1 /* $NetBSD: fault.c,v 1.48 2004/02/13 11:36:11 wiz Exp $ */ 2 3 /* 4 * Copyright 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 /* 38 * Copyright (c) 1994-1997 Mark Brinicombe. 39 * Copyright (c) 1994 Brini. 40 * All rights reserved. 41 * 42 * This code is derived from software written for Brini by Mark Brinicombe 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed by Brini. 55 * 4. The name of the company nor the name of the author may be used to 56 * endorse or promote products derived from this software without specific 57 * prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * RiscBSD kernel project 72 * 73 * fault.c 74 * 75 * Fault handlers 76 * 77 * Created : 28/11/94 78 */ 79 80 #include "opt_ddb.h" 81 #include "opt_kgdb.h" 82 83 #include <sys/types.h> 84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.48 2004/02/13 11:36:11 wiz Exp $"); 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/proc.h> 89 #include <sys/savar.h> 90 #include <sys/user.h> 91 #include <sys/kernel.h> 92 93 #include <uvm/uvm_extern.h> 94 95 #include <arm/cpuconf.h> 96 97 #include <machine/frame.h> 98 #include <arm/arm32/katelib.h> 99 #include <machine/cpu.h> 100 #include <machine/intr.h> 101 #if defined(DDB) || defined(KGDB) 102 #include <machine/db_machdep.h> 103 #ifdef KGDB 104 #include <sys/kgdb.h> 105 #endif 106 #if !defined(DDB) 107 #define kdb_trap kgdb_trap 108 #endif 109 #endif 110 111 #include <arch/arm/arm/disassem.h> 112 #include <arm/arm32/machdep.h> 113 114 extern char fusubailout[]; 115 116 #ifdef DEBUG 117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */ 118 #endif 119 120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \ 121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI) 122 /* These CPUs may need data/prefetch abort fixups */ 123 #define CPU_ABORT_FIXUP_REQUIRED 124 #endif 125 126 struct data_abort { 127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 128 const char *desc; 129 }; 130 131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 134 135 static const struct data_abort data_aborts[] = { 136 {dab_fatal, "Vector Exception"}, 137 {dab_align, "Alignment Fault 1"}, 138 {dab_fatal, "Terminal Exception"}, 139 {dab_align, "Alignment Fault 3"}, 140 {dab_buserr, "External Linefetch Abort (S)"}, 141 {NULL, "Translation Fault (S)"}, 142 {dab_buserr, "External Linefetch Abort (P)"}, 143 {NULL, "Translation Fault (P)"}, 144 {dab_buserr, "External Non-Linefetch Abort (S)"}, 145 {NULL, "Domain Fault (S)"}, 146 {dab_buserr, "External Non-Linefetch Abort (P)"}, 147 {NULL, "Domain Fault (P)"}, 148 {dab_buserr, "External Translation Abort (L1)"}, 149 {NULL, "Permission Fault (S)"}, 150 {dab_buserr, "External Translation Abort (L2)"}, 151 {NULL, "Permission Fault (P)"} 152 }; 153 154 /* Determine if a fault came from user mode */ 155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE) 156 157 /* Determine if 'x' is a permission fault */ 158 #define IS_PERMISSION_FAULT(x) \ 159 (((1 << ((x) & FAULT_TYPE_MASK)) & \ 160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0) 161 162 #if 0 163 /* maybe one day we'll do emulations */ 164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k)) 165 #else 166 #define TRAPSIGNAL(l,k) trapsignal((l), (k)) 167 #endif 168 169 static __inline void 170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi) 171 { 172 173 KERNEL_PROC_LOCK(l->l_proc); 174 TRAPSIGNAL(l, ksi); 175 KERNEL_PROC_UNLOCK(l->l_proc); 176 } 177 178 static __inline int 179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l) 180 { 181 #ifdef CPU_ABORT_FIXUP_REQUIRED 182 int error; 183 184 /* Call the CPU specific data abort fixup routine */ 185 error = cpu_dataabt_fixup(tf); 186 if (__predict_true(error != ABORT_FIXUP_FAILED)) 187 return (error); 188 189 /* 190 * Oops, couldn't fix up the instruction 191 */ 192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n", 193 