xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: fault.c,v 1.64 2007/02/18 07:25:35 matt Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.64 2007/02/18 07:25:35 matt Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/user.h>
90 #include <sys/kernel.h>
91 #include <sys/kauth.h>
92 
93 #include <uvm/uvm_extern.h>
94 #include <uvm/uvm_stat.h>
95 #ifdef UVMHIST
96 #include <uvm/uvm.h>
97 #endif
98 
99 #include <arm/cpuconf.h>
100 
101 #include <machine/frame.h>
102 #include <arm/arm32/katelib.h>
103 #include <machine/cpu.h>
104 #include <machine/intr.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap	kgdb_trap
112 #endif
113 #endif
114 
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117 
118 extern char fusubailout[];
119 
120 #ifdef DEBUG
121 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
122 #endif
123 
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define	CPU_ABORT_FIXUP_REQUIRED
128 #endif
129 
130 struct data_abort {
131 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 	const char *desc;
133 };
134 
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 
139 static const struct data_abort data_aborts[] = {
140 	{dab_fatal,	"Vector Exception"},
141 	{dab_align,	"Alignment Fault 1"},
142 	{dab_fatal,	"Terminal Exception"},
143 	{dab_align,	"Alignment Fault 3"},
144 	{dab_buserr,	"External Linefetch Abort (S)"},
145 	{NULL,		"Translation Fault (S)"},
146 	{dab_buserr,	"External Linefetch Abort (P)"},
147 	{NULL,		"Translation Fault (P)"},
148 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
149 	{NULL,		"Domain Fault (S)"},
150 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
151 	{NULL,		"Domain Fault (P)"},
152 	{dab_buserr,	"External Translation Abort (L1)"},
153 	{NULL,		"Permission Fault (S)"},
154 	{dab_buserr,	"External Translation Abort (L2)"},
155 	{NULL,		"Permission Fault (P)"}
156 };
157 
158 /* Determine if a fault came from user mode */
159 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
160 
161 /* Determine if 'x' is a permission fault */
162 #define	IS_PERMISSION_FAULT(x)					\
163 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
164 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
165 
166 #if 0
167 /* maybe one day we'll do emulations */
168 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
169 #else
170 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
171 #endif
172 
173 static inline void
174 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
175 {
176 
177 	KERNEL_LOCK(1, l);
178 	TRAPSIGNAL(l, ksi);
179 	KERNEL_UNLOCK_LAST(l);
180 }
181 
182 static inline int
183 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
184 {
185 #ifdef CPU_ABORT_FIXUP_REQUIRED
186 	int error;
187 
188 	/* Call the CPU specific data abort fixup routine */
189 	error = cpu_dataabt_fixup(tf);
190 	if (__predict_true(error != ABORT_FIXUP_FAILED))
191 		return (error);
192 
193 	/*
194 	 * Oops, couldn't fix up the instruction
195 	 */
196 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
197 	    TRAP_USERMODE(tf) ? "user" : "kernel");
198 #ifdef THUMB_CODE
199 	if (tf->tf_spsr & PSR_T_bit) {
200 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
201 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
202 		    *((u_int16 *)((tf->tf_pc + 2) & ~1));
203 	}
204 	else
205 #endif
206 	{
207 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
208 		    *((u_int *)tf->tf_pc));
209 	}
210 	disassemble(tf->tf_pc);
211 
212 	/* Die now if this happened in kernel mode */
213 	if (!TRAP_USERMODE(tf))
214 		dab_fatal(tf, fsr, far, l, NULL);
215 
216 	return (error);
217 #else
218 	return (ABORT_FIXUP_OK);
219 #endif /* CPU_ABORT_FIXUP_REQUIRED */
220 }
221 
222 void
223 data_abort_handler(trapframe_t *tf)
224 {
225 	struct vm_map *map;
226 	struct pcb *pcb;
227 	struct lwp *l;
228 	u_int user, far, fsr;
229 	vm_prot_t ftype;
230 	void *onfault;
231 	vaddr_t va;
232 	int error;
233 	ksiginfo_t ksi;
234 
235 	UVMHIST_FUNC("data_abort_handler");
236 
237 	/* Grab FAR/FSR before enabling interrupts */
238 	far = cpu_faultaddress();
239 	fsr = cpu_faultstatus();
240 
241 	UVMHIST_CALLED(maphist);
242 	/* Update vmmeter statistics */
243 	uvmexp.traps++;
244 
245 	/* Re-enable interrupts if they were enabled previously */
