pm_obj.pgops = NULL;
3851 	TAILQ_INIT(&pm->pm_obj.memq);
3852 	pm->pm_obj.uo_npages = 0;
3853 	pm->pm_obj.uo_refs = 1;
3854 
3855 	/*
3856 	 * Scan the L1 translation table created by initarm() and create
3857 	 * the required metadata for all valid mappings found in it.
3858 	 */
3859 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3860 		pde = kernel_l1pt[l1idx];
3861 
3862 		/*
3863 		 * We're only interested in Coarse mappings.
3864 		 * pmap_extract() can deal with section mappings without
3865 		 * recourse to checking L2 metadata.
3866 		 */
3867 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3868 			continue;
3869 
3870 		/*
3871 		 * Lookup the KVA of this L2 descriptor table
3872 		 */
3873 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3874 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3875 		if (ptep == NULL) {
3876 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3877 			    (u_int)l1idx << L1_S_SHIFT, pa);
3878 		}
3879 
3880 		/*
3881 		 * Fetch the associated L2 metadata structure.
3882 		 * Allocate a new one if necessary.
3883 		 */
3884 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3885 			if (l2next == PMAP_STATIC_L2_SIZE)
3886 				panic("pmap_bootstrap: out of static L2s");
3887 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3888 		}
3889 
3890 		/*
3891 		 * One more L1 slot tracked...
3892 		 */
3893 		l2->l2_occupancy++;
3894 
3895 		/*
3896 		 * Fill in the details of the L2 descriptor in the
3897 		 * appropriate bucket.
3898 		 */
3899 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3900 		l2b->l2b_kva = ptep;
3901 		l2b->l2b_phys = pa;
3902 		l2b->l2b_l1idx = l1idx;
3903 
3904 		/*
3905 		 * Establish an initial occupancy count for this descriptor
3906 		 */
3907 		for (l2idx = 0;
3908 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3909 		    l2idx++) {
3910 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3911 				l2b->l2b_occupancy++;
3912 			}
3913 		}
3914 
3915 		/*
3916 		 * Make sure the descriptor itself has the correct cache mode.
3917 		 * If not, fix it, but whine about the problem. Port-meisters
3918 		 * should consider this a clue to fix up their initarm()
3919 		 * function. :)
3920 		 */
3921 		if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3922 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
3923 			    "L2 pte @ %p\n", ptep);
3924 		}
3925 	}
3926 
3927 	/*
3928 	 * Ensure the primary (kernel) L1 has the correct cache mode for
3929 	 * a page table. Bitch if it is not correctly set.
3930 	 */
3931 	for (va = (vaddr_t)kernel_l1pt;
3932 	    va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3933 		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3934 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
3935 			    "primary L1 @ 0x%lx\n", va);
3936 	}
3937 
3938 	cpu_dcache_wbinv_all();
3939 	cpu_tlb_flushID();
3940 	cpu_cpwait();
3941 
3942 	/*
3943 	 * now we allocate the "special" VAs which are used for tmp mappings
3944 	 * by the pmap (and other modules).  we allocate the VAs by advancing
3945 	 * virtual_avail (note that there are no pages mapped at these VAs).
3946 	 *
3947 	 * Managed KVM space start from wherever initarm() tells us.
3948 	 */
3949 	virtual_avail = vstart;
3950 	virtual_end = vend;
3951 
3952 	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3953 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3954 	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3955 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3956 	pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
3957 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3958 	    (void *)&msgbufaddr, NULL);
3959 
3960 	/*
3961 	 * Allocate a range of kernel virtual address space to be used
3962 	 * for L2 descriptor tables and metadata allocation in
3963 	 * pmap_growkernel().
3964 	 */
3965 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3966 	pmap_alloc_specials(&virtual_avail,
3967 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3968 	    &pmap_kernel_l2ptp_kva, NULL);
3969 
3970 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3971 	pmap_alloc_specials(&virtual_avail,
3972 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3973 	    &pmap_kernel_l2dtable_kva, NULL);
3974 
3975 	/*
3976 	 * init the static-global locks and global pmap list.
3977 	 */
3978 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3979 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
3980 #endif
3981 
3982 	/*
3983 	 * We can now initialise the first L1's metadata.
3984 	 */
3985 	SLIST_INIT(&l1_list);
3986 	TAILQ_INIT(&l1_lru_list);
3987 	simple_lock_init(&l1_lru_lock);
3988 	pmap_init_l1(l1, kernel_l1pt);
3989 
3990 	/*
3991 	 * Initialize the pmap pool and cache
3992 	 */
3993 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
3994 	    &pool_allocator_nointr);
3995 	pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
3996 	    pmap_pmap_ctor, NULL, NULL);
3997 	LIST_INIT(&pmap_pmaps);
3998 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3999 
4000 	/*
4001 	 * Initialize the pv pool.
