xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: fault.c,v 1.88 2013/02/18 05:14:13 matt Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.88 2013/02/18 05:14:13 matt Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 
93 #include <uvm/uvm_extern.h>
94 #include <uvm/uvm_stat.h>
95 #ifdef UVMHIST
96 #include <uvm/uvm.h>
97 #endif
98 
99 #include <arm/cpuconf.h>
100 
101 #include <arm/arm32/katelib.h>
102 
103 #include <machine/intr.h>
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap	kgdb_trap
112 #endif
113 #endif
114 
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117 
118 extern char fusubailout[];
119 
120 #ifdef DEBUG
121 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
122 #endif
123 
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define	CPU_ABORT_FIXUP_REQUIRED
128 #endif
129 
130 struct data_abort {
131 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 	const char *desc;
133 };
134 
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 
139 static const struct data_abort data_aborts[] = {
140 	{dab_fatal,	"Vector Exception"},
141 	{dab_align,	"Alignment Fault 1"},
142 	{dab_fatal,	"Terminal Exception"},
143 	{dab_align,	"Alignment Fault 3"},
144 	{dab_buserr,	"External Linefetch Abort (S)"},
145 	{NULL,		"Translation Fault (S)"},
146 	{dab_buserr,	"External Linefetch Abort (P)"},
147 	{NULL,		"Translation Fault (P)"},
148 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
149 	{NULL,		"Domain Fault (S)"},
150 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
151 	{NULL,		"Domain Fault (P)"},
152 	{dab_buserr,	"External Translation Abort (L1)"},
153 	{NULL,		"Permission Fault (S)"},
154 	{dab_buserr,	"External Translation Abort (L2)"},
155 	{NULL,		"Permission Fault (P)"}
156 };
157 
158 /* Determine if 'x' is a permission fault */
159 #define	IS_PERMISSION_FAULT(x)					\
160 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
161 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162 
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
168 #endif
169 
170 static inline void
171 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
172 {
173 
174 	TRAPSIGNAL(l, ksi);
175 }
176 
177 static inline int
178 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
179 {
180 #ifdef CPU_ABORT_FIXUP_REQUIRED
181 	int error;
182 
183 	/* Call the CPU specific data abort fixup routine */
184 	error = cpu_dataabt_fixup(tf);
185 	if (__predict_true(error != ABORT_FIXUP_FAILED))
186 		return (error);
187 
188 	/*
189 	 * Oops, couldn't fix up the instruction
190 	 */
191 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
192 	    TRAP_USERMODE(tf) ? "user" : "kernel");
193 #ifdef THUMB_CODE
194 	if (tf->tf_spsr & PSR_T_bit) {
195 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
196 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
197 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
198 	}
199 	else
200 #endif
201 	{
202 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
203 		    *((u_int *)tf->tf_pc));
204 	}
205 	disassemble(tf->tf_pc);
206 
207 	/* Die now if this happened in kernel mode */
208 	if (!TRAP_USERMODE(tf))
209 		dab_fatal(tf, fsr, far, l, NULL);
210 
211 	return (error);
212 #else
213 	return (ABORT_FIXUP_OK);
214 #endif /* CPU_ABORT_FIXUP_REQUIRED */
215 }
216 
217 void
218 data_abort_handler(trapframe_t *tf)
219 {
220 	struct vm_map *map;
221 	struct lwp * const l = curlwp;
222 	struct cpu_info * const ci = curcpu();
223 	u_int far, fsr;
224 	vm_prot_t ftype;
225 	void *onfault;
226 	vaddr_t va;
227 	int error;
228 	ksiginfo_t ksi;
229 
230 	UVMHIST_FUNC("data_abort_handler");
231 
232 	/* Grab FAR/FSR before enabling interrupts */
233 	far = cpu_faultaddress();
234 	fsr = cpu_faultstatus();
235 
236 	UVMHIST_CALLED(maphist);
237 	/* Update vmmeter statistics */
238 	ci->ci_data.cpu_ntrap++;
239 
240 	/* Re-enable interrupts if they were enabled previously */
241 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
242 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
243 		restore_interrupts(tf->tf_spsr & IF32_bits);
244 
245 	/* Get the current lwp structure */
246 
247 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
248 	    tf->tf_pc, l, far, fsr);
249 
250 	/* Data abort came from user mode? */
251 	bool user = (TRAP_USERMODE(tf) != 0);
252 	if (user)
253 		LWP_CACHE_CREDS(l, l->l_proc);
254 
255 	/* Grab the current pcb */
256 	struct pcb * const pcb = lwp_getpcb(l);
257 
258 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
259 
260 	/* Invoke the appropriate handler, if necessary */
261 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
262 #ifdef DIAGNOSTIC
263 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
264 		    __func__, fsr, far);
265 #endif
266 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
267 		    l, &ksi))
268 			goto do_trapsignal;
269 		goto out;
270 	}
271 
272 	/*
273 	 * At this point, we're dealing with one of the following data aborts:
274 	 *
275 	 *  FAULT_TRANS_S  - Translation -- Section
276 	 *  FAULT_TRANS_P  - Translation -- Page
277 	 *  FAULT_DOMAIN_S - Domain -- Section
278 	 *  FAULT_DOMAIN_P - Domain -- Page
279 	 *  FAULT_PERM_S   - Permission -- Section
280 	 *  FAULT_PERM_P   - Permission -- Page
281 	 *
282 	 * These are the main virtual memory-related faults signalled by
283 	 * the MMU.