246 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
247 		enable_interrupts(I32_bit);
248 
249 	/* Get the current lwp structure or lwp0 if there is none */
250 	l = (curlwp != NULL) ? curlwp : &lwp0;
251 
252 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
253 	    tf->tf_pc, l, far, fsr);
254 
255 	/* Data abort came from user mode? */
256 	if ((user = TRAP_USERMODE(tf)) != 0)
257 		LWP_CACHE_CREDS(l, l->l_proc);
258 
259 	/* Grab the current pcb */
260 	pcb = &l->l_addr->u_pcb;
261 
262 	/* Invoke the appropriate handler, if necessary */
263 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
264 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
265 		    l, &ksi))
266 			goto do_trapsignal;
267 		goto out;
268 	}
269 
270 	/*
271 	 * At this point, we're dealing with one of the following data aborts:
272 	 *
273 	 *  FAULT_TRANS_S  - Translation -- Section
274 	 *  FAULT_TRANS_P  - Translation -- Page
275 	 *  FAULT_DOMAIN_S - Domain -- Section
276 	 *  FAULT_DOMAIN_P - Domain -- Page
277 	 *  FAULT_PERM_S   - Permission -- Section
278 	 *  FAULT_PERM_P   - Permission -- Page
279 	 *
280 	 * These are the main virtual memory-related faults signalled by
281 	 * the MMU.
282 	 */
283 
284 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
285 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
286 		tf->tf_r0 = EFAULT;
287 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
288 		return;
289 	}
290 
291 	if (user)
292 		l->l_addr->u_pcb.pcb_tf = tf;
293 
294 	/*
295 	 * Make sure the Program Counter is sane. We could fall foul of
296 	 * someone executing Thumb code, in which case the PC might not
297 	 * be word-aligned. This would cause a kernel alignment fault
298 	 * further down if we have to decode the current instruction.
299 	 */
300 #ifdef THUMB_CODE
301 	/*
302 	 * XXX: It would be nice to be able to support Thumb in the kernel
303 	 * at some point.
304 	 */
305 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
306 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
307 		    "Program Counter\n");
308 		dab_fatal(tf, fsr, far, l, NULL);
309 	}
310 #else
311 	if (__predict_false((tf->tf_pc & 3) != 0)) {
312 		if (user) {
313 			/*
314 			 * Give the user an illegal instruction signal.
315 			 */
316 			/* Deliver a SIGILL to the process */
317 			KSI_INIT_TRAP(&ksi);
318 			ksi.ksi_signo = SIGILL;
319 			ksi.ksi_code = ILL_ILLOPC;
320 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
321 			ksi.ksi_trap = fsr;
322 			goto do_trapsignal;
323 		}
324 
325 		/*
326 		 * The kernel never executes Thumb code.
327 		 */
328 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
329 		    "Program Counter\n");
330 		dab_fatal(tf, fsr, far, l, NULL);
331 	}
332 #endif
333 
334 	/* See if the CPU state needs to be fixed up */
335 	switch (data_abort_fixup(tf, fsr, far, l)) {
336 	case ABORT_FIXUP_RETURN:
337 		return;
338 	case ABORT_FIXUP_FAILED:
339 		/* Deliver a SIGILL to the process */
340 		KSI_INIT_TRAP(&ksi);
341 		ksi.ksi_signo = SIGILL;
342 		ksi.ksi_code = ILL_ILLOPC;
343 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
344 		ksi.ksi_trap = fsr;
345 		goto do_trapsignal;
346 	default:
347 		break;
348 	}
349 
350 	va = trunc_page((vaddr_t)far);
351 
352 	/*
353 	 * It is only a kernel address space fault iff:
354 	 *	1. user == 0  and
355 	 *	2. pcb_onfault not set or
356 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
357 	 */
358 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
359 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
360 	    __predict_true((pcb->pcb_onfault == NULL ||
361 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
362 		map = kernel_map;
363 
364 		/* Was the fault due to the FPE/IPKDB ? */
365 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
366 			KSI_INIT_TRAP(&ksi);
367 			ksi.ksi_signo = SIGSEGV;
368 			ksi.ksi_code = SEGV_ACCERR;
369 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
370 			ksi.ksi_trap = fsr;
371 
372 			/*
373 			 * Force exit via userret()
374 			 * This is necessary as the FPE is an extension to
375 			 * userland that actually runs in a priveledged mode
376 			 * but uses USR mode permissions for its accesses.