4002 	 */
4003 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4004 	    &pmap_bootstrap_pv_allocator);
4005 
4006 	/*
4007 	 * Initialize the L2 dtable pool and cache.
4008 	 */
4009 	pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
4010 	    "l2dtblpl", NULL);
4011 	pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
4012 	    pmap_l2dtable_ctor, NULL, NULL);
4013 
4014 	/*
4015 	 * Initialise the L2 descriptor table pool and cache
4016 	 */
4017 	pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
4018 	    0, "l2ptppl", NULL);
4019 	pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
4020 	    pmap_l2ptp_ctor, NULL, NULL);
4021 
4022 	cpu_dcache_wbinv_all();
4023 }
4024 
4025 static int
4026 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4027 {
4028 	pd_entry_t *pdep, pde;
4029 	pt_entry_t *ptep, pte;
4030 	vaddr_t pa;
4031 	int rv = 0;
4032 
4033 	/*
4034 	 * Make sure the descriptor itself has the correct cache mode
4035 	 */
4036 	pdep = &kl1[L1_IDX(va)];
4037 	pde = *pdep;
4038 
4039 	if (l1pte_section_p(pde)) {
4040 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4041 			*pdep = (pde & ~L1_S_CACHE_MASK) |
4042 			    pte_l1_s_cache_mode_pt;
4043 			PTE_SYNC(pdep);
4044 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4045 			rv = 1;
4046 		}
4047 	} else {
4048 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4049 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4050 		if (ptep == NULL)
4051 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4052 
4053 		ptep = &ptep[l2pte_index(va)];
4054 		pte = *ptep;
4055 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4056 			*ptep = (pte & ~L2_S_CACHE_MASK) |
4057 			    pte_l2_s_cache_mode_pt;
4058 			PTE_SYNC(ptep);
4059 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4060 			rv = 1;
4061 		}
4062 	}
4063 
4064 	return (rv);
4065 }
4066 
4067 static void
4068 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4069 {
4070 	vaddr_t va = *availp;
4071 	struct l2_bucket *l2b;
4072 
4073 	if (ptep) {
4074 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4075 		if (l2b == NULL)
4076 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4077 
4078 		if (ptep)
4079 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
4080 	}
4081 
4082 	*vap = va;
4083 	*availp = va + (PAGE_SIZE * pages);
4084 }
4085 
4086 void
4087 pmap_init(void)
4088 {
4089 	extern int physmem;
4090 
4091 	/*
4092 	 * Set the available memory vars - These do not map to real memory
4093 	 * addresses and cannot as the physical memory is fragmented.
4094 	 * They are used by ps for %mem calculations.
4095 	 * One could argue whether this should be the entire memory or just
4096 	 * the memory that is useable in a user process.
4097 	 */
4098 	avail_start = 0;
4099 	avail_end = physmem * PAGE_SIZE;
4100 
4101 	/*
4102 	 * Now we need to free enough pv_entry structures to allow us to get
4103 	 * the kmem_map/kmem_object allocated and inited (done after this
4104 	 * function is finished).  to do this we allocate one bootstrap page out
4105 	 * of kernel_map and use it to provide an initial pool of pv_entry
4106 	 * structures.   we never free this page.
4107 	 */
4108 	pool_setlowat(&pmap_pv_pool,
4109 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4110 
4111 	pmap_initialized = TRUE;
4112 }
4113 
4114 static vaddr_t last_bootstrap_page = 0;
4115 static void *free_bootstrap_pages = NULL;
4116 
4117 static void *
4118 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4119 {
4120 	extern void *pool_page_alloc(struct pool *, int);
4121 	vaddr_t new_page;
4122 	void *rv;
4123 
4124 	if (pmap_initialized)
4125 		return (pool_page_alloc(pp, flags));
4126 
4127 	if (free_bootstrap_pages) {
4128 		rv = free_bootstrap_pages;
4129 		free_bootstrap_pages = *((void **)rv);
4130 		return (rv);
4131 	}
4132 
4133 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4134 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4135 
4136 	KASSERT(new_page > last_bootstrap_page);
4137 	last_bootstrap_page = new_page;
4138 	return ((void *)new_page);
4139 }
4140 
4141 static void
4142 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4143 {
4144 	extern void pool_page_free(struct pool *, void *);
4145 
4146 	if ((vaddr_t)v <= last_bootstrap_page) {
4147 		*((void **)v) = free_bootstrap_pages;
4148 		free_bootstrap_pages = v;
4149 		return;
4150 	}
4151 
4152 	if (pmap_initialized) {
4153 		pool_page_free(pp, v);
4154 		return;
4155 	}
4156 }
4157 
4158 /*
4159  * pmap_postinit()
4160  *
4161  * This routine is called after the vm and kmem subsystems have been
4162  * initialised. This allows the pmap code to perform any initialisation
4163  * that can only be done one the memory allocation is in place.