TRAP_USERMODE(tf) ? "user" : "kernel"); 194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, 195 *((u_int *)tf->tf_pc)); 196 disassemble(tf->tf_pc); 197 198 /* Die now if this happened in kernel mode */ 199 if (!TRAP_USERMODE(tf)) 200 dab_fatal(tf, fsr, far, l, NULL); 201 202 return (error); 203 #else 204 return (ABORT_FIXUP_OK); 205 #endif /* CPU_ABORT_FIXUP_REQUIRED */ 206 } 207 208 void 209 data_abort_handler(trapframe_t *tf) 210 { 211 struct vm_map *map; 212 struct pcb *pcb; 213 struct lwp *l; 214 u_int user, far, fsr; 215 vm_prot_t ftype; 216 void *onfault; 217 vaddr_t va; 218 int error; 219 ksiginfo_t ksi; 220 221 /* Grab FAR/FSR before enabling interrupts */ 222 far = cpu_faultaddress(); 223 fsr = cpu_faultstatus(); 224 225 /* Update vmmeter statistics */ 226 uvmexp.traps++; 227 228 /* Re-enable interrupts if they were enabled previously */ 229 if (__predict_true((tf->tf_spsr & I32_bit) == 0)) 230 enable_interrupts(I32_bit); 231 232 /* Get the current lwp structure or lwp0 if there is none */ 233 l = (curlwp != NULL) ? curlwp : &lwp0; 234 235 /* Data abort came from user mode? */ 236 user = TRAP_USERMODE(tf); 237 238 /* Grab the current pcb */ 239 pcb = &l->l_addr->u_pcb; 240 241 /* Invoke the appropriate handler, if necessary */ 242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) { 243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far, 244 l, &ksi)) 245 goto do_trapsignal; 246 goto out; 247 } 248 249 /* 250 * At this point, we're dealing with one of the following data aborts: 251 * 252 * FAULT_TRANS_S - Translation -- Section 253 * FAULT_TRANS_P - Translation -- Page 254 * FAULT_DOMAIN_S - Domain -- Section 255 * FAULT_DOMAIN_P - Domain -- Page 256 * FAULT_PERM_S - Permission -- Section 257 * FAULT_PERM_P - Permission -- Page 258 * 259 * These are the main virtual memory-related faults signalled by 260 * the MMU. 261 */ 262 263 /* fusubailout is used by [fs]uswintr to avoid page faulting */ 264 if (__predict_false(pcb->pcb_onfault == fusubailout)) { 265 tf->tf_r0 = EFAULT; 266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 267 return; 268 } 269 270 if (user) 271 l->l_addr->u_pcb.pcb_tf = tf; 272 273 /* 274 * Make sure the Program Counter is sane. We could fall foul of 275 * someone executing Thumb code, in which case the PC might not 276 * be word-aligned. This would cause a kernel alignment fault 277 * further down if we have to decode the current instruction. 278 * XXX: It would be nice to be able to support Thumb at some point. 279 */ 280 if (__predict_false((tf->tf_pc & 3) != 0)) { 281 if (user) { 282 /* 283 * Give the user an illegal instruction signal. 284 */ 285 /* Deliver a SIGILL to the process */ 286 KSI_INIT_TRAP(&ksi); 287 ksi.ksi_signo = SIGILL; 288 ksi.ksi_code = ILL_ILLOPC; 289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far; 290 ksi.ksi_trap = fsr; 291 goto do_trapsignal; 292 } 293 294 /* 295 * The kernel never executes Thumb code. 296 */ 297 printf("\ndata_abort_fault: Misaligned Kernel-mode " 298 "Program Counter\n"); 299 dab_fatal(tf, fsr, far, l, NULL); 300 } 301 302 /* See if the CPU state needs to be fixed up */ 303 switch (data_abort_fixup(tf, fsr, far, l)) { 304 case ABORT_FIXUP_RETURN: 305 return; 306 case ABORT_FIXUP_FAILED: 307 /* Deliver a SIGILL to the process */ 308 KSI_INIT_TRAP(&ksi); 309 ksi.ksi_signo = SIGILL; 310 ksi.ksi_code = ILL_ILLOPC; 311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far; 312 ksi.ksi_trap = fsr; 313 goto do_trapsignal; 314 default: 315 break; 316 } 317 318 va = trunc_page((vaddr_t)far); 319 320 /* 321 * It is only a kernel address space fault iff: 322 * 1. user == 0 and 323 * 2. pcb_onfault not set or 324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction. 