xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: fault.c,v 1.101 2014/08/13 21:41:32 matt Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.101 2014/08/13 21:41:32 matt Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93 
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99 
100 #include <arm/locore.h>
101 
102 #include <arm/arm32/katelib.h>
103 
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap	kgdb_trap
112 #endif
113 #endif
114 
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117 
118 extern char fusubailout[];
119 
120 #ifdef DEBUG
121 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
122 #endif
123 
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define	CPU_ABORT_FIXUP_REQUIRED
128 #endif
129 
130 struct data_abort {
131 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 	const char *desc;
133 };
134 
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 
139 static const struct data_abort data_aborts[] = {
140 	{dab_fatal,	"Vector Exception"},
141 	{dab_align,	"Alignment Fault 1"},
142 	{dab_fatal,	"Terminal Exception"},
143 	{dab_align,	"Alignment Fault 3"},
144 	{dab_buserr,	"External Linefetch Abort (S)"},
145 	{NULL,		"Translation Fault (S)"},
146 	{dab_buserr,	"External Linefetch Abort (P)"},
147 	{NULL,		"Translation Fault (P)"},
148 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
149 	{NULL,		"Domain Fault (S)"},
150 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
151 	{NULL,		"Domain Fault (P)"},
152 	{dab_buserr,	"External Translation Abort (L1)"},
153 	{NULL,		"Permission Fault (S)"},
154 	{dab_buserr,	"External Translation Abort (L2)"},
155 	{NULL,		"Permission Fault (P)"}
156 };
157 
158 /* Determine if 'x' is a permission fault */
159 #define	IS_PERMISSION_FAULT(x)					\
160 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
161 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162 
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
168 #endif
169 
170 static inline void
171 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
172 {
173 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
174 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
175 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
176 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
177 		    ksi->ksi_trap);
178 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
179 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
180 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
181 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
182 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
183 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
184 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
185 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
186 		    tf->tf_spsr);
187 	}
188 
189 	TRAPSIGNAL(l, ksi);
190 }
191 
192 static inline int
193 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
194 {
195 #ifdef CPU_ABORT_FIXUP_REQUIRED
196 	int error;
197 
198 	/* Call the CPU specific data abort fixup routine */
199 	error = cpu_dataabt_fixup(tf);
200 	if (__predict_true(error != ABORT_FIXUP_FAILED))
201 		return (error);
202 
203 	/*
204 	 * Oops, couldn't fix up the instruction
205 	 */
206 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
207 	    TRAP_USERMODE(tf) ? "user" : "kernel");
208 #ifdef THUMB_CODE
209 	if (tf->tf_spsr & PSR_T_bit) {
210 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
211 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
212 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
213 	}
214 	else
215 #endif
216 	{
217 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
218 		    *((u_int *)tf->tf_pc));
219 	}
220 	disassemble(tf->tf_pc);
221 
222 	/* Die now if this happened in kernel mode */
223 	if (!TRAP_USERMODE(tf))
224 		dab_fatal(tf, fsr, far, l, NULL);
225 
226 	return (error);
227 #else
228 	return (ABORT_FIXUP_OK);
229 #endif /* CPU_ABORT_FIXUP_REQUIRED */
230 }
231 
232 void
233 data_abort_handler(trapframe_t *tf)
234 {
235 	struct vm_map *map;
236 	struct lwp * const l = curlwp;
237 	struct cpu_info * const ci = curcpu();
238 	u_int far, fsr;
239 	vm_prot_t ftype;
240 	void *onfault;
241 	vaddr_t va;
242 	int error;
243 	ksiginfo_t ksi;
244 
245 	UVMHIST_FUNC(__func__);
246 	UVMHIST_CALLED(maphist);
247 
248 	/* Grab FAR/FSR before enabling interrupts */
249 	far = cpu_faultaddress();
250 	fsr = cpu_faultstatus();
251 
252 	/* Update vmmeter statistics */
253 	ci->ci_data.cpu_ntrap++;
254 
255 	/* Re-enable interrupts if they were enabled previously */
256 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
257 #ifdef __NO_FIQ
258 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
259 		restore_interrupts(tf->tf_spsr & IF32_bits);
260 #else
261 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
262 		restore_interrupts(tf->tf_spsr & IF32_bits);
263 #endif
264 
265 	/* Get the current lwp structure */
266 
267 	UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
268 	    l, far, fsr, 0);
269 	UVMHIST_LOG(maphist, "  tf=%#x, pc=%#x)",
270 	    tf, tf->tf_pc, 0, 0);
271 
272 	/* Data abort came from user mode? */
273 	bool user = (TRAP_USERMODE(tf) != 0);
274 	if (user)
275 		LWP_CACHE_CREDS(l, l->l_proc);
276 
277 	/* Grab the current pcb */
278 	struct pcb * const pcb = lwp_getpcb(l);
279 
280 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
281 
282 	/* Invoke the appropriate handler, if necessary */
283 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
284 #ifdef DIAGNOSTIC
285 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
286 		    __func__, fsr, far);
287 #endif
288 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
289 		    l, &ksi))
290 			goto do_trapsignal;
291 		goto out;
292 	}
293 
294 	/*
295 	 * At this point, we're dealing with one of the following data aborts:
296 	 *
297 	 *  FAULT_TRANS_S  - Translation -- Section
298 	 *  FAULT_TRANS_P  - Translation -- Page
299 	 *  FAULT_DOMAIN_S - Domain -- Section
300 	 *  FAULT_DOMAIN_P - Domain -- Page
301 	 *  FAULT_PERM_S   - Permission -- Section
302 	 *  FAULT_PERM_P   - Permission -- Page
303 	 *
304 	 * These are the main virtual memory-related faults signalled by
305 	 * the MMU.