377 			 */
378 			user = 1;
379 			goto do_trapsignal;
380 		}
381 	} else
382 		map = &l->l_proc->p_vmspace->vm_map;
383 
384 	/*
385 	 * We need to know whether the page should be mapped
386 	 * as R or R/W. The MMU does not give us the info as
387 	 * to whether the fault was caused by a read or a write.
388 	 *
389 	 * However, we know that a permission fault can only be
390 	 * the result of a write to a read-only location, so
391 	 * we can deal with those quickly.
392 	 *
393 	 * Otherwise we need to disassemble the instruction
394 	 * responsible to determine if it was a write.
395 	 */
396 	if (IS_PERMISSION_FAULT(fsr))
397 		ftype = VM_PROT_WRITE;
398 	else {
399 #ifdef THUMB_CODE
400 		/* Fast track the ARM case.  */
401 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
402 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
403 			u_int insn_f8 = insn & 0xf800;
404 			u_int insn_fe = insn & 0xfe00;
405 
406 			if (insn_f8 == 0x6000 || /* STR(1) */
407 			    insn_f8 == 0x7000 || /* STRB(1) */
408 			    insn_f8 == 0x8000 || /* STRH(1) */
409 			    insn_f8 == 0x9000 || /* STR(3) */
410 			    insn_f8 == 0xc000 || /* STM */
411 			    insn_fe == 0x5000 || /* STR(2) */
412 			    insn_fe == 0x5200 || /* STRH(2) */
413 			    insn_fe == 0x5400)   /* STRB(2) */
414 				ftype = VM_PROT_WRITE;
415 			else
416 				ftype = VM_PROT_READ;
417 		}
418 		else
419 #endif
420 		{
421 			u_int insn = ReadWord(tf->tf_pc);
422 
423 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
424 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
425 			    ((insn & 0x0a100000) == 0x08000000))   /* STM/CDT*/
426 				ftype = VM_PROT_WRITE;
427 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
428 				ftype = VM_PROT_READ | VM_PROT_WRITE;
429 			else
430 				ftype = VM_PROT_READ;
431 		}
432 	}
433 
434 	/*
435 	 * See if the fault is as a result of ref/mod emulation,
436 	 * or domain mismatch.
437 	 */
438 #ifdef DEBUG
439 	last_fault_code = fsr;
440 #endif
441 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
442 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
443 		goto out;
444 	}
445 
446 	if (__predict_false(current_intr_depth > 0)) {
447 		if (pcb->pcb_onfault) {
448 			tf->tf_r0 = EINVAL;
449 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
450 			return;
451 		}
452 		printf("\nNon-emulated page fault with intr_depth > 0\n");
453 		dab_fatal(tf, fsr, far, l, NULL);
454 	}
455 
456 	onfault = pcb->pcb_onfault;
457 	pcb->pcb_onfault = NULL;
458 	error = uvm_fault(map, va, ftype);
459 	pcb->pcb_onfault = onfault;
460 
461 	if (__predict_true(error == 0)) {
462 		if (user)
463 			uvm_grow(l->l_proc, va); /* Record any stack growth */
464 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
465 		goto out;
466 	}
467 
468 	if (user == 0) {
469 		if (pcb->pcb_onfault) {
470 			tf->tf_r0 = error;
471 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
472 			return;
473 		}
474 
475 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
476 		    error);
477 		dab_fatal(tf, fsr, far, l, NULL);
478 	}
479 
480 	KSI_INIT_TRAP(&ksi);
481 
482 	if (error == ENOMEM) {
483 		printf("UVM: pid %d (%s), uid %d killed: "
484 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
485 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
486 		ksi.ksi_signo = SIGKILL;
487 	} else
488 		ksi.ksi_signo = SIGSEGV;
489 
490 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
491 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
492 	ksi.ksi_trap = fsr;
493 	UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
494 
495 do_trapsignal:
496 	call_trapsignal(l, &ksi);
497 out:
498 	/* If returning to user mode, make sure to invoke userret() */
499 	if (user)
500 		userret(l);
501 }
502 
503 /*
504  * dab_fatal() handles the following data aborts:
505  *
506  *  FAULT_WRTBUF_0 - Vector Exception
507  *  FAULT_WRTBUF_1 - Terminal Exception
508  *
509  * We should never see these on a properly functioning system.
510  *
511  * This function is also called by the other handlers if they
512  * detect a fatal problem.