4164  */
4165 void
4166 pmap_postinit(void)
4167 {
4168 	extern paddr_t physical_start, physical_end;
4169 	struct l2_bucket *l2b;
4170 	struct l1_ttable *l1;
4171 	struct pglist plist;
4172 	struct vm_page *m;
4173 	pd_entry_t *pl1pt;
4174 	pt_entry_t *ptep, pte;
4175 	vaddr_t va, eva;
4176 	u_int loop, needed;
4177 	int error;
4178 
4179 	pool_setlowat(&pmap_l2ptp_pool,
4180 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4181 	pool_setlowat(&pmap_l2dtable_pool,
4182 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4183 
4184 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4185 	needed -= 1;
4186 
4187 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4188 
4189 	for (loop = 0; loop < needed; loop++, l1++) {
4190 		/* Allocate a L1 page table */
4191 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4192 		if (va == 0)
4193 			panic("Cannot allocate L1 KVM");
4194 
4195 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4196 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4197 		if (error)
4198 			panic("Cannot allocate L1 physical pages");
4199 
4200 		m = TAILQ_FIRST(&plist);
4201 		eva = va + L1_TABLE_SIZE;
4202 		pl1pt = (pd_entry_t *)va;
4203 
4204 		while (m && va < eva) {
4205 			paddr_t pa = VM_PAGE_TO_PHYS(m);
4206 
4207 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4208 
4209 			/*
4210 			 * Make sure the L1 descriptor table is mapped
4211 			 * with the cache-mode set to write-through.
4212 			 */
4213 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4214 			ptep = &l2b->l2b_kva[l2pte_index(va)];
4215 			pte = *ptep;
4216 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4217 			*ptep = pte;
4218 			PTE_SYNC(ptep);
4219 			cpu_tlb_flushD_SE(va);
4220 
4221 			va += PAGE_SIZE;
4222 			m = TAILQ_NEXT(m, pageq);
4223 		}
4224 
4225 #ifdef DIAGNOSTIC
4226 		if (m)
4227 			panic("pmap_alloc_l1pt: pglist not empty");
4228 #endif	/* DIAGNOSTIC */
4229 
4230 		pmap_init_l1(l1, pl1pt);
4231 	}
4232 
4233 #ifdef DEBUG
4234 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4235 	    needed);
4236 #endif
4237 }
4238 
4239 /*
4240  * Note that the following routines are used by board-specific initialisation
4241  * code to configure the initial kernel page tables.
4242  *
4243  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4244  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4245  * behaviour of the old pmap, and provides an easy migration path for
4246  * initial bring-up of the new pmap on existing ports. Fortunately,
4247  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4248  * will be deprecated.
4249  *
4250  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4251  * tables.
4252  */
4253 
4254 /*
4255  * This list exists for the benefit of pmap_map_chunk().  It keeps track
4256  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4257  * find them as necessary.
4258  *
4259  * Note that the data on this list MUST remain valid after initarm() returns,
4260  * as pmap_bootstrap() uses it to contruct L2 table metadata.
4261  */
4262 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4263 
4264 static vaddr_t
4265 kernel_pt_lookup(paddr_t pa)
4266 {
4267 	pv_addr_t *pv;
4268 
4269 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4270 #ifndef ARM32_NEW_VM_LAYOUT
4271 		if (pv->pv_pa == (pa & ~PGOFSET))
4272 			return (pv->pv_va | (pa & PGOFSET));
4273 #else
4274 		if (pv->pv_pa == pa)
4275 			return (pv->pv_va);
4276 #endif
4277 	}
4278 	return (0);
4279 }
4280 
4281 /*
4282  * pmap_map_section:
4283  *
4284  *	Create a single section mapping.
4285  */
4286 void
4287 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4288 {
4289 	pd_entry_t *pde = (pd_entry_t *) l1pt;
4290 	pd_entry_t fl;
4291 
4292 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4293 
4294 	switch (cache) {
4295 	case PTE_NOCACHE:
4296 	default:
4297 		fl = 0;
4298 		break;
4299 
4300 	case PTE_CACHE:
4301 		fl = pte_l1_s_cache_mode;
4302 		break;
4303 
4304 	case PTE_PAGETABLE:
4305 		fl = pte_l1_s_cache_mode_pt;
4306 		break;
4307 	}
4308 
4309 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4310 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4311 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4312 }
4313 
4314 /*
4315  * pmap_map_entry:
4316  *
4317  *	Create a single page mapping.