306 	 */
307 
308 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
309 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
310 		tf->tf_r0 = EFAULT;
311 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
312 		return;
313 	}
314 
315 	if (user) {
316 		lwp_settrapframe(l, tf);
317 	}
318 
319 	/*
320 	 * Make sure the Program Counter is sane. We could fall foul of
321 	 * someone executing Thumb code, in which case the PC might not
322 	 * be word-aligned. This would cause a kernel alignment fault
323 	 * further down if we have to decode the current instruction.
324 	 */
325 #ifdef THUMB_CODE
326 	/*
327 	 * XXX: It would be nice to be able to support Thumb in the kernel
328 	 * at some point.
329 	 */
330 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
331 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
332 		    __func__);
333 		dab_fatal(tf, fsr, far, l, NULL);
334 	}
335 #else
336 	if (__predict_false((tf->tf_pc & 3) != 0)) {
337 		if (user) {
338 			/*
339 			 * Give the user an illegal instruction signal.
340 			 */
341 			/* Deliver a SIGILL to the process */
342 			KSI_INIT_TRAP(&ksi);
343 			ksi.ksi_signo = SIGILL;
344 			ksi.ksi_code = ILL_ILLOPC;
345 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
346 			ksi.ksi_trap = fsr;
347 			goto do_trapsignal;
348 		}
349 
350 		/*
351 		 * The kernel never executes Thumb code.
352 		 */
353 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
354 		    __func__);
355 		dab_fatal(tf, fsr, far, l, NULL);
356 	}
357 #endif
358 
359 	/* See if the CPU state needs to be fixed up */
360 	switch (data_abort_fixup(tf, fsr, far, l)) {
361 	case ABORT_FIXUP_RETURN:
362 		return;
363 	case ABORT_FIXUP_FAILED:
364 		/* Deliver a SIGILL to the process */
365 		KSI_INIT_TRAP(&ksi);
366 		ksi.ksi_signo = SIGILL;
367 		ksi.ksi_code = ILL_ILLOPC;
368 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
369 		ksi.ksi_trap = fsr;
370 		goto do_trapsignal;
371 	default:
372 		break;
373 	}
374 
375 	va = trunc_page((vaddr_t)far);
376 
377 	/*
378 	 * It is only a kernel address space fault iff:
379 	 *	1. user == 0  and
380 	 *	2. pcb_onfault not set or
381 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
382 	 */
383 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
384 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
385 	    __predict_true((pcb->pcb_onfault == NULL ||
386 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
387 		map = kernel_map;
388 
389 		/* Was the fault due to the FPE/IPKDB ? */
390 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
391 			KSI_INIT_TRAP(&ksi);
392 			ksi.ksi_signo = SIGSEGV;
393 			ksi.ksi_code = SEGV_ACCERR;
394 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
395 			ksi.ksi_trap = fsr;
396 
397 			/*
398 			 * Force exit via userret()
399 			 * This is necessary as the FPE is an extension to
400 			 * userland that actually runs in a priveledged mode
401 			 * but uses USR mode permissions for its accesses.
402 			 */
403 			user = true;
404 			goto do_trapsignal;
405 		}
406 	} else {
407 		map = &l->l_proc->p_vmspace->vm_map;
408 	}
409 
410 	/*
411 	 * We need to know whether the page should be mapped as R or R/W.
412 	 * Before ARMv6, the MMU did not give us the info as to whether the
413 	 * fault was caused by a read or a write.