325 */ 326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS || 327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) && 328 __predict_true((pcb->pcb_onfault == NULL || 329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) { 330 map = kernel_map; 331 332 /* Was the fault due to the FPE/IPKDB ? */ 333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) { 334 KSI_INIT_TRAP(&ksi); 335 ksi.ksi_signo = SIGSEGV; 336 ksi.ksi_code = SEGV_ACCERR; 337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far; 338 ksi.ksi_trap = fsr; 339 340 /* 341 * Force exit via userret() 342 * This is necessary as the FPE is an extension to 343 * userland that actually runs in a priveledged mode 344 * but uses USR mode permissions for its accesses. 345 */ 346 user = 1; 347 goto do_trapsignal; 348 } 349 } else { 350 map = &l->l_proc->p_vmspace->vm_map; 351 if (l->l_flag & L_SA) { 352 KDASSERT(l->l_proc->p_sa != NULL); 353 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far; 354 l->l_flag |= L_SA_PAGEFAULT; 355 } 356 } 357 358 /* 359 * We need to know whether the page should be mapped 360 * as R or R/W. The MMU does not give us the info as 361 * to whether the fault was caused by a read or a write. 362 * 363 * However, we know that a permission fault can only be 364 * the result of a write to a read-only location, so 365 * we can deal with those quickly. 366 * 367 * Otherwise we need to disassemble the instruction 368 * responsible to determine if it was a write. 369 */ 370 if (IS_PERMISSION_FAULT(fsr)) 371 ftype = VM_PROT_WRITE; 372 else { 373 u_int insn = ReadWord(tf->tf_pc); 374 375 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */ 376 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */ 377 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */ 378 ftype = VM_PROT_WRITE; 379 else 380 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */ 381 ftype = VM_PROT_READ | VM_PROT_WRITE; 382 else 383 ftype = VM_PROT_READ; 384 } 385 386 /* 387 * See if the fault is as a result of ref/mod emulation, 388 * or domain mismatch. 389 */ 390 #ifdef DEBUG 391 last_fault_code = fsr; 392 #endif 393 if (pmap_fault_fixup(map->pmap, va, ftype, user)) { 394 if (map != kernel_map) 395 l->l_flag &= ~L_SA_PAGEFAULT; 396 goto out; 397 } 398 399 if (__predict_false(current_intr_depth > 0)) { 400 if (pcb->pcb_onfault) { 401 tf->tf_r0 = EINVAL; 402 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 403 return; 404 } 405 printf("\nNon-emulated page fault with intr_depth > 0\n"); 406 dab_fatal(tf, fsr, far, l, NULL); 407 } 408 409 onfault = pcb->pcb_onfault; 410 pcb->pcb_onfault = NULL; 411 error = uvm_fault(map, va, 0, ftype); 412 pcb->pcb_onfault = onfault; 413 414 if (map != kernel_map) 415 l->l_flag &= ~L_SA_PAGEFAULT; 416 417 if (__predict_true(error == 0)) { 418 if (user) 419 uvm_grow(l->l_proc, va); /* Record any stack growth */ 420 goto out; 421 } 422 423 if (user == 0) { 424 if (pcb->pcb_onfault) { 425 tf->tf_r0 = error; 426 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 427 return; 428 } 429 430 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype, 431 error); 432 dab_fatal(tf, fsr, far, l, NULL); 433 } 434 435 KSI_INIT_TRAP(&ksi); 436 437 if (error == ENOMEM) { 438 printf("UVM: pid %d (%s), uid %d killed: " 439 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, 440 (l->l_proc->p_cred && l->l_proc->p_ucred) ? 441 l->l_proc->p_ucred->cr_uid : -1); 442 ksi.ksi_signo = SIGKILL; 443 } else 444 ksi.ksi_signo = SIGSEGV; 445 446 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR; 447 ksi.ksi_addr = (u_int32_t *)(intptr_t) far; 448 ksi.ksi_trap = fsr; 449 450 do_trapsignal: 451 call_trapsignal(l, &ksi); 452 out: 453 /* If returning to user mode, make sure to invoke userret() */ 454 if (user) 455 userret(l); 456 } 457 458 /* 459 * dab_fatal() handles the following data aborts: 460 * 461 * FAULT_WRTBUF_0 - Vector Exception 462 * FAULT_WRTBUF_1 - Terminal Exception 463 * 464 * We should never see these on a properly functioning system. 465 * 466 * This function is also called by the other handlers if they 467 * detect a fatal problem. 