284 	 */
285 
286 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
287 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
288 		tf->tf_r0 = EFAULT;
289 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
290 		return;
291 	}
292 
293 	if (user) {
294 		lwp_settrapframe(l, tf);
295 	}
296 
297 	/*
298 	 * Make sure the Program Counter is sane. We could fall foul of
299 	 * someone executing Thumb code, in which case the PC might not
300 	 * be word-aligned. This would cause a kernel alignment fault
301 	 * further down if we have to decode the current instruction.
302 	 */
303 #ifdef THUMB_CODE
304 	/*
305 	 * XXX: It would be nice to be able to support Thumb in the kernel
306 	 * at some point.
307 	 */
308 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
309 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
310 		    __func__);
311 		dab_fatal(tf, fsr, far, l, NULL);
312 	}
313 #else
314 	if (__predict_false((tf->tf_pc & 3) != 0)) {
315 		if (user) {
316 			/*
317 			 * Give the user an illegal instruction signal.
318 			 */
319 			/* Deliver a SIGILL to the process */
320 			KSI_INIT_TRAP(&ksi);
321 			ksi.ksi_signo = SIGILL;
322 			ksi.ksi_code = ILL_ILLOPC;
323 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
324 			ksi.ksi_trap = fsr;
325 			goto do_trapsignal;
326 		}
327 
328 		/*
329 		 * The kernel never executes Thumb code.
330 		 */
331 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
332 		    __func__);
333 		dab_fatal(tf, fsr, far, l, NULL);
334 	}
335 #endif
336 
337 	/* See if the CPU state needs to be fixed up */
338 	switch (data_abort_fixup(tf, fsr, far, l)) {
339 	case ABORT_FIXUP_RETURN:
340 		return;
341 	case ABORT_FIXUP_FAILED:
342 		/* Deliver a SIGILL to the process */
343 		KSI_INIT_TRAP(&ksi);
344 		ksi.ksi_signo = SIGILL;
345 		ksi.ksi_code = ILL_ILLOPC;
346 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
347 		ksi.ksi_trap = fsr;
348 		goto do_trapsignal;
349 	default:
350 		break;
351 	}
352 
353 	va = trunc_page((vaddr_t)far);
354 
355 	/*
356 	 * It is only a kernel address space fault iff:
357 	 *	1. user == 0  and
358 	 *	2. pcb_onfault not set or
359 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
360 	 */
361 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
362 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
363 	    __predict_true((pcb->pcb_onfault == NULL ||
364 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
365 		map = kernel_map;
366 
367 		/* Was the fault due to the FPE/IPKDB ? */
368 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
369 			KSI_INIT_TRAP(&ksi);
370 			ksi.ksi_signo = SIGSEGV;
371 			ksi.ksi_code = SEGV_ACCERR;
372 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
373 			ksi.ksi_trap = fsr;
374 
375 			/*
376 			 * Force exit via userret()
377 			 * This is necessary as the FPE is an extension to
378 			 * userland that actually runs in a priveledged mode
379 			 * but uses USR mode permissions for its accesses.