414 	 *
415 	 * However, we know that a permission fault can only be the result of
416 	 * a write to a read-only location, so we can deal with those quickly.
417 	 *
418 	 * Otherwise we need to disassemble the instruction responsible to
419 	 * determine if it was a write.
420 	 */
421 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
422 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
423 	} else if (IS_PERMISSION_FAULT(fsr)) {
424 		ftype = VM_PROT_WRITE;
425 	} else {
426 #ifdef THUMB_CODE
427 		/* Fast track the ARM case.  */
428 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
429 			u_int insn = read_thumb_insn(tf->tf_pc, user);
430 			u_int insn_f8 = insn & 0xf800;
431 			u_int insn_fe = insn & 0xfe00;
432 
433 			if (insn_f8 == 0x6000 || /* STR(1) */
434 			    insn_f8 == 0x7000 || /* STRB(1) */
435 			    insn_f8 == 0x8000 || /* STRH(1) */
436 			    insn_f8 == 0x9000 || /* STR(3) */
437 			    insn_f8 == 0xc000 || /* STM */
438 			    insn_fe == 0x5000 || /* STR(2) */
439 			    insn_fe == 0x5200 || /* STRH(2) */
440 			    insn_fe == 0x5400)   /* STRB(2) */
441 				ftype = VM_PROT_WRITE;
442 			else
443 				ftype = VM_PROT_READ;
444 		}
445 		else
446 #endif
447 		{
448 			u_int insn = read_insn(tf->tf_pc, user);
449 
450 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
451 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
452 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
453 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
454 				ftype = VM_PROT_WRITE;
455 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
456 				ftype = VM_PROT_READ | VM_PROT_WRITE;
457 			else
458 				ftype = VM_PROT_READ;
459 		}
460 	}
461 
462 	/*
463 	 * See if the fault is as a result of ref/mod emulation,
464 	 * or domain mismatch.
465 	 */
466 #ifdef DEBUG
467 	last_fault_code = fsr;
468 #endif
469 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
470 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
471 		goto out;
472 	}
473 
474 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
475 		if (pcb->pcb_onfault) {
476 			tf->tf_r0 = EINVAL;
477 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
478 			return;
479 		}
480 		printf("\nNon-emulated page fault with intr_depth > 0\n");
481 		dab_fatal(tf, fsr, far, l, NULL);
482 	}
483 
484 	onfault = pcb->pcb_onfault;
485 	pcb->pcb_onfault = NULL;
486 	error = uvm_fault(map, va, ftype);
487 	pcb->pcb_onfault = onfault;
488 
489 	if (__predict_true(error == 0)) {
490 		if (user)
491 			uvm_grow(l->l_proc, va); /* Record any stack growth */
492 		else
493 			ucas_ras_check(tf);
494 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
495 		goto out;
496 	}
497 
498 	if (user == 0) {
499 		if (pcb->pcb_onfault) {
500 			tf->tf_r0 = error;
501 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
502 			return;
503 		}
504 
505 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
506 		    error);
507 		dab_fatal(tf, fsr, far, l, NULL);
508 	}
509 
510 	KSI_INIT_TRAP(&ksi);
511 
512 	if (error == ENOMEM) {
513 		printf("UVM: pid %d (%s), uid %d killed: "
514 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
515 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
516 		ksi.ksi_signo = SIGKILL;
517 	} else
518 		ksi.ksi_signo = SIGSEGV;
519 
520 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
521 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
522 	ksi.ksi_trap = fsr;
523 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
524 
525 do_trapsignal:
526 	call_trapsignal(l, tf, &ksi);
527 out:
528 	/* If returning to user mode, make sure to invoke userret() */
529 	if (user)
530 		userret(l);
531 }
532 
533 /*
534  * dab_fatal() handles the following data aborts:
535  *
536  *  FAULT_WRTBUF_0 - Vector Exception
537  *  FAULT_WRTBUF_1 - Terminal Exception
538  *
539  * We should never see these on a properly functioning system.
540  *
541  * This function is also called by the other handlers if they
542  * detect a fatal problem.