468 * 469 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort. 470 */ 471 static int 472 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) 473 { 474 const char *mode; 475 476 mode = TRAP_USERMODE(tf) ? "user" : "kernel"; 477 478 if (l != NULL) { 479 printf("Fatal %s mode data abort: '%s'\n", mode, 480 data_aborts[fsr & FAULT_TYPE_MASK].desc); 481 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr); 482 if ((fsr & FAULT_IMPRECISE) == 0) 483 printf("%08x, ", far); 484 else 485 printf("Invalid, "); 486 printf("spsr=%08x\n", tf->tf_spsr); 487 } else { 488 printf("Fatal %s mode prefetch abort at 0x%08x\n", 489 mode, tf->tf_pc); 490 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr); 491 } 492 493 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n", 494 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3); 495 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n", 496 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7); 497 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n", 498 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11); 499 printf("r12=%08x, ", tf->tf_r12); 500 501 if (TRAP_USERMODE(tf)) 502 printf("usp=%08x, ulr=%08x", 503 tf->tf_usr_sp, tf->tf_usr_lr); 504 else 505 printf("ssp=%08x, slr=%08x", 506 tf->tf_svc_sp, tf->tf_svc_lr); 507 printf(", pc =%08x\n\n", tf->tf_pc); 508 509 #if defined(DDB) || defined(KGDB) 510 kdb_trap(T_FAULT, tf); 511 #endif 512 panic("Fatal abort"); 513 /*NOTREACHED*/ 514 } 515 516 /* 517 * dab_align() handles the following data aborts: 518 * 519 * FAULT_ALIGN_0 - Alignment fault 520 * FAULT_ALIGN_0 - Alignment fault 521 * 522 * These faults are fatal if they happen in kernel mode. Otherwise, we 523 * deliver a bus error to the process. 524 */ 525 static int 526 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) 527 { 528 529 /* Alignment faults are always fatal if they occur in kernel mode */ 530 if (!TRAP_USERMODE(tf)) 531 dab_fatal(tf, fsr, far, l, NULL); 532 533 /* pcb_onfault *must* be NULL at this point */ 534 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL); 535 536 /* See if the CPU state needs to be fixed up */ 537 (void) data_abort_fixup(tf, fsr, far, l); 538 539 /* Deliver a bus error signal to the process */ 540 KSI_INIT_TRAP(ksi); 541 ksi->ksi_signo = SIGBUS; 542 ksi->ksi_code = BUS_ADRALN; 543 ksi->ksi_addr = (u_int32_t *)(intptr_t)far; 544 ksi->ksi_trap = fsr; 545 546 l->l_addr->u_pcb.pcb_tf = tf; 547 548 return (1); 549 } 550 551 /* 552 * dab_buserr() handles the following data aborts: 553 * 554 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section 555 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page 556 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section 557 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page 558 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1 559 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2 560 * 561 * If pcb_onfault is set, flag the fault and return to the handler. 562 * If the fault occurred in user mode, give the process a SIGBUS. 563 * 564 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2 565 * can be flagged as imprecise in the FSR. This causes a real headache 566 * since some of the machine state is lost. In this case, tf->tf_pc 567 * may not actually point to the offending instruction. In fact, if 568 * we've taken a double abort fault, it generally points somewhere near 569 * the top of "data_abort_entry" in exception.S. 570 * 571 * In all other cases, these data aborts are considered fatal. 