380 			 */
381 			user = true;
382 			goto do_trapsignal;
383 		}
384 	} else {
385 		map = &l->l_proc->p_vmspace->vm_map;
386 	}
387 
388 	/*
389 	 * We need to know whether the page should be mapped
390 	 * as R or R/W. The MMU does not give us the info as
391 	 * to whether the fault was caused by a read or a write.
392 	 *
393 	 * However, we know that a permission fault can only be
394 	 * the result of a write to a read-only location, so
395 	 * we can deal with those quickly.
396 	 *
397 	 * Otherwise we need to disassemble the instruction
398 	 * responsible to determine if it was a write.
399 	 */
400 	if (IS_PERMISSION_FAULT(fsr))
401 		ftype = VM_PROT_WRITE;
402 	else {
403 #ifdef THUMB_CODE
404 		/* Fast track the ARM case.  */
405 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
406 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
407 			u_int insn_f8 = insn & 0xf800;
408 			u_int insn_fe = insn & 0xfe00;
409 
410 			if (insn_f8 == 0x6000 || /* STR(1) */
411 			    insn_f8 == 0x7000 || /* STRB(1) */
412 			    insn_f8 == 0x8000 || /* STRH(1) */
413 			    insn_f8 == 0x9000 || /* STR(3) */
414 			    insn_f8 == 0xc000 || /* STM */
415 			    insn_fe == 0x5000 || /* STR(2) */
416 			    insn_fe == 0x5200 || /* STRH(2) */
417 			    insn_fe == 0x5400)   /* STRB(2) */
418 				ftype = VM_PROT_WRITE;
419 			else
420 				ftype = VM_PROT_READ;
421 		}
422 		else
423 #endif
424 		{
425 			u_int insn = ReadWord(tf->tf_pc);
426 
427 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
428 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
429 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
430 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
431 				ftype = VM_PROT_WRITE;
432 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
433 				ftype = VM_PROT_READ | VM_PROT_WRITE;
434 			else
435 				ftype = VM_PROT_READ;
436 		}
437 	}
438 
439 	/*
440 	 * See if the fault is as a result of ref/mod emulation,
441 	 * or domain mismatch.
442 	 */
443 #ifdef DEBUG
444 	last_fault_code = fsr;
445 #endif
446 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
447 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
448 		goto out;
449 	}
450 
451 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
452 		if (pcb->pcb_onfault) {
453 			tf->tf_r0 = EINVAL;
454 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
455 			return;
456 		}
457 		printf("\nNon-emulated page fault with intr_depth > 0\n");
458 		dab_fatal(tf, fsr, far, l, NULL);
459 	}
460 
461 	onfault = pcb->pcb_onfault;
462 	pcb->pcb_onfault = NULL;
463 	error = uvm_fault(map, va, ftype);
464 	pcb->pcb_onfault = onfault;
465 
466 	if (__predict_true(error == 0)) {
467 		if (user)
468 			uvm_grow(l->l_proc, va); /* Record any stack growth */
469 		else
470 			ucas_ras_check(tf);
471 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
472 		goto out;
473 	}
474 
475 	if (user == 0) {
476 		if (pcb->pcb_onfault) {
477 			tf->tf_r0 = error;
478 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
479 			return;
480 		}
481 
482 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
483 		    error);
484 		dab_fatal(tf, fsr, far, l, NULL);
485 	}
486 
487 	KSI_INIT_TRAP(&ksi);
488 
489 	if (error == ENOMEM) {
490 		printf("UVM: pid %d (%s), uid %d killed: "
491 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
492 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
493 		ksi.ksi_signo = SIGKILL;
494 	} else
495 		ksi.ksi_signo = SIGSEGV;
496 
497 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
498 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
499 	ksi.ksi_trap = fsr;
500 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
501 
502 do_trapsignal:
503 	call_trapsignal(l, &ksi);
504 out:
505 	/* If returning to user mode, make sure to invoke userret() */
506 	if (user)
507 		userret(l);
508 }
509 
510 /*
511  * dab_fatal() handles the following data aborts:
512  *
513  *  FAULT_WRTBUF_0 - Vector Exception
514  *  FAULT_WRTBUF_1 - Terminal Exception
515  *
516  * We should never see these on a properly functioning system.
517  *
518  * This function is also called by the other handlers if they
519  * detect a fatal problem.