4318  */
4319 void
4320 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4321 {
4322 	pd_entry_t *pde = (pd_entry_t *) l1pt;
4323 	pt_entry_t fl;
4324 	pt_entry_t *pte;
4325 
4326 	KASSERT(((va | pa) & PGOFSET) == 0);
4327 
4328 	switch (cache) {
4329 	case PTE_NOCACHE:
4330 	default:
4331 		fl = 0;
4332 		break;
4333 
4334 	case PTE_CACHE:
4335 		fl = pte_l2_s_cache_mode;
4336 		break;
4337 
4338 	case PTE_PAGETABLE:
4339 		fl = pte_l2_s_cache_mode_pt;
4340 		break;
4341 	}
4342 
4343 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4344 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4345 
4346 #ifndef ARM32_NEW_VM_LAYOUT
4347 	pte = (pt_entry_t *)
4348 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4349 #else
4350 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4351 #endif
4352 	if (pte == NULL)
4353 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4354 
4355 #ifndef ARM32_NEW_VM_LAYOUT
4356 	pte[(va >> PGSHIFT) & 0x3ff] =
4357 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4358 	PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4359 #else
4360 	pte[l2pte_index(va)] =
4361 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4362 	PTE_SYNC(&pte[l2pte_index(va)]);
4363 #endif
4364 }
4365 
4366 /*
4367  * pmap_link_l2pt:
4368  *
4369  *	Link the L2 page table specified by "l2pv" into the L1
4370  *	page table at the slot for "va".
4371  */
4372 void
4373 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4374 {
4375 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4376 	u_int slot = va >> L1_S_SHIFT;
4377 
4378 #ifndef ARM32_NEW_VM_LAYOUT
4379 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4380 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4381 #endif
4382 
4383 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4384 
4385 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4386 #ifdef ARM32_NEW_VM_LAYOUT
4387 	PTE_SYNC(&pde[slot]);
4388 #else
4389 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4390 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4391 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4392 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
4393 #endif
4394 
4395 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4396 }
4397 
4398 /*
4399  * pmap_map_chunk:
4400  *
4401  *	Map a chunk of memory using the most efficient mappings
4402  *	possible (section, large page, small page) into the
4403  *	provided L1 and L2 tables at the specified virtual address.
4404  */
4405 vsize_t
4406 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4407     int prot, int cache)
4408 {
4409 	pd_entry_t *pde = (pd_entry_t *) l1pt;
4410 	pt_entry_t *pte, f1, f2s, f2l;
4411 	vsize_t resid;
4412 	int i;
4413 
4414 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4415 
4416 	if (l1pt == 0)
4417 		panic("pmap_map_chunk: no L1 table provided");
4418 
4419 #ifdef VERBOSE_INIT_ARM
4420 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4421 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4422 #endif
4423 
4424 	switch (cache) {
4425 	case PTE_NOCACHE:
4426 	default:
4427 		f1 = 0;
4428 		f2l = 0;
4429 		f2s = 0;
4430 		break;
4431 
4432 	case PTE_CACHE:
4433 		f1 = pte_l1_s_cache_mode;
4434 		f2l = pte_l2_l_cache_mode;
4435 		f2s = pte_l2_s_cache_mode;
4436 		break;
4437 
4438 	case PTE_PAGETABLE:
4439 		f1 = pte_l1_s_cache_mode_pt;
4440 		f2l = pte_l2_l_cache_mode_pt;
4441 		f2s = pte_l2_s_cache_mode_pt;
4442 		break;
4443 	}
4444 
4445 	size = resid;
4446 
4447 	while (resid > 0) {
4448 		/* See if we can use a section mapping. */
4449 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4450 #ifdef VERBOSE_INIT_ARM
4451 			printf("S");
4452 #endif
4453 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4454 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4455 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4456 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4457 			va += L1_S_SIZE;
4458 			pa += L1_S_SIZE;
4459 			resid -= L1_S_SIZE;
4460 			continue;
4461 		}
4462 
4463 		/*
4464 		 * Ok, we're going to use an L2 table.  Make sure
4465 		 * one is actually in the corresponding L1 slot
4466 		 * for the current VA.
4467 		 */
4468 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4469 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4470 
4471 #ifndef ARM32_NEW_VM_LAYOUT
4472 		pte = (pt_entry_t *)
4473 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4474 #else
4475 		pte = (pt_entry_t *) kernel_pt_lookup(
4476 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4477 #endif
4478 		if (pte == NULL)
4479 			panic("pmap_map_chunk: can't find L2 table for VA"
4480 			    "0x%08lx", va);
4481 
4482 		/* See if we can use a L2 large page mapping. */
4483 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4484 #ifdef VERBOSE_INIT_ARM
4485 			printf("L");
4486 #endif
4487 			for (i = 0; i < 16; i++) {
4488 #ifndef ARM32_NEW_VM_LAYOUT
4489 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
4490 				    L2_L_PROTO | pa |
4491 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4492 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4493 #else
4494 				pte[l2pte_index(va) + i] =
4495 				    L2_L_PROTO | pa |
4496 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4497 				PTE_SYNC(&pte[l2pte_index(va) + i]);
4498 #endif
4499 			}
4500 			va += L2_L_SIZE;
4501 			pa += L2_L_SIZE;
4502 			resid -= L2_L_SIZE;
4503 			continue;
4504 		}
4505 
4506 		/* Use a small page mapping. */
4507 #ifdef VERBOSE_INIT_ARM
4508 		printf("P");
4509 #endif
4510 #ifndef ARM32_NEW_VM_LAYOUT
4511 		pte[(va >> PGSHIFT) & 0x3ff] =
4512 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4513 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4514 #else
4515 		pte[l2pte_index(va)] =
4516 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4517 		PTE_SYNC(&pte[l2pte_index(va)]);
4518 #endif
4519 		va += PAGE_SIZE;
4520 		pa += PAGE_SIZE;
4521 		resid -= PAGE_SIZE;
4522 	}
4523 #ifdef VERBOSE_INIT_ARM
4524 	printf("\n");
4525 #endif
4526 	return (size);
4527 }
4528 
4529 /********************** Static device map routines ***************************/
4530 
4531 static const struct pmap_devmap *pmap_devmap_table;
4532 
4533 /*
4534  * Register the devmap table.  This is provided in case early console
4535  * initialization needs to register mappings created by bootstrap code
4536  * before pmap_devmap_bootstrap() is called.