513  *
514  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
515  */
516 static int
517 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
518 {
519 	const char *mode;
520 
521 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
522 
523 	if (l != NULL) {
524 		printf("Fatal %s mode data abort: '%s'\n", mode,
525 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
526 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
527 		if ((fsr & FAULT_IMPRECISE) == 0)
528 			printf("%08x, ", far);
529 		else
530 			printf("Invalid,  ");
531 		printf("spsr=%08x\n", tf->tf_spsr);
532 	} else {
533 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
534 		    mode, tf->tf_pc);
535 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
536 	}
537 
538 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
539 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
540 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
541 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
542 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
543 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
544 	printf("r12=%08x, ", tf->tf_r12);
545 
546 	if (TRAP_USERMODE(tf))
547 		printf("usp=%08x, ulr=%08x",
548 		    tf->tf_usr_sp, tf->tf_usr_lr);
549 	else
550 		printf("ssp=%08x, slr=%08x",
551 		    tf->tf_svc_sp, tf->tf_svc_lr);
552 	printf(", pc =%08x\n\n", tf->tf_pc);
553 
554 #if defined(DDB) || defined(KGDB)
555 	kdb_trap(T_FAULT, tf);
556 #endif
557 	panic("Fatal abort");
558 	/*NOTREACHED*/
559 }
560 
561 /*
562  * dab_align() handles the following data aborts:
563  *
564  *  FAULT_ALIGN_0 - Alignment fault
565  *  FAULT_ALIGN_0 - Alignment fault
566  *
567  * These faults are fatal if they happen in kernel mode. Otherwise, we
568  * deliver a bus error to the process.
569  */
570 static int
571 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
572 {
573 
574 	/* Alignment faults are always fatal if they occur in kernel mode */
575 	if (!TRAP_USERMODE(tf))
576 		dab_fatal(tf, fsr, far, l, NULL);
577 
578 	/* pcb_onfault *must* be NULL at this point */
579 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
580 
581 	/* See if the CPU state needs to be fixed up */
582 	(void) data_abort_fixup(tf, fsr, far, l);
583 
584 	/* Deliver a bus error signal to the process */
585 	KSI_INIT_TRAP(ksi);
586 	ksi->ksi_signo = SIGBUS;
587 	ksi->ksi_code = BUS_ADRALN;
588 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
589 	ksi->ksi_trap = fsr;
590 
591 	l->l_addr->u_pcb.pcb_tf = tf;
592 
593 	return (1);
594 }
595 
596 /*
597  * dab_buserr() handles the following data aborts:
598  *
599  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
600  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
601  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
602  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
603  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
604  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
605  *
606  * If pcb_onfault is set, flag the fault and return to the handler.
607  * If the fault occurred in user mode, give the process a SIGBUS.
608  *
609  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
610  * can be flagged as imprecise in the FSR. This causes a real headache
611  * since some of the machine state is lost. In this case, tf->tf_pc
612  * may not actually point to the offending instruction. In fact, if
613  * we've taken a double abort fault, it generally points somewhere near
614  * the top of "data_abort_entry" in exception.S.
615  *
616  * In all other cases, these data aborts are considered fatal.
617  */
618 static int
619 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
620     ksiginfo_t *ksi)
621 {
622 	struct pcb *pcb = &l->l_addr->u_pcb;
623 
624 #ifdef __XSCALE__
625 	if ((fsr & FAULT_IMPRECISE) != 0 &&
626 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
627 		/*
628 		 * Oops, an imprecise, double abort fault. We've lost the
629 		 * r14_abt/spsr_abt values corresponding to the original
630 		 * abort, and the spsr saved in the trapframe indicates
631 		 * ABT mode.
632 		 */
633 		tf->tf_spsr &= ~PSR_MODE;
634 
635 		/*
636 		 * We use a simple heuristic to determine if the double abort
637 		 * happened as a result of a kernel or user mode access.
638 		 * If the current trapframe is at the top of the kernel stack,
639 		 * the fault _must_ have come from user mode.
640 		 */
641 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
642 			/*
643 			 * Kernel mode. We're either about to die a
644 			 * spectacular death, or pcb_onfault will come
645 			 * to our rescue. Either way, the current value
646 			 * of tf->tf_pc is irrelevant.
647 			 */
648 			tf->tf_spsr |= PSR_SVC32_MODE;
649 			if (pcb->pcb_onfault == NULL)
650 				printf("\nKernel mode double abort!\n");
651 		} else {
652 			/*
653 			 * User mode. We've lost the program counter at the
654 			 * time of the fault (not that it was accurate anyway;
655 			 * it's not called an imprecise fault for nothing).