572 */ 573 static int 574 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, 575 ksiginfo_t *ksi) 576 { 577 struct pcb *pcb = &l->l_addr->u_pcb; 578 579 #ifdef __XSCALE__ 580 if ((fsr & FAULT_IMPRECISE) != 0 && 581 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) { 582 /* 583 * Oops, an imprecise, double abort fault. We've lost the 584 * r14_abt/spsr_abt values corresponding to the original 585 * abort, and the spsr saved in the trapframe indicates 586 * ABT mode. 587 */ 588 tf->tf_spsr &= ~PSR_MODE; 589 590 /* 591 * We use a simple heuristic to determine if the double abort 592 * happened as a result of a kernel or user mode access. 593 * If the current trapframe is at the top of the kernel stack, 594 * the fault _must_ have come from user mode. 595 */ 596 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) { 597 /* 598 * Kernel mode. We're either about to die a 599 * spectacular death, or pcb_onfault will come 600 * to our rescue. Either way, the current value 601 * of tf->tf_pc is irrelevant. 602 */ 603 tf->tf_spsr |= PSR_SVC32_MODE; 604 if (pcb->pcb_onfault == NULL) 605 printf("\nKernel mode double abort!\n"); 606 } else { 607 /* 608 * User mode. We've lost the program counter at the 609 * time of the fault (not that it was accurate anyway; 610 * it's not called an imprecise fault for nothing). 611 * About all we can do is copy r14_usr to tf_pc and 612 * hope for the best. The process is about to get a 613 * SIGBUS, so it's probably history anyway. 614 */ 615 tf->tf_spsr |= PSR_USR32_MODE; 616 tf->tf_pc = tf->tf_usr_lr; 617 } 618 } 619 620 /* FAR is invalid for imprecise exceptions */ 621 if ((fsr & FAULT_IMPRECISE) != 0) 622 far = 0; 623 #endif /* __XSCALE__ */ 624 625 if (pcb->pcb_onfault) { 626 KDASSERT(TRAP_USERMODE(tf) == 0); 627 tf->tf_r0 = EFAULT; 628 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 629 return (0); 630 } 631 632 /* See if the CPU state needs to be fixed up */ 633 (void) data_abort_fixup(tf, fsr, far, l); 634 635 /* 636 * At this point, if the fault happened in kernel mode, we're toast 637 */ 638 if (!TRAP_USERMODE(tf)) 639 dab_fatal(tf, fsr, far, l, NULL); 640 641 /* Deliver a bus error signal to the process */ 642 KSI_INIT_TRAP(ksi); 643 ksi->ksi_signo = SIGBUS; 644 ksi->ksi_code = BUS_ADRERR; 645 ksi->ksi_addr = (u_int32_t *)(intptr_t)far; 646 ksi->ksi_trap = fsr; 647 648 l->l_addr->u_pcb.pcb_tf = tf; 649 650 return (1); 651 } 652 653 static __inline int 654 prefetch_abort_fixup(trapframe_t *tf) 655 { 656 #ifdef CPU_ABORT_FIXUP_REQUIRED 657 int error; 658 659 /* Call the CPU specific prefetch abort fixup routine */ 660 error = cpu_prefetchabt_fixup(tf); 661 if (__predict_true(error != ABORT_FIXUP_FAILED)) 662 return (error); 663 664 /* 665 * Oops, couldn't fix up the instruction 666 */ 667 printf( 668 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n", 669 TRAP_USERMODE(tf) ? "user" : "kernel"); 670 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, 671 *((u_int *)tf->tf_pc)); 672 disassemble(tf->tf_pc); 673 674 /* Die now if this happened in kernel mode */ 675 if (!TRAP_USERMODE(tf)) 676 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 677 678 return (error); 679 #else 680 return (ABORT_FIXUP_OK); 681 #endif /* CPU_ABORT_FIXUP_REQUIRED */ 682 } 683 684 /* 685 * void prefetch_abort_handler(trapframe_t *tf) 686 * 687 * Abort handler called when instruction execution occurs at 688 * a non existent or restricted (access permissions) memory page. 689 * If the address is invalid and we were in SVC mode then panic as 690 * the kernel should never prefetch abort. 691 * If the address is invalid and the page is mapped then the user process 692 * does no have read permission so send it a signal. 693 * Otherwise fault the page in and try again. 694 */ 695 void 696 prefetch_abort_handler(trapframe_t *tf) 697 { 698 struct lwp *l; 699 struct vm_map *map; 700 vaddr_t fault_pc, va; 701 ksiginfo_t ksi; 702 int error; 703 704 /* Update vmmeter statistics */ 705 uvmexp.traps++; 706 707 /* 708 * Enable IRQ's (disabled by the abort) This always comes 709 * from user mode so we know interrupts were not disabled. 710 * But we check anyway. 