4537  */
4538 void
4539 pmap_devmap_register(const struct pmap_devmap *table)
4540 {
4541 
4542 	pmap_devmap_table = table;
4543 }
4544 
4545 /*
4546  * Map all of the static regions in the devmap table, and remember
4547  * the devmap table so other parts of the kernel can look up entries
4548  * later.
4549  */
4550 void
4551 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4552 {
4553 	int i;
4554 
4555 	pmap_devmap_table = table;
4556 
4557 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4558 #ifdef VERBOSE_INIT_ARM
4559 		printf("devmap: %08lx -> %08lx @ %08lx\n",
4560 		    pmap_devmap_table[i].pd_pa,
4561 		    pmap_devmap_table[i].pd_pa +
4562 			pmap_devmap_table[i].pd_size - 1,
4563 		    pmap_devmap_table[i].pd_va);
4564 #endif
4565 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4566 		    pmap_devmap_table[i].pd_pa,
4567 		    pmap_devmap_table[i].pd_size,
4568 		    pmap_devmap_table[i].pd_prot,
4569 		    pmap_devmap_table[i].pd_cache);
4570 	}
4571 }
4572 
4573 const struct pmap_devmap *
4574 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4575 {
4576 	uint64_t endpa;
4577 	int i;
4578 
4579 	if (pmap_devmap_table == NULL)
4580 		return (NULL);
4581 
4582 	endpa = (uint64_t)pa + (uint64_t)size;
4583 
4584 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4585 		if (pa >= pmap_devmap_table[i].pd_pa &&
4586 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4587 			     (uint64_t)pmap_devmap_table[i].pd_size)
4588 			return (&pmap_devmap_table[i]);
4589 	}
4590 
4591 	return (NULL);
4592 }
4593 
4594 const struct pmap_devmap *
4595 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4596 {
4597 	int i;
4598 
4599 	if (pmap_devmap_table == NULL)
4600 		return (NULL);
4601 
4602 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4603 		if (va >= pmap_devmap_table[i].pd_va &&
4604 		    va + size <= pmap_devmap_table[i].pd_va +
4605 				 pmap_devmap_table[i].pd_size)
4606 			return (&pmap_devmap_table[i]);
4607 	}
4608 
4609 	return (NULL);
4610 }
4611 
4612 /********************** PTE initialization routines **************************/
4613 
4614 /*
4615  * These routines are called when the CPU type is identified to set up
4616  * the PTE prototypes, cache modes, etc.
4617  *
4618  * The variables are always here, just in case LKMs need to reference
4619  * them (though, they shouldn't).
4620  */
4621 
4622 pt_entry_t	pte_l1_s_cache_mode;
4623 pt_entry_t	pte_l1_s_cache_mode_pt;
4624 pt_entry_t	pte_l1_s_cache_mask;
4625 
4626 pt_entry_t	pte_l2_l_cache_mode;
4627 pt_entry_t	pte_l2_l_cache_mode_pt;
4628 pt_entry_t	pte_l2_l_cache_mask;
4629 
4630 pt_entry_t	pte_l2_s_cache_mode;
4631 pt_entry_t	pte_l2_s_cache_mode_pt;
4632 pt_entry_t	pte_l2_s_cache_mask;
4633 
4634 pt_entry_t	pte_l2_s_prot_u;
4635 pt_entry_t	pte_l2_s_prot_w;
4636 pt_entry_t	pte_l2_s_prot_mask;
4637 
4638 pt_entry_t	pte_l1_s_proto;
4639 pt_entry_t	pte_l1_c_proto;
4640 pt_entry_t	pte_l2_s_proto;
4641 
4642 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
4643 void		(*pmap_zero_page_func)(paddr_t);
4644 
4645 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4646 void
4647 pmap_pte_init_generic(void)
4648 {
4649 
4650 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4651 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4652 
4653 	pte_l2_l_cache_mode = L2_B|L2_C;
4654 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4655 
4656 	pte_l2_s_cache_mode = L2_B|L2_C;
4657 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4658 
4659 	/*
4660 	 * If we have a write-through cache, set B and C.  If
4661 	 * we have a write-back cache, then we assume setting
4662 	 * only C will make those pages write-through.