520  *
521  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
522  */
523 static int
524 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
525 {
526 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
527 
528 	if (l != NULL) {
529 		printf("Fatal %s mode data abort: '%s'\n", mode,
530 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
531 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
532 		if ((fsr & FAULT_IMPRECISE) == 0)
533 			printf("%08x, ", far);
534 		else
535 			printf("Invalid,  ");
536 		printf("spsr=%08x\n", tf->tf_spsr);
537 	} else {
538 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
539 		    mode, tf->tf_pc);
540 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
541 	}
542 
543 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
544 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
545 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
546 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
547 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
548 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
549 	printf("r12=%08x, ", tf->tf_r12);
550 
551 	if (TRAP_USERMODE(tf))
552 		printf("usp=%08x, ulr=%08x",
553 		    tf->tf_usr_sp, tf->tf_usr_lr);
554 	else
555 		printf("ssp=%08x, slr=%08x",
556 		    tf->tf_svc_sp, tf->tf_svc_lr);
557 	printf(", pc =%08x\n\n", tf->tf_pc);
558 
559 #if defined(DDB) || defined(KGDB)
560 	kdb_trap(T_FAULT, tf);
561 #endif
562 	panic("Fatal abort");
563 	/*NOTREACHED*/
564 }
565 
566 /*
567  * dab_align() handles the following data aborts:
568  *
569  *  FAULT_ALIGN_0 - Alignment fault
570  *  FAULT_ALIGN_0 - Alignment fault
571  *
572  * These faults are fatal if they happen in kernel mode. Otherwise, we
573  * deliver a bus error to the process.
574  */
575 static int
576 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
577 {
578 	/* Alignment faults are always fatal if they occur in kernel mode */
579 	if (!TRAP_USERMODE(tf))
580 		dab_fatal(tf, fsr, far, l, NULL);
581 
582 	/* pcb_onfault *must* be NULL at this point */
583 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
584 
585 	/* See if the CPU state needs to be fixed up */
586 	(void) data_abort_fixup(tf, fsr, far, l);
587 
588 	/* Deliver a bus error signal to the process */
589 	KSI_INIT_TRAP(ksi);
590 	ksi->ksi_signo = SIGBUS;
591 	ksi->ksi_code = BUS_ADRALN;
592 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
593 	ksi->ksi_trap = fsr;
594 
595 	lwp_settrapframe(l, tf);
596 
597 	return (1);
598 }
599 
600 /*
601  * dab_buserr() handles the following data aborts:
602  *
603  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
604  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
605  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
606  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
607  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
608  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
609  *
610  * If pcb_onfault is set, flag the fault and return to the handler.
611  * If the fault occurred in user mode, give the process a SIGBUS.
612  *
613  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
614  * can be flagged as imprecise in the FSR. This causes a real headache
615  * since some of the machine state is lost. In this case, tf->tf_pc
616  * may not actually point to the offending instruction. In fact, if
617  * we've taken a double abort fault, it generally points somewhere near
618  * the top of "data_abort_entry" in exception.S.
619  *
620  * In all other cases, these data aborts are considered fatal.
621  */
622 static int
623 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
624     ksiginfo_t *ksi)
625 {
626 	struct pcb *pcb = lwp_getpcb(l);
627 
628 #ifdef __XSCALE__
629 	if ((fsr & FAULT_IMPRECISE) != 0 &&
630 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
631 		/*
632 		 * Oops, an imprecise, double abort fault. We've lost the
633 		 * r14_abt/spsr_abt values corresponding to the original
634 		 * abort, and the spsr saved in the trapframe indicates
635 		 * ABT mode.
636 		 */
637 		tf->tf_spsr &= ~PSR_MODE;
638 
639 		/*
640 		 * We use a simple heuristic to determine if the double abort
641 		 * happened as a result of a kernel or user mode access.
642 		 * If the current trapframe is at the top of the kernel stack,
643 		 * the fault _must_ have come from user mode.
644 		 */
645 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
646 			/*
647 			 * Kernel mode. We're either about to die a
648 			 * spectacular death, or pcb_onfault will come
649 			 * to our rescue. Either way, the current value
650 			 * of tf->tf_pc is irrelevant.