656 			 * About all we can do is copy r14_usr to tf_pc and
657 			 * hope for the best. The process is about to get a
658 			 * SIGBUS, so it's probably history anyway.
659 			 */
660 			tf->tf_spsr |= PSR_USR32_MODE;
661 			tf->tf_pc = tf->tf_usr_lr;
662 #ifdef THUMB_CODE
663 			tf->tf_spsr &= ~PSR_T_bit;
664 			if (tf->tf_usr_lr & 1)
665 				tf->tf_spsr |= PSR_T_bit;
666 #endif
667 		}
668 	}
669 
670 	/* FAR is invalid for imprecise exceptions */
671 	if ((fsr & FAULT_IMPRECISE) != 0)
672 		far = 0;
673 #endif /* __XSCALE__ */
674 
675 	if (pcb->pcb_onfault) {
676 		KDASSERT(TRAP_USERMODE(tf) == 0);
677 		tf->tf_r0 = EFAULT;
678 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
679 		return (0);
680 	}
681 
682 	/* See if the CPU state needs to be fixed up */
683 	(void) data_abort_fixup(tf, fsr, far, l);
684 
685 	/*
686 	 * At this point, if the fault happened in kernel mode, we're toast
687 	 */
688 	if (!TRAP_USERMODE(tf))
689 		dab_fatal(tf, fsr, far, l, NULL);
690 
691 	/* Deliver a bus error signal to the process */
692 	KSI_INIT_TRAP(ksi);
693 	ksi->ksi_signo = SIGBUS;
694 	ksi->ksi_code = BUS_ADRERR;
695 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
696 	ksi->ksi_trap = fsr;
697 
698 	l->l_addr->u_pcb.pcb_tf = tf;
699 
700 	return (1);
701 }
702 
703 static inline int
704 prefetch_abort_fixup(trapframe_t *tf)
705 {
706 #ifdef CPU_ABORT_FIXUP_REQUIRED
707 	int error;
708 
709 	/* Call the CPU specific prefetch abort fixup routine */
710 	error = cpu_prefetchabt_fixup(tf);
711 	if (__predict_true(error != ABORT_FIXUP_FAILED))
712 		return (error);
713 
714 	/*
715 	 * Oops, couldn't fix up the instruction
716 	 */
717 	printf(
718 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
719 	    TRAP_USERMODE(tf) ? "user" : "kernel");
720 #ifdef THUMB_CODE
721 	if (tf->tf_spsr & PSR_T_bit) {
722 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
723 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
724 		    *((u_int16 *)((tf->tf_pc + 2) & ~1));
725 	}
726 	else
727 #endif
728 	{
729 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
730 		    *((u_int *)tf->tf_pc));
731 	}
732 	disassemble(tf->tf_pc);
733 
734 	/* Die now if this happened in kernel mode */
735 	if (!TRAP_USERMODE(tf))
736 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
737 
738 	return (error);
739 #else
740 	return (ABORT_FIXUP_OK);
741 #endif /* CPU_ABORT_FIXUP_REQUIRED */
742 }
743 
744 /*
745  * void prefetch_abort_handler(trapframe_t *tf)
746  *
747  * Abort handler called when instruction execution occurs at
748  * a non existent or restricted (access permissions) memory page.
749  * If the address is invalid and we were in SVC mode then panic as
750  * the kernel should never prefetch abort.
751  * If the address is invalid and the page is mapped then the user process
752  * does no have read permission so send it a signal.
753  * Otherwise fault the page in and try again.
754  */
755 void
756 prefetch_abort_handler(trapframe_t *tf)
757 {
758 	struct lwp *l;
759 	struct vm_map *map;
760 	vaddr_t fault_pc, va;
761 	ksiginfo_t ksi;
762 	int error, user;
763 
764 	UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
765 
766 	/* Update vmmeter statistics */
767 	uvmexp.traps++;
768 
769 	l = curlwp;
770 
771 	if ((user = TRAP_USERMODE(tf)) != 0)
772 		LWP_CACHE_CREDS(l, l->l_proc);
773 
774 	/*
775 	 * Enable IRQ's (disabled by the abort) This always comes
776 	 * from user mode so we know interrupts were not disabled.
777 	 * But we check anyway.