4663 	 */
4664 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4665 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4666 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
4667 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
4668 	} else {
4669 		pte_l1_s_cache_mode_pt = L1_S_C;
4670 		pte_l2_l_cache_mode_pt = L2_C;
4671 		pte_l2_s_cache_mode_pt = L2_C;
4672 	}
4673 
4674 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
4675 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
4676 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4677 
4678 	pte_l1_s_proto = L1_S_PROTO_generic;
4679 	pte_l1_c_proto = L1_C_PROTO_generic;
4680 	pte_l2_s_proto = L2_S_PROTO_generic;
4681 
4682 	pmap_copy_page_func = pmap_copy_page_generic;
4683 	pmap_zero_page_func = pmap_zero_page_generic;
4684 }
4685 
4686 #if defined(CPU_ARM8)
4687 void
4688 pmap_pte_init_arm8(void)
4689 {
4690 
4691 	/*
4692 	 * ARM8 is compatible with generic, but we need to use
4693 	 * the page tables uncached.
4694 	 */
4695 	pmap_pte_init_generic();
4696 
4697 	pte_l1_s_cache_mode_pt = 0;
4698 	pte_l2_l_cache_mode_pt = 0;
4699 	pte_l2_s_cache_mode_pt = 0;
4700 }
4701 #endif /* CPU_ARM8 */
4702 
4703 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4704 void
4705 pmap_pte_init_arm9(void)
4706 {
4707 
4708 	/*
4709 	 * ARM9 is compatible with generic, but we want to use
4710 	 * write-through caching for now.
4711 	 */
4712 	pmap_pte_init_generic();
4713 
4714 	pte_l1_s_cache_mode = L1_S_C;
4715 	pte_l2_l_cache_mode = L2_C;
4716 	pte_l2_s_cache_mode = L2_C;
4717 
4718 	pte_l1_s_cache_mode_pt = L1_S_C;
4719 	pte_l2_l_cache_mode_pt = L2_C;
4720 	pte_l2_s_cache_mode_pt = L2_C;
4721 }
4722 #endif /* CPU_ARM9 */
4723 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4724 
4725 #if defined(CPU_ARM10)
4726 void
4727 pmap_pte_init_arm10(void)
4728 {
4729 
4730 	/*
4731 	 * ARM10 is compatible with generic, but we want to use
4732 	 * write-through caching for now.
4733 	 */
4734 	pmap_pte_init_generic();
4735 
4736 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4737 	pte_l2_l_cache_mode = L2_B | L2_C;
4738 	pte_l2_s_cache_mode = L2_B | L2_C;
4739 
4740 	pte_l1_s_cache_mode_pt = L1_S_C;
4741 	pte_l2_l_cache_mode_pt = L2_C;
4742 	pte_l2_s_cache_mode_pt = L2_C;
4743 
4744 }
4745 #endif /* CPU_ARM10 */
4746 
4747 #if ARM_MMU_SA1 == 1
4748 void
4749 pmap_pte_init_sa1(void)
4750 {
4751 
4752 	/*
4753 	 * The StrongARM SA-1 cache does not have a write-through
4754 	 * mode.  So, do the generic initialization, then reset
4755 	 * the page table cache mode to B=1,C=1, and note that
4756 	 * the PTEs need to be sync'd.
4757 	 */
4758 	pmap_pte_init_generic();
4759 
4760 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4761 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
4762 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
4763 
4764 	pmap_needs_pte_sync = 1;
4765 }
4766 #endif /* ARM_MMU_SA1 == 1*/
4767 
4768 #if ARM_MMU_XSCALE == 1
4769 #if (ARM_NMMUS > 1)
4770 static u_int xscale_use_minidata;
4771 #endif
4772 
4773 void
4774 pmap_pte_init_xscale(void)
4775 {
4776 	uint32_t auxctl;
4777 	int write_through = 0;
4778 
4779 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4780 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4781 
4782 	pte_l2_l_cache_mode = L2_B|L2_C;
4783 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4784 
4785 	pte_l2_s_cache_mode = L2_B|L2_C;
4786 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4787 
4788 	pte_l1_s_cache_mode_pt = L1_S_C;
4789 	pte_l2_l_cache_mode_pt = L2_C;
4790 	pte_l2_s_cache_mode_pt = L2_C;
4791 
4792 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4793 	/*
4794 	 * The XScale core has an enhanced mode where writes that
4795 	 * miss the cache cause a cache line to be allocated.  This
4796 	 * is significantly faster than the traditional, write-through
4797 	 * behavior of this case.