711 */ 712 if (__predict_true((tf->tf_spsr & I32_bit) == 0)) 713 enable_interrupts(I32_bit); 714 715 /* See if the CPU state needs to be fixed up */ 716 switch (prefetch_abort_fixup(tf)) { 717 case ABORT_FIXUP_RETURN: 718 return; 719 case ABORT_FIXUP_FAILED: 720 /* Deliver a SIGILL to the process */ 721 KSI_INIT_TRAP(&ksi); 722 ksi.ksi_signo = SIGILL; 723 ksi.ksi_code = ILL_ILLOPC; 724 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc; 725 l = curlwp; 726 l->l_addr->u_pcb.pcb_tf = tf; 727 goto do_trapsignal; 728 default: 729 break; 730 } 731 732 /* Prefetch aborts cannot happen in kernel mode */ 733 if (__predict_false(!TRAP_USERMODE(tf))) 734 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 735 736 /* Get fault address */ 737 fault_pc = tf->tf_pc; 738 l = curlwp; 739 l->l_addr->u_pcb.pcb_tf = tf; 740 741 /* Ok validate the address, can only execute in USER space */ 742 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS || 743 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) { 744 KSI_INIT_TRAP(&ksi); 745 ksi.ksi_signo = SIGSEGV; 746 ksi.ksi_code = SEGV_ACCERR; 747 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc; 748 ksi.ksi_trap = fault_pc; 749 goto do_trapsignal; 750 } 751 752 map = &l->l_proc->p_vmspace->vm_map; 753 va = trunc_page(fault_pc); 754 755 /* 756 * See if the pmap can handle this fault on its own... 757 */ 758 #ifdef DEBUG 759 last_fault_code = -1; 760 #endif 761 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) 762 goto out; 763 764 #ifdef DIAGNOSTIC 765 if (__predict_false(current_intr_depth > 0)) { 766 printf("\nNon-emulated prefetch abort with intr_depth > 0\n"); 767 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 768 } 769 #endif 770 771 error = uvm_fault(map, va, 0, VM_PROT_READ); 772 if (__predict_true(error == 0)) 773 goto out; 774 775 KSI_INIT_TRAP(&ksi); 776 777 if (error == ENOMEM) { 778 printf("UVM: pid %d (%s), uid %d killed: " 779 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, 780 (l->l_proc->p_cred && l->l_proc->p_ucred) ? 781 l->l_proc->p_ucred->cr_uid : -1); 782 ksi.ksi_signo = SIGKILL; 783 } else 784 ksi.ksi_signo = SIGSEGV; 785 786 ksi.ksi_code = SEGV_MAPERR; 787 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc; 788 ksi.ksi_trap = fault_pc; 789 790 do_trapsignal: 791 call_trapsignal(l, &ksi); 792 793 out: 794 userret(l); 795 } 796 797 /* 798 * Tentatively read an 8, 16, or 32-bit value from 'addr'. 799 * If the read succeeds, the value is written to 'rptr' and zero is returned. 800 * Else, return EFAULT. 801 */ 802 int 803 badaddr_read(void *addr, size_t size, void *rptr) 804 { 805 extern int badaddr_read_1(const uint8_t *, uint8_t *); 806 extern int badaddr_read_2(const uint16_t *, uint16_t *); 807 extern int badaddr_read_4(const uint32_t *, uint32_t *); 808 union { 809 uint8_t v1; 810 uint16_t v2; 811 uint32_t v4; 812 } u; 813 struct pcb *curpcb_save; 814 int rv, s; 815 816 cpu_drain_writebuf(); 817 818 /* 819 * We might be called at interrupt time, so arrange to steal 820 * lwp0's PCB temporarily, if required, so that pcb_onfault 821 * handling works correctly. 822 */ 823 s = splhigh(); 824 if ((curpcb_save = curpcb) == NULL) 825 curpcb = &lwp0.l_addr->u_pcb; 826 827 /* Read from the test address. */ 828 switch (size) { 829 case sizeof(uint8_t): 830 rv = badaddr_read_1(addr, &u.v1); 831 if (rv == 0 && rptr) 832 *(uint8_t *) rptr = u.v1; 833 break; 834 835 case sizeof(uint16_t): 836 rv = badaddr_read_2(addr, &u.v2); 837 if (rv == 0 && rptr) 838 *(uint16_t *) rptr = u.v2; 839 break; 840 841 case sizeof(uint32_t): 842 rv = badaddr_read_4(addr, &u.v4); 843 if (rv == 0 && rptr) 844 *(uint32_t *) rptr = u.v4; 845 break; 846 847 default: 848 curpcb = curpcb_save; 849 panic("badaddr: invalid size (%lu)", (u_long) size); 850 } 851 852 /* Restore curpcb */ 853 curpcb = curpcb_save; 854 splx(s); 855 856 /* Return EFAULT if the address was invalid, else zero */ 857 return (rv); 858 } 859