xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: fault.c,v 1.48 2004/02/13 11:36:11 wiz Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.48 2004/02/13 11:36:11 wiz Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #include <arm/cpuconf.h>
96 
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap	kgdb_trap
108 #endif
109 #endif
110 
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113 
114 extern char fusubailout[];
115 
116 #ifdef DEBUG
117 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
118 #endif
119 
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define	CPU_ABORT_FIXUP_REQUIRED
124 #endif
125 
126 struct data_abort {
127 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 	const char *desc;
129 };
130 
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 
135 static const struct data_abort data_aborts[] = {
136 	{dab_fatal,	"Vector Exception"},
137 	{dab_align,	"Alignment Fault 1"},
138 	{dab_fatal,	"Terminal Exception"},
139 	{dab_align,	"Alignment Fault 3"},
140 	{dab_buserr,	"External Linefetch Abort (S)"},
141 	{NULL,		"Translation Fault (S)"},
142 	{dab_buserr,	"External Linefetch Abort (P)"},
143 	{NULL,		"Translation Fault (P)"},
144 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
145 	{NULL,		"Domain Fault (S)"},
146 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
147 	{NULL,		"Domain Fault (P)"},
148 	{dab_buserr,	"External Translation Abort (L1)"},
149 	{NULL,		"Permission Fault (S)"},
150 	{dab_buserr,	"External Translation Abort (L2)"},
151 	{NULL,		"Permission Fault (P)"}
152 };
153 
154 /* Determine if a fault came from user mode */
155 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156 
157 /* Determine if 'x' is a permission fault */
158 #define	IS_PERMISSION_FAULT(x)					\
159 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
160 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161 
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
167 #endif
168 
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172 
173 	KERNEL_PROC_LOCK(l->l_proc);
174 	TRAPSIGNAL(l, ksi);
175 	KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177 
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 	int error;
183 
184 	/* Call the CPU specific data abort fixup routine */
185 	error = cpu_dataabt_fixup(tf);
186 	if (__predict_true(error != ABORT_FIXUP_FAILED))
187 		return (error);
188 
189 	/*
190 	 * Oops, couldn't fix up the instruction
191 	 */
192 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 	    TRAP_USERMODE(tf) ? "user" : "kernel");
194 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 	    *((u_int *)tf->tf_pc));
196 	disassemble(tf->tf_pc);
197 
198 	/* Die now if this happened in kernel mode */
199 	if (!TRAP_USERMODE(tf))
200 		dab_fatal(tf, fsr, far, l, NULL);
201 
202 	return (error);
203 #else
204 	return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207 
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 	struct vm_map *map;
212 	struct pcb *pcb;
213 	struct lwp *l;
214 	u_int user, far, fsr;
215 	vm_prot_t ftype;
216 	void *onfault;
217 	vaddr_t va;
218 	int error;
219 	ksiginfo_t ksi;
220 
221 	/* Grab FAR/FSR before enabling interrupts */
222 	far = cpu_faultaddress();
223 	fsr = cpu_faultstatus();
224 
225 	/* Update vmmeter statistics */
226 	uvmexp.traps++;
227 
228 	/* Re-enable interrupts if they were enabled previously */
229 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 		enable_interrupts(I32_bit);
231 
232 	/* Get the current lwp structure or lwp0 if there is none */
233 	l = (curlwp != NULL) ? curlwp : &lwp0;
234 
235 	/* Data abort came from user mode? */
236 	user = TRAP_USERMODE(tf);
237 
238 	/* Grab the current pcb */
239 	pcb = &l->l_addr->u_pcb;
240 
241 	/* Invoke the appropriate handler, if necessary */
242 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 		    l, &ksi))
245 			goto do_trapsignal;
246 		goto out;
247 	}
248 
249 	/*
250 	 * At this point, we're dealing with one of the following data aborts:
251 	 *
252 	 *  FAULT_TRANS_S  - Translation -- Section
253 	 *  FAULT_TRANS_P  - Translation -- Page
254 	 *  FAULT_DOMAIN_S - Domain -- Section
255 	 *  FAULT_DOMAIN_P - Domain -- Page
256 	 *  FAULT_PERM_S   - Permission -- Section
257 	 *  FAULT_PERM_P   - Permission -- Page
258 	 *
259 	 * These are the main virtual memory-related faults signalled by
260 	 * the MMU.