543  *
544  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
545  */
546 static int
547 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
548 {
549 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
550 
551 	if (l != NULL) {
552 		printf("Fatal %s mode data abort: '%s'\n", mode,
553 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
554 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
555 		if ((fsr & FAULT_IMPRECISE) == 0)
556 			printf("%08x, ", far);
557 		else
558 			printf("Invalid,  ");
559 		printf("spsr=%08x\n", tf->tf_spsr);
560 	} else {
561 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
562 		    mode, tf->tf_pc);
563 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
564 	}
565 
566 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
567 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
568 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
569 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
570 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
571 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
572 	printf("r12=%08x, ", tf->tf_r12);
573 
574 	if (TRAP_USERMODE(tf))
575 		printf("usp=%08x, ulr=%08x",
576 		    tf->tf_usr_sp, tf->tf_usr_lr);
577 	else
578 		printf("ssp=%08x, slr=%08x",
579 		    tf->tf_svc_sp, tf->tf_svc_lr);
580 	printf(", pc =%08x\n\n", tf->tf_pc);
581 
582 #if defined(DDB) || defined(KGDB)
583 	kdb_trap(T_FAULT, tf);
584 #endif
585 	panic("Fatal abort");
586 	/*NOTREACHED*/
587 }
588 
589 /*
590  * dab_align() handles the following data aborts:
591  *
592  *  FAULT_ALIGN_0 - Alignment fault
593  *  FAULT_ALIGN_0 - Alignment fault
594  *
595  * These faults are fatal if they happen in kernel mode. Otherwise, we
596  * deliver a bus error to the process.
597  */
598 static int
599 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
600 {
601 	/* Alignment faults are always fatal if they occur in kernel mode */
602 	if (!TRAP_USERMODE(tf))
603 		dab_fatal(tf, fsr, far, l, NULL);
604 
605 	/* pcb_onfault *must* be NULL at this point */
606 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
607 
608 	/* See if the CPU state needs to be fixed up */
609 	(void) data_abort_fixup(tf, fsr, far, l);
610 
611 	/* Deliver a bus error signal to the process */
612 	KSI_INIT_TRAP(ksi);
613 	ksi->ksi_signo = SIGBUS;
614 	ksi->ksi_code = BUS_ADRALN;
615 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
616 	ksi->ksi_trap = fsr;
617 
618 	lwp_settrapframe(l, tf);
619 
620 	return (1);
621 }
622 
623 /*
624  * dab_buserr() handles the following data aborts:
625  *
626  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
627  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
628  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
629  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
630  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
631  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
632  *
633  * If pcb_onfault is set, flag the fault and return to the handler.
634  * If the fault occurred in user mode, give the process a SIGBUS.
635  *
636  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
637  * can be flagged as imprecise in the FSR. This causes a real headache
638  * since some of the machine state is lost. In this case, tf->tf_pc
639  * may not actually point to the offending instruction. In fact, if
640  * we've taken a double abort fault, it generally points somewhere near
641  * the top of "data_abort_entry" in exception.S.
642  *
643  * In all other cases, these data aborts are considered fatal.
644  */
645 static int
646 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
647     ksiginfo_t *ksi)
648 {
649 	struct pcb *pcb = lwp_getpcb(l);
650 
651 #ifdef __XSCALE__
652 	if ((fsr & FAULT_IMPRECISE) != 0 &&
653 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
654 		/*
655 		 * Oops, an imprecise, double abort fault. We've lost the
656 		 * r14_abt/spsr_abt values corresponding to the original
657 		 * abort, and the spsr saved in the trapframe indicates
658 		 * ABT mode.
659 		 */
660 		tf->tf_spsr &= ~PSR_MODE;
661 
662 		/*
663 		 * We use a simple heuristic to determine if the double abort
664 		 * happened as a result of a kernel or user mode access.
665 		 * If the current trapframe is at the top of the kernel stack,
666 		 * the fault _must_ have come from user mode.
667 		 */
668 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
669 			/*
670 			 * Kernel mode. We're either about to die a
671 			 * spectacular death, or pcb_onfault will come
672 			 * to our rescue. Either way, the current value
673 			 * of tf->tf_pc is irrelevant.
674 			 */
675 			tf->tf_spsr |= PSR_SVC32_MODE;
676 			if (pcb->pcb_onfault == NULL)
677 				printf("\nKernel mode double abort!\n");
678 		} else {
679 			/*
680 			 * User mode. We've lost the program counter at the
681 			 * time of the fault (not that it was accurate anyway;
682 			 * it's not called an imprecise fault for nothing).
683 			 * About all we can do is copy r14_usr to tf_pc and
684 			 * hope for the best. The process is about to get a
685 			 * SIGBUS, so it's probably history anyway.