778 	 */
779 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
780 		enable_interrupts(I32_bit);
781 
782 	/* See if the CPU state needs to be fixed up */
783 	switch (prefetch_abort_fixup(tf)) {
784 	case ABORT_FIXUP_RETURN:
785 		return;
786 	case ABORT_FIXUP_FAILED:
787 		/* Deliver a SIGILL to the process */
788 		KSI_INIT_TRAP(&ksi);
789 		ksi.ksi_signo = SIGILL;
790 		ksi.ksi_code = ILL_ILLOPC;
791 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
792 		l->l_addr->u_pcb.pcb_tf = tf;
793 		goto do_trapsignal;
794 	default:
795 		break;
796 	}
797 
798 	/* Prefetch aborts cannot happen in kernel mode */
799 	if (__predict_false(!user))
800 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
801 
802 	/* Get fault address */
803 	fault_pc = tf->tf_pc;
804 	l = curlwp;
805 	l->l_addr->u_pcb.pcb_tf = tf;
806 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
807 	    0);
808 
809 	/* Ok validate the address, can only execute in USER space */
810 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
811 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
812 		KSI_INIT_TRAP(&ksi);
813 		ksi.ksi_signo = SIGSEGV;
814 		ksi.ksi_code = SEGV_ACCERR;
815 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
816 		ksi.ksi_trap = fault_pc;
817 		goto do_trapsignal;
818 	}
819 
820 	map = &l->l_proc->p_vmspace->vm_map;
821 	va = trunc_page(fault_pc);
822 
823 	/*
824 	 * See if the pmap can handle this fault on its own...
825 	 */
826 #ifdef DEBUG
827 	last_fault_code = -1;
828 #endif
829 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
830 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
831 		goto out;
832 	}
833 
834 #ifdef DIAGNOSTIC
835 	if (__predict_false(current_intr_depth > 0)) {
836 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
837 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
838 	}
839 #endif
840 	error = uvm_fault(map, va, VM_PROT_READ);
841 
842 	if (__predict_true(error == 0)) {
843 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
844 		goto out;
845 	}
846 	KSI_INIT_TRAP(&ksi);
847 
848 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
849 	if (error == ENOMEM) {
850 		printf("UVM: pid %d (%s), uid %d killed: "
851 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
852 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
853 		ksi.ksi_signo = SIGKILL;
854 	} else
855 		ksi.ksi_signo = SIGSEGV;
856 
857 	ksi.ksi_code = SEGV_MAPERR;
858 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
859 	ksi.ksi_trap = fault_pc;
860 
861 do_trapsignal:
862 	call_trapsignal(l, &ksi);
863 
864 out:
865 	userret(l);
866 }
867 
868 /*
869  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
870  * If the read succeeds, the value is written to 'rptr' and zero is returned.
871  * Else, return EFAULT.
872  */
873 int
874 badaddr_read(void *addr, size_t size, void *rptr)
875 {
876 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
877 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
878 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
879 	union {
880 		uint8_t v1;
881 		uint16_t v2;
882 		uint32_t v4;
883 	} u;
884 	struct pcb *curpcb_save;
885 	int rv, s;
886 
887 	cpu_drain_writebuf();
888 
889 	/*
890 	 * We might be called at interrupt time, so arrange to steal
891 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
892 	 * handling works correctly.
893 	 */
894 	s = splhigh();
895 	if ((curpcb_save = curpcb) == NULL)
896 		curpcb = &lwp0.l_addr->u_pcb;
897 
898 	/* Read from the test address. */
899 	switch (size) {
900 	case sizeof(uint8_t):
901 		rv = badaddr_read_1(addr, &u.v1);
902 		if (rv == 0 && rptr)
903 			*(uint8_t *) rptr = u.v1;
904 		break;
905 
906 	case sizeof(uint16_t):
907 		rv = badaddr_read_2(addr, &u.v2);
908 		if (rv == 0 && rptr)
909 			*(uint16_t *) rptr = u.v2;
910 		break;
911 
912 	case sizeof(uint32_t):
913 		rv = badaddr_read_4(addr, &u.v4);
914 		if (rv == 0 && rptr)
915 			*(uint32_t *) rptr = u.v4;
916 		break;
917 
918 	default:
919 		curpcb = curpcb_save;
920 		panic("badaddr: invalid size (%lu)", (u_long) size);
921 	}
922 
923 	/* Restore curpcb */
924 	curpcb = curpcb_save;
925 	splx(s);
926 
927 	/* Return EFAULT if the address was invalid, else zero */
928 	return (rv);
929 }
930