261 	 */
262 
263 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
264 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 		tf->tf_r0 = EFAULT;
266 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 		return;
268 	}
269 
270 	if (user)
271 		l->l_addr->u_pcb.pcb_tf = tf;
272 
273 	/*
274 	 * Make sure the Program Counter is sane. We could fall foul of
275 	 * someone executing Thumb code, in which case the PC might not
276 	 * be word-aligned. This would cause a kernel alignment fault
277 	 * further down if we have to decode the current instruction.
278 	 * XXX: It would be nice to be able to support Thumb at some point.
279 	 */
280 	if (__predict_false((tf->tf_pc & 3) != 0)) {
281 		if (user) {
282 			/*
283 			 * Give the user an illegal instruction signal.
284 			 */
285 			/* Deliver a SIGILL to the process */
286 			KSI_INIT_TRAP(&ksi);
287 			ksi.ksi_signo = SIGILL;
288 			ksi.ksi_code = ILL_ILLOPC;
289 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 			ksi.ksi_trap = fsr;
291 			goto do_trapsignal;
292 		}
293 
294 		/*
295 		 * The kernel never executes Thumb code.
296 		 */
297 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 		    "Program Counter\n");
299 		dab_fatal(tf, fsr, far, l, NULL);
300 	}
301 
302 	/* See if the CPU state needs to be fixed up */
303 	switch (data_abort_fixup(tf, fsr, far, l)) {
304 	case ABORT_FIXUP_RETURN:
305 		return;
306 	case ABORT_FIXUP_FAILED:
307 		/* Deliver a SIGILL to the process */
308 		KSI_INIT_TRAP(&ksi);
309 		ksi.ksi_signo = SIGILL;
310 		ksi.ksi_code = ILL_ILLOPC;
311 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 		ksi.ksi_trap = fsr;
313 		goto do_trapsignal;
314 	default:
315 		break;
316 	}
317 
318 	va = trunc_page((vaddr_t)far);
319 
320 	/*
321 	 * It is only a kernel address space fault iff:
322 	 *	1. user == 0  and
323 	 *	2. pcb_onfault not set or
324 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 	 */
326 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 	    __predict_true((pcb->pcb_onfault == NULL ||
329 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 		map = kernel_map;
331 
332 		/* Was the fault due to the FPE/IPKDB ? */
333 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 			KSI_INIT_TRAP(&ksi);
335 			ksi.ksi_signo = SIGSEGV;
336 			ksi.ksi_code = SEGV_ACCERR;
337 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 			ksi.ksi_trap = fsr;
339 
340 			/*
341 			 * Force exit via userret()
342 			 * This is necessary as the FPE is an extension to
343 			 * userland that actually runs in a priveledged mode
344 			 * but uses USR mode permissions for its accesses.
345 			 */
346 			user = 1;
347 			goto do_trapsignal;
348 		}
349 	} else {
350 		map = &l->l_proc->p_vmspace->vm_map;
351 		if (l->l_flag & L_SA) {
352 			KDASSERT(l->l_proc->p_sa != NULL);
353 			l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
354 			l->l_flag |= L_SA_PAGEFAULT;
355 		}
356 	}
357 
358 	/*
359 	 * We need to know whether the page should be mapped
360 	 * as R or R/W. The MMU does not give us the info as
361 	 * to whether the fault was caused by a read or a write.
362 	 *
363 	 * However, we know that a permission fault can only be
364 	 * the result of a write to a read-only location, so
365 	 * we can deal with those quickly.
366 	 *
367 	 * Otherwise we need to disassemble the instruction
368 	 * responsible to determine if it was a write.