4798 	 */
4799 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4800 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4801 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4802 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4803 
4804 #ifdef XSCALE_CACHE_WRITE_THROUGH
4805 	/*
4806 	 * Some versions of the XScale core have various bugs in
4807 	 * their cache units, the work-around for which is to run
4808 	 * the cache in write-through mode.  Unfortunately, this
4809 	 * has a major (negative) impact on performance.  So, we
4810 	 * go ahead and run fast-and-loose, in the hopes that we
4811 	 * don't line up the planets in a way that will trip the
4812 	 * bugs.
4813 	 *
4814 	 * However, we give you the option to be slow-but-correct.
4815 	 */
4816 	write_through = 1;
4817 #elif defined(XSCALE_CACHE_WRITE_BACK)
4818 	/* force write back cache mode */
4819 	write_through = 0;
4820 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4821 	/*
4822 	 * Intel PXA2[15]0 processors are known to have a bug in
4823 	 * write-back cache on revision 4 and earlier (stepping
4824 	 * A[01] and B[012]).  Fixed for C0 and later.
4825 	 */
4826 	{
4827 		uint32_t id, type;
4828 
4829 		id = cpufunc_id();
4830 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4831 
4832 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4833 			if ((id & CPU_ID_REVISION_MASK) < 5) {
4834 				/* write through for stepping A0-1 and B0-2 */
4835 				write_through = 1;
4836 			}
4837 		}
4838 	}
4839 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4840 
4841 	if (write_through) {
4842 		pte_l1_s_cache_mode = L1_S_C;
4843 		pte_l2_l_cache_mode = L2_C;
4844 		pte_l2_s_cache_mode = L2_C;
4845 	}
4846 
4847 #if (ARM_NMMUS > 1)
4848 	xscale_use_minidata = 1;
4849 #endif
4850 
4851 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4852 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4853 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4854 
4855 	pte_l1_s_proto = L1_S_PROTO_xscale;
4856 	pte_l1_c_proto = L1_C_PROTO_xscale;
4857 	pte_l2_s_proto = L2_S_PROTO_xscale;
4858 
4859 	pmap_copy_page_func = pmap_copy_page_xscale;
4860 	pmap_zero_page_func = pmap_zero_page_xscale;
4861 
4862 	/*
4863 	 * Disable ECC protection of page table access, for now.
4864 	 */
4865 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4866 	auxctl &= ~XSCALE_AUXCTL_P;
4867 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4868 }
4869 
4870 /*
4871  * xscale_setup_minidata:
4872  *
4873  *	Set up the mini-data cache clean area.  We require the
4874  *	caller to allocate the right amount of physically and
4875  *	virtually contiguous space.
4876  */
4877 void
4878 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4879 {
4880 	extern vaddr_t xscale_minidata_clean_addr;
4881 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
4882 	pd_entry_t *pde = (pd_entry_t *) l1pt;
4883 	pt_entry_t *pte;
4884 	vsize_t size;
4885 	uint32_t auxctl;
4886 
4887 	xscale_minidata_clean_addr = va;
4888 
4889 	/* Round it to page size. */
4890 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4891 
4892 	for (; size != 0;
4893 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4894 #ifndef ARM32_NEW_VM_LAYOUT
4895 		pte = (pt_entry_t *)
4896 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4897 #else
4898 		pte = (pt_entry_t *) kernel_pt_lookup(
4899 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4900 #endif
4901 		if (pte == NULL)
4902 			panic("xscale_setup_minidata: can't find L2 table for "
4903 			    "VA 0x%08lx", va);
4904 #ifndef ARM32_NEW_VM_LAYOUT
4905 		pte[(va >> PGSHIFT) & 0x3ff] =
4906 #else
4907 		pte[l2pte_index(va)] =
4908 #endif
4909 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4910 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4911 	}
4912 
4913 	/*
4914 	 * Configure the mini-data cache for write-back with
4915 	 * read/write-allocate.
4916 	 *
4917 	 * NOTE: In order to reconfigure the mini-data cache, we must
4918 	 * make sure it contains no valid data!  In order to do that,
4919 	 * we must issue a global data cache invalidate command!
4920 	 *
4921 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4922 	 * THIS IS VERY IMPORTANT!
4923 	 */
4924 
4925 	/* Invalidate data and mini-data. */
4926 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4927 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4928 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4929 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4930 }
4931 
4932 /*
4933  * Change the PTEs for the specified kernel mappings such that they
4934  * will use the mini data cache instead of the main data cache.