651 			 */
652 			tf->tf_spsr |= PSR_SVC32_MODE;
653 			if (pcb->pcb_onfault == NULL)
654 				printf("\nKernel mode double abort!\n");
655 		} else {
656 			/*
657 			 * User mode. We've lost the program counter at the
658 			 * time of the fault (not that it was accurate anyway;
659 			 * it's not called an imprecise fault for nothing).
660 			 * About all we can do is copy r14_usr to tf_pc and
661 			 * hope for the best. The process is about to get a
662 			 * SIGBUS, so it's probably history anyway.
663 			 */
664 			tf->tf_spsr |= PSR_USR32_MODE;
665 			tf->tf_pc = tf->tf_usr_lr;
666 #ifdef THUMB_CODE
667 			tf->tf_spsr &= ~PSR_T_bit;
668 			if (tf->tf_usr_lr & 1)
669 				tf->tf_spsr |= PSR_T_bit;
670 #endif
671 		}
672 	}
673 
674 	/* FAR is invalid for imprecise exceptions */
675 	if ((fsr & FAULT_IMPRECISE) != 0)
676 		far = 0;
677 #endif /* __XSCALE__ */
678 
679 	if (pcb->pcb_onfault) {
680 		KDASSERT(TRAP_USERMODE(tf) == 0);
681 		tf->tf_r0 = EFAULT;
682 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
683 		return (0);
684 	}
685 
686 	/* See if the CPU state needs to be fixed up */
687 	(void) data_abort_fixup(tf, fsr, far, l);
688 
689 	/*
690 	 * At this point, if the fault happened in kernel mode, we're toast
691 	 */
692 	if (!TRAP_USERMODE(tf))
693 		dab_fatal(tf, fsr, far, l, NULL);
694 
695 	/* Deliver a bus error signal to the process */
696 	KSI_INIT_TRAP(ksi);
697 	ksi->ksi_signo = SIGBUS;
698 	ksi->ksi_code = BUS_ADRERR;
699 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
700 	ksi->ksi_trap = fsr;
701 
702 	lwp_settrapframe(l, tf);
703 
704 	return (1);
705 }
706 
707 static inline int
708 prefetch_abort_fixup(trapframe_t *tf)
709 {
710 #ifdef CPU_ABORT_FIXUP_REQUIRED
711 	int error;
712 
713 	/* Call the CPU specific prefetch abort fixup routine */
714 	error = cpu_prefetchabt_fixup(tf);
715 	if (__predict_true(error != ABORT_FIXUP_FAILED))
716 		return (error);
717 
718 	/*
719 	 * Oops, couldn't fix up the instruction
720 	 */
721 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
722 	    TRAP_USERMODE(tf) ? "user" : "kernel");
723 #ifdef THUMB_CODE
724 	if (tf->tf_spsr & PSR_T_bit) {
725 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
726 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
727 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
728 	}
729 	else
730 #endif
731 	{
732 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
733 		    *((u_int *)tf->tf_pc));
734 	}
735 	disassemble(tf->tf_pc);
736 
737 	/* Die now if this happened in kernel mode */
738 	if (!TRAP_USERMODE(tf))
739 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
740 
741 	return (error);
742 #else
743 	return (ABORT_FIXUP_OK);
744 #endif /* CPU_ABORT_FIXUP_REQUIRED */
745 }
746 
747 /*
748  * void prefetch_abort_handler(trapframe_t *tf)
749  *
750  * Abort handler called when instruction execution occurs at
751  * a non existent or restricted (access permissions) memory page.
752  * If the address is invalid and we were in SVC mode then panic as
753  * the kernel should never prefetch abort.
754  * If the address is invalid and the page is mapped then the user process
755  * does no have read permission so send it a signal.
756  * Otherwise fault the page in and try again.
757  */
758 void
759 prefetch_abort_handler(trapframe_t *tf)
760 {
761 	struct lwp *l;
762 	struct pcb *pcb;
763 	struct vm_map *map;
764 	vaddr_t fault_pc, va;
765 	ksiginfo_t ksi;
766 	int error, user;
767 
768 	UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
769 
770 	/* Update vmmeter statistics */
771 	curcpu()->ci_data.cpu_ntrap++;
772 
773 	l = curlwp;
774 	pcb = lwp_getpcb(l);
775 
776 	if ((user = TRAP_USERMODE(tf)) != 0)
777 		LWP_CACHE_CREDS(l, l->l_proc);
778 
779 	/*
780 	 * Enable IRQ's (disabled by the abort) This always comes
781 	 * from user mode so we know interrupts were not disabled.