369 	 */
370 	if (IS_PERMISSION_FAULT(fsr))
371 		ftype = VM_PROT_WRITE;
372 	else {
373 		u_int insn = ReadWord(tf->tf_pc);
374 
375 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
376 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
377 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
378 			ftype = VM_PROT_WRITE;
379 		else
380 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
381 			ftype = VM_PROT_READ | VM_PROT_WRITE;
382 		else
383 			ftype = VM_PROT_READ;
384 	}
385 
386 	/*
387 	 * See if the fault is as a result of ref/mod emulation,
388 	 * or domain mismatch.
389 	 */
390 #ifdef DEBUG
391 	last_fault_code = fsr;
392 #endif
393 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
394 		if (map != kernel_map)
395 			l->l_flag &= ~L_SA_PAGEFAULT;
396 		goto out;
397 	}
398 
399 	if (__predict_false(current_intr_depth > 0)) {
400 		if (pcb->pcb_onfault) {
401 			tf->tf_r0 = EINVAL;
402 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
403 			return;
404 		}
405 		printf("\nNon-emulated page fault with intr_depth > 0\n");
406 		dab_fatal(tf, fsr, far, l, NULL);
407 	}
408 
409 	onfault = pcb->pcb_onfault;
410 	pcb->pcb_onfault = NULL;
411 	error = uvm_fault(map, va, 0, ftype);
412 	pcb->pcb_onfault = onfault;
413 
414 	if (map != kernel_map)
415 		l->l_flag &= ~L_SA_PAGEFAULT;
416 
417 	if (__predict_true(error == 0)) {
418 		if (user)
419 			uvm_grow(l->l_proc, va); /* Record any stack growth */
420 		goto out;
421 	}
422 
423 	if (user == 0) {
424 		if (pcb->pcb_onfault) {
425 			tf->tf_r0 = error;
426 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
427 			return;
428 		}
429 
430 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
431 		    error);
432 		dab_fatal(tf, fsr, far, l, NULL);
433 	}
434 
435 	KSI_INIT_TRAP(&ksi);
436 
437 	if (error == ENOMEM) {
438 		printf("UVM: pid %d (%s), uid %d killed: "
439 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
440 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
441 		     l->l_proc->p_ucred->cr_uid : -1);
442 		ksi.ksi_signo = SIGKILL;
443 	} else
444 		ksi.ksi_signo = SIGSEGV;
445 
446 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
447 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
448 	ksi.ksi_trap = fsr;
449 
450 do_trapsignal:
451 	call_trapsignal(l, &ksi);
452 out:
453 	/* If returning to user mode, make sure to invoke userret() */
454 	if (user)
455 		userret(l);
456 }
457 
458 /*
459  * dab_fatal() handles the following data aborts:
460  *
461  *  FAULT_WRTBUF_0 - Vector Exception
462  *  FAULT_WRTBUF_1 - Terminal Exception
463  *
464  * We should never see these on a properly functioning system.
465  *
466  * This function is also called by the other handlers if they
467  * detect a fatal problem.
468  *
469  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
470  */
471 static int
472 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
473 {
474 	const char *mode;
475 
476 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
477 
478 	if (l != NULL) {
479 		printf("Fatal %s mode data abort: '%s'\n", mode,
480 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
481 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
482 		if ((fsr & FAULT_IMPRECISE) == 0)
483 			printf("%08x, ", far);
484 		else
485 			printf("Invalid,  ");
486 		printf("spsr=%08x\n", tf->tf_spsr);
487 	} else {
488 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
489 		    mode, tf->tf_pc);
490 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
491 	}
492 
493 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
494 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
495 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
496 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
497 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
498 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
499 	printf("r12=%08x, ", tf->tf_r12);
500 
501 	if (TRAP_USERMODE(tf))
502 		printf("usp=%08x, ulr=%08x",
503 		    tf->tf_usr_sp, tf->tf_usr_lr);
504 	else
505 		printf("ssp=%08x, slr=%08x",
506 		    tf->tf_svc_sp, tf->tf_svc_lr);
507 	printf(", pc =%08x\n\n", tf->tf_pc);
508 
509 #if defined(DDB) || defined(KGDB)
510 	kdb_trap(T_FAULT, tf);
511 #endif
512 	panic("Fatal abort");
513 	/*NOTREACHED*/
514 }
515 
516 /*
517  * dab_align() handles the following data aborts:
518  *
519  *  FAULT_ALIGN_0 - Alignment fault
520  *  FAULT_ALIGN_0 - Alignment fault
521  *
522  * These faults are fatal if they happen in kernel mode. Otherwise, we
523  * deliver a bus error to the process.