4935  */
4936 void
4937 pmap_uarea(vaddr_t va)
4938 {
4939 	struct l2_bucket *l2b;
4940 	pt_entry_t *ptep, *sptep, pte;
4941 	vaddr_t next_bucket, eva;
4942 
4943 #if (ARM_NMMUS > 1)
4944 	if (xscale_use_minidata == 0)
4945 		return;
4946 #endif
4947 
4948 	eva = va + USPACE;
4949 
4950 	while (va < eva) {
4951 		next_bucket = L2_NEXT_BUCKET(va);
4952 		if (next_bucket > eva)
4953 			next_bucket = eva;
4954 
4955 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4956 		KDASSERT(l2b != NULL);
4957 
4958 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4959 
4960 		while (va < next_bucket) {
4961 			pte = *ptep;
4962 			if (!l2pte_minidata(pte)) {
4963 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4964 				cpu_tlb_flushD_SE(va);
4965 				*ptep = pte & ~L2_B;
4966 			}
4967 			ptep++;
4968 			va += PAGE_SIZE;
4969 		}
4970 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4971 	}
4972 	cpu_cpwait();
4973 }
4974 #endif /* ARM_MMU_XSCALE == 1 */
4975 
4976 #if defined(DDB)
4977 /*
4978  * A couple of ddb-callable functions for dumping pmaps
4979  */
4980 void pmap_dump_all(void);
4981 void pmap_dump(pmap_t);
4982 
4983 void
4984 pmap_dump_all(void)
4985 {
4986 	pmap_t pm;
4987 
4988 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4989 		if (pm == pmap_kernel())
4990 			continue;
4991 		pmap_dump(pm);
4992 		printf("\n");
4993 	}
4994 }
4995 
4996 static pt_entry_t ncptes[64];
4997 static void pmap_dump_ncpg(pmap_t);
4998 
4999 void
5000 pmap_dump(pmap_t pm)
5001 {
5002 	struct l2_dtable *l2;
5003 	struct l2_bucket *l2b;
5004 	pt_entry_t *ptep, pte;
5005 	vaddr_t l2_va, l2b_va, va;
5006 	int i, j, k, occ, rows = 0;
5007 
5008 	if (pm == pmap_kernel())
5009 		printf("pmap_kernel (%p): ", pm);
5010 	else
5011 		printf("user pmap (%p): ", pm);
5012 
5013 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5014 
5015 	l2_va = 0;
5016 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5017 		l2 = pm->pm_l2[i];
5018 
5019 		if (l2 == NULL || l2->l2_occupancy == 0)
5020 			continue;
5021 
5022 		l2b_va = l2_va;
5023 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5024 			l2b = &l2->l2_bucket[j];
5025 
5026 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5027 				continue;
5028 
5029 			ptep = l2b->l2b_kva;
5030 
5031 			for (k = 0; k < 256 && ptep[k] == 0; k++)
5032 				;
5033 
5034 			k &= ~63;
5035 			occ = l2b->l2b_occupancy;
5036 			va = l2b_va + (k * 4096);
5037 			for (; k < 256; k++, va += 0x1000) {
5038 				char ch = ' ';
5039 				if ((k % 64) == 0) {
5040 					if ((rows % 8) == 0) {
5041 						printf(
5042 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
5043 					}
5044 					printf("%08lx: ", va);
5045 				}
5046 
5047 				ncptes[k & 63] = 0;
5048 				pte = ptep[k];
5049 				if (pte == 0) {
5050 					ch = '.';
5051 				} else {
5052 					occ--;
5053 					switch (pte & 0x0c) {
5054 					case 0x00:
5055 						ch = 'D'; /* No cache No buff */
5056 						break;
5057 					case 0x04:
5058 						ch = 'B'; /* No cache buff */
5059 						break;
5060 					case 0x08:
5061 						if (pte & 0x40)
5062 							ch = 'm';
5063 						else
5064 						   ch = 'C'; /* Cache No buff */
5065 						break;
5066 					case 0x0c:
5067 						ch = 'F'; /* Cache Buff */
5068 						break;
5069 					}
5070 
5071 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5072 						ch += 0x20;
5073 
5074 					if ((pte & 0xc) == 0)
5075 						ncptes[k & 63] = pte;
5076 				}
5077 
5078 				if ((k % 64) == 63) {
5079 					rows++;
5080 					printf("%c\n", ch);
5081 					pmap_dump_ncpg(pm);
5082 					if (occ == 0)
5083 						break;
5084 				} else
5085 					printf("%c", ch);
5086 			}
5087 		}
5088 	}
5089 }
5090 
5091 static void
5092 pmap_dump_ncpg(pmap_t pm)
5093 {
5094 	struct vm_page *pg;
5095 	struct pv_entry *pv;
5096 	int i;
5097 
5098 	for (i = 0; i < 63; i++) {
5099 		if (ncptes[i] == 0)
5100 			continue;
5101 
5102 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5103 		if (pg == NULL)
5104 			continue;
5105 
5106 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5107 		    pg->phys_addr,
5108 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5109 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5110 
5111 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5112 			printf("   %c va 0x%08lx, flags 0x%x\n",
5113 			    (pm == pv->pv_pmap) ? '*' : ' ',
5114 			    pv->pv_va, pv->pv_flags);
5115 		}
5116 	}
5117 }
5118 #endif
5119