782 	 * But we check anyway.
783 	 */
784 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
785 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
786 		restore_interrupts(tf->tf_spsr & IF32_bits);
787 
788 	/* See if the CPU state needs to be fixed up */
789 	switch (prefetch_abort_fixup(tf)) {
790 	case ABORT_FIXUP_RETURN:
791 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
792 		return;
793 	case ABORT_FIXUP_FAILED:
794 		/* Deliver a SIGILL to the process */
795 		KSI_INIT_TRAP(&ksi);
796 		ksi.ksi_signo = SIGILL;
797 		ksi.ksi_code = ILL_ILLOPC;
798 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
799 		lwp_settrapframe(l, tf);
800 		goto do_trapsignal;
801 	default:
802 		break;
803 	}
804 
805 	/* Prefetch aborts cannot happen in kernel mode */
806 	if (__predict_false(!user))
807 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
808 
809 	/* Get fault address */
810 	fault_pc = tf->tf_pc;
811 	lwp_settrapframe(l, tf);
812 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
813 	    0);
814 
815 	/* Ok validate the address, can only execute in USER space */
816 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
817 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
818 		KSI_INIT_TRAP(&ksi);
819 		ksi.ksi_signo = SIGSEGV;
820 		ksi.ksi_code = SEGV_ACCERR;
821 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
822 		ksi.ksi_trap = fault_pc;
823 		goto do_trapsignal;
824 	}
825 
826 	map = &l->l_proc->p_vmspace->vm_map;
827 	va = trunc_page(fault_pc);
828 
829 	/*
830 	 * See if the pmap can handle this fault on its own...
831 	 */
832 #ifdef DEBUG
833 	last_fault_code = -1;
834 #endif
835 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
836 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
837 		goto out;
838 	}
839 
840 #ifdef DIAGNOSTIC
841 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
842 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
843 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
844 	}
845 #endif
846 
847 	KASSERT(pcb->pcb_onfault == NULL);
848 	error = uvm_fault(map, va, VM_PROT_READ);
849 
850 	if (__predict_true(error == 0)) {
851 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
852 		goto out;
853 	}
854 	KSI_INIT_TRAP(&ksi);
855 
856 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
857 	if (error == ENOMEM) {
858 		printf("UVM: pid %d (%s), uid %d killed: "
859 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
860 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
861 		ksi.ksi_signo = SIGKILL;
862 	} else
863 		ksi.ksi_signo = SIGSEGV;
864 
865 	ksi.ksi_code = SEGV_MAPERR;
866 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
867 	ksi.ksi_trap = fault_pc;
868 
869 do_trapsignal:
870 	call_trapsignal(l, &ksi);
871 
872 out:
873 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
874 	userret(l);
875 }
876 
877 /*
878  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
879  * If the read succeeds, the value is written to 'rptr' and zero is returned.
880  * Else, return EFAULT.
881  */
882 int
883 badaddr_read(void *addr, size_t size, void *rptr)
884 {
885 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
886 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
887 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
888 	union {
889 		uint8_t v1;
890 		uint16_t v2;
891 		uint32_t v4;
892 	} u;
893 	int rv, s;
894 
895 	cpu_drain_writebuf();
896 
897 	s = splhigh();
898 
899 	/* Read from the test address. */
900 	switch (size) {
901 	case sizeof(uint8_t):
902 		rv = badaddr_read_1(addr, &u.v1);
903 		if (rv == 0 && rptr)
904 			*(uint8_t *) rptr = u.v1;
905 		break;
906 
907 	case sizeof(uint16_t):
908 		rv = badaddr_read_2(addr, &u.v2);
909 		if (rv == 0 && rptr)
910 			*(uint16_t *) rptr = u.v2;
911 		break;
912 
913 	case sizeof(uint32_t):
914 		rv = badaddr_read_4(addr, &u.v4);
915 		if (rv == 0 && rptr)
916 			*(uint32_t *) rptr = u.v4;
917 		break;
918 
919 	default:
920 		panic("%s: invalid size (%zu)", __func__, size);
921 	}
922 
923 	splx(s);
924 
925 	/* Return EFAULT if the address was invalid, else zero */
926 	return (rv);
927 }
928