524  */
525 static int
526 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
527 {
528 
529 	/* Alignment faults are always fatal if they occur in kernel mode */
530 	if (!TRAP_USERMODE(tf))
531 		dab_fatal(tf, fsr, far, l, NULL);
532 
533 	/* pcb_onfault *must* be NULL at this point */
534 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
535 
536 	/* See if the CPU state needs to be fixed up */
537 	(void) data_abort_fixup(tf, fsr, far, l);
538 
539 	/* Deliver a bus error signal to the process */
540 	KSI_INIT_TRAP(ksi);
541 	ksi->ksi_signo = SIGBUS;
542 	ksi->ksi_code = BUS_ADRALN;
543 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
544 	ksi->ksi_trap = fsr;
545 
546 	l->l_addr->u_pcb.pcb_tf = tf;
547 
548 	return (1);
549 }
550 
551 /*
552  * dab_buserr() handles the following data aborts:
553  *
554  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
555  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
556  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
557  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
558  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
559  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
560  *
561  * If pcb_onfault is set, flag the fault and return to the handler.
562  * If the fault occurred in user mode, give the process a SIGBUS.
563  *
564  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
565  * can be flagged as imprecise in the FSR. This causes a real headache
566  * since some of the machine state is lost. In this case, tf->tf_pc
567  * may not actually point to the offending instruction. In fact, if
568  * we've taken a double abort fault, it generally points somewhere near
569  * the top of "data_abort_entry" in exception.S.
570  *
571  * In all other cases, these data aborts are considered fatal.
572  */
573 static int
574 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
575     ksiginfo_t *ksi)
576 {
577 	struct pcb *pcb = &l->l_addr->u_pcb;
578 
579 #ifdef __XSCALE__
580 	if ((fsr & FAULT_IMPRECISE) != 0 &&
581 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
582 		/*
583 		 * Oops, an imprecise, double abort fault. We've lost the
584 		 * r14_abt/spsr_abt values corresponding to the original
585 		 * abort, and the spsr saved in the trapframe indicates
586 		 * ABT mode.
587 		 */
588 		tf->tf_spsr &= ~PSR_MODE;
589 
590 		/*
591 		 * We use a simple heuristic to determine if the double abort
592 		 * happened as a result of a kernel or user mode access.
593 		 * If the current trapframe is at the top of the kernel stack,
594 		 * the fault _must_ have come from user mode.
595 		 */
596 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
597 			/*
598 			 * Kernel mode. We're either about to die a
599 			 * spectacular death, or pcb_onfault will come
600 			 * to our rescue. Either way, the current value
601 			 * of tf->tf_pc is irrelevant.
602 			 */
603 			tf->tf_spsr |= PSR_SVC32_MODE;
604 			if (pcb->pcb_onfault == NULL)
605 				printf("\nKernel mode double abort!\n");
606 		} else {
607 			/*
608 			 * User mode. We've lost the program counter at the
609 			 * time of the fault (not that it was accurate anyway;
610 			 * it's not called an imprecise fault for nothing).
611 			 * About all we can do is copy r14_usr to tf_pc and
612 			 * hope for the best. The process is about to get a
613 			 * SIGBUS, so it's probably history anyway.
614 			 */
615 			tf->tf_spsr |= PSR_USR32_MODE;
616 			tf->tf_pc = tf->tf_usr_lr;
617 		}
618 	}
619 
620 	/* FAR is invalid for imprecise exceptions */
621 	if ((fsr & FAULT_IMPRECISE) != 0)
622 		far = 0;
623 #endif /* __XSCALE__ */
624 
625 	if (pcb->pcb_onfault) {
626 		KDASSERT(TRAP_USERMODE(tf) == 0);
627 		tf->tf_r0 = EFAULT;
628 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
629 		return (0);
630 	}
631 
632 	/* See if the CPU state needs to be fixed up */
633 	(void) data_abort_fixup(tf, fsr, far, l);
634 
635 	/*
636 	 * At this point, if the fault happened in kernel mode, we're toast
637 	 */
638 	if (!TRAP_USERMODE(tf))
639 		dab_fatal(tf, fsr, far, l, NULL);
640 
641 	/* Deliver a bus error signal to the process */
642 	KSI_INIT_TRAP(ksi);
643 	ksi->ksi_signo = SIGBUS;
644 	ksi->ksi_code = BUS_ADRERR;
645 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
646 	ksi->ksi_trap = fsr;
647 
648 	l->l_addr->u_pcb.pcb_tf = tf;
649 
650 	return (1);
651 }
652 
653 static __inline int
654 prefetch_abort_fixup(trapframe_t *tf)
655 {
656 #ifdef CPU_ABORT_FIXUP_REQUIRED
657 	int error;
658 
659 	/* Call the CPU specific prefetch abort fixup routine */
660 	error = cpu_prefetchabt_fixup(tf);
661 	if (__predict_true(error != ABORT_FIXUP_FAILED))
662 		return (error);
663 
664 	/*
665 	 * Oops, couldn't fix up the instruction
666 	 */
667 	printf(
668 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
669 	    TRAP_USERMODE(tf) ? "user" : "kernel");
670 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
671 	    *((u_int *)tf->tf_pc));
672 	disassemble(tf->tf_pc);
673 
674 	/* Die now if this happened in kernel mode */
675 	if (!TRAP_USERMODE(tf))
676 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
677 
678 	return (error);
679 #else
680 	return (ABORT_FIXUP_OK);
681 #endif /* CPU_ABORT_FIXUP_REQUIRED */
682 }
683 
684 /*
685  * void prefetch_abort_handler(trapframe_t *tf)
686  *
687  * Abort handler called when instruction execution occurs at
688  * a non existent or restricted (access permissions) memory page.
689  * If the address is invalid and we were in SVC mode then panic as
690  * the kernel should never prefetch abort.
691  * If the address is invalid and the page is mapped then the user process
692  * does no have read permission so send it a signal.
693  * Otherwise fault the page in and try again.
694  */
695 void
696 prefetch_abort_handler(trapframe_t *tf)
697 {
698 	struct lwp *l;
699 	struct vm_map *map;
700 	vaddr_t fault_pc, va;
701 	ksiginfo_t ksi;
702 	int error;
703 
704 	/* Update vmmeter statistics */
705 	uvmexp.traps++;
706 
707 	/*
708 	 * Enable IRQ's (disabled by the abort) This always comes
709 	 * from user mode so we know interrupts were not disabled.
710 	 * But we check anyway.
711 	 */
712 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
713 		enable_interrupts(I32_bit);
714 
715 	/* See if the CPU state needs to be fixed up */
716 	switch (prefetch_abort_fixup(tf)) {
717 	case ABORT_FIXUP_RETURN:
718 		return;
719 	case ABORT_FIXUP_FAILED:
720 		/* Deliver a SIGILL to the process */
721 		KSI_INIT_TRAP(&ksi);
722 		ksi.ksi_signo = SIGILL;
723 		ksi.ksi_code = ILL_ILLOPC;
724 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
725 		l = curlwp;
726 		l->l_addr->u_pcb.pcb_tf = tf;
727 		goto do_trapsignal;
728 	default:
729 		break;
730 	}
731 
732 	/* Prefetch aborts cannot happen in kernel mode */
733 	if (__predict_false(!TRAP_USERMODE(tf)))
734 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
735 
736 	/* Get fault address */
737 	fault_pc = tf->tf_pc;
738 	l = curlwp;
739 	l->l_addr->u_pcb.pcb_tf = tf;
740 
741 	/* Ok validate the address, can only execute in USER space */
742 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
743 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
744 		KSI_INIT_TRAP(&ksi);
745 		ksi.ksi_signo = SIGSEGV;
746 		ksi.ksi_code = SEGV_ACCERR;
747 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
748 		ksi.ksi_trap = fault_pc;
749 		goto do_trapsignal;
750 	}
751 
752 	map = &l->l_proc->p_vmspace->vm_map;
753 	va = trunc_page(fault_pc);
754 
755 	/*
756 	 * See if the pmap can handle this fault on its own...
757 	 */
758 #ifdef DEBUG
759 	last_fault_code = -1;
760 #endif
761 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
762 		goto out;
763 
764 #ifdef DIAGNOSTIC
765 	if (__predict_false(current_intr_depth > 0)) {
766 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
767 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
768 	}
769 #endif
770 
771 	error = uvm_fault(map, va, 0, VM_PROT_READ);
772 	if (__predict_true(error == 0))
773 		goto out;
774 
775 	KSI_INIT_TRAP(&ksi);
776 
777 	if (error == ENOMEM) {
778 		printf("UVM: pid %d (%s), uid %d killed: "
779 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
780 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
781 		     l->l_proc->p_ucred->cr_uid : -1);
782 		ksi.ksi_signo = SIGKILL;
783 	} else
784 		ksi.ksi_signo = SIGSEGV;
785 
786 	ksi.ksi_code = SEGV_MAPERR;
787 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
788 	ksi.ksi_trap = fault_pc;
789 
790 do_trapsignal:
791 	call_trapsignal(l, &ksi);
792 
793 out:
794 	userret(l);
795 }
796 
797 /*
798  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
799  * If the read succeeds, the value is written to 'rptr' and zero is returned.
800  * Else, return EFAULT.
801  */
802 int
803 badaddr_read(void *addr, size_t size, void *rptr)
804 {
805 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
806 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
807 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
808 	union {
809 		uint8_t v1;
810 		uint16_t v2;
811 		uint32_t v4;
812 	} u;
813 	struct pcb *curpcb_save;
814 	int rv, s;
815 
816 	cpu_drain_writebuf();
817 
818 	/*
819 	 * We might be called at interrupt time, so arrange to steal
820 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
821 	 * handling works correctly.
822 	 */
823 	s = splhigh();
824 	if ((curpcb_save = curpcb) == NULL)
825 		curpcb = &lwp0.l_addr->u_pcb;
826 
827 	/* Read from the test address. */
828 	switch (size) {
829 	case sizeof(uint8_t):
830 		rv = badaddr_read_1(addr, &u.v1);
831 		if (rv == 0 && rptr)
832 			*(uint8_t *) rptr = u.v1;
833 		break;
834 
835 	case sizeof(uint16_t):
836 		rv = badaddr_read_2(addr, &u.v2);
837 		if (rv == 0 && rptr)
838 			*(uint16_t *) rptr = u.v2;
839 		break;
840 
841 	case sizeof(uint32_t):
842 		rv = badaddr_read_4(addr, &u.v4);
843 		if (rv == 0 && rptr)
844 			*(uint32_t *) rptr = u.v4;
845 		break;
846 
847 	default:
848 		curpcb = curpcb_save;
849 		panic("badaddr: invalid size (%lu)", (u_long) size);
850 	}
851 
852 	/* Restore curpcb */
853 	curpcb = curpcb_save;
854 	splx(s);
855 
856 	/* Return EFAULT if the address was invalid, else zero */
857 	return (rv);
858 }
859