686 			 */
687 			tf->tf_spsr |= PSR_USR32_MODE;
688 			tf->tf_pc = tf->tf_usr_lr;
689 #ifdef THUMB_CODE
690 			tf->tf_spsr &= ~PSR_T_bit;
691 			if (tf->tf_usr_lr & 1)
692 				tf->tf_spsr |= PSR_T_bit;
693 #endif
694 		}
695 	}
696 
697 	/* FAR is invalid for imprecise exceptions */
698 	if ((fsr & FAULT_IMPRECISE) != 0)
699 		far = 0;
700 #endif /* __XSCALE__ */
701 
702 	if (pcb->pcb_onfault) {
703 		KDASSERT(TRAP_USERMODE(tf) == 0);
704 		tf->tf_r0 = EFAULT;
705 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
706 		return (0);
707 	}
708 
709 	/* See if the CPU state needs to be fixed up */
710 	(void) data_abort_fixup(tf, fsr, far, l);
711 
712 	/*
713 	 * At this point, if the fault happened in kernel mode, we're toast
714 	 */
715 	if (!TRAP_USERMODE(tf))
716 		dab_fatal(tf, fsr, far, l, NULL);
717 
718 	/* Deliver a bus error signal to the process */
719 	KSI_INIT_TRAP(ksi);
720 	ksi->ksi_signo = SIGBUS;
721 	ksi->ksi_code = BUS_ADRERR;
722 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
723 	ksi->ksi_trap = fsr;
724 
725 	lwp_settrapframe(l, tf);
726 
727 	return (1);
728 }
729 
730 static inline int
731 prefetch_abort_fixup(trapframe_t *tf)
732 {
733 #ifdef CPU_ABORT_FIXUP_REQUIRED
734 	int error;
735 
736 	/* Call the CPU specific prefetch abort fixup routine */
737 	error = cpu_prefetchabt_fixup(tf);
738 	if (__predict_true(error != ABORT_FIXUP_FAILED))
739 		return (error);
740 
741 	/*
742 	 * Oops, couldn't fix up the instruction
743 	 */
744 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
745 	    TRAP_USERMODE(tf) ? "user" : "kernel");
746 #ifdef THUMB_CODE
747 	if (tf->tf_spsr & PSR_T_bit) {
748 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
749 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
750 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
751 	}
752 	else
753 #endif
754 	{
755 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
756 		    *((u_int *)tf->tf_pc));
757 	}
758 	disassemble(tf->tf_pc);
759 
760 	/* Die now if this happened in kernel mode */
761 	if (!TRAP_USERMODE(tf))
762 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
763 
764 	return (error);
765 #else
766 	return (ABORT_FIXUP_OK);
767 #endif /* CPU_ABORT_FIXUP_REQUIRED */
768 }
769 
770 /*
771  * void prefetch_abort_handler(trapframe_t *tf)
772  *
773  * Abort handler called when instruction execution occurs at
774  * a non existent or restricted (access permissions) memory page.
775  * If the address is invalid and we were in SVC mode then panic as
776  * the kernel should never prefetch abort.
777  * If the address is invalid and the page is mapped then the user process
778  * does no have read permission so send it a signal.
779  * Otherwise fault the page in and try again.
780  */
781 void
782 prefetch_abort_handler(trapframe_t *tf)
783 {
784 	struct lwp *l;
785 	struct pcb *pcb __diagused;
786 	struct vm_map *map;
787 	vaddr_t fault_pc, va;
788 	ksiginfo_t ksi;
789 	int error, user;
790 
791 	UVMHIST_FUNC(__func__);
792 	UVMHIST_CALLED(maphist);
793 
794 	/* Update vmmeter statistics */
795 	curcpu()->ci_data.cpu_ntrap++;
796 
797 	l = curlwp;
798 	pcb = lwp_getpcb(l);
799 
800 	if ((user = TRAP_USERMODE(tf)) != 0)
801 		LWP_CACHE_CREDS(l, l->l_proc);
802 
803 	/*
804 	 * Enable IRQ's (disabled by the abort) This always comes
805 	 * from user mode so we know interrupts were not disabled.
806 	 * But we check anyway.
807 	 */
808 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
809 #ifdef __NO_FIQ
810 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
811 		restore_interrupts(tf->tf_spsr & IF32_bits);
812 #else
813 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
814 		restore_interrupts(tf->tf_spsr & IF32_bits);
815 #endif
816 
817 	/* See if the CPU state needs to be fixed up */
818 	switch (prefetch_abort_fixup(tf)) {
819 	case ABORT_FIXUP_RETURN:
820 		KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
821 		return;
822 	case ABORT_FIXUP_FAILED:
823 		/* Deliver a SIGILL to the process */
824 		KSI_INIT_TRAP(&ksi);
825 		ksi.ksi_signo = SIGILL;
826 		ksi.ksi_code = ILL_ILLOPC;
827 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
828 		lwp_settrapframe(l, tf);
829 		goto do_trapsignal;
830 	default:
831 		break;
832 	}
833 
834 	/* Prefetch aborts cannot happen in kernel mode */
835 	if (__predict_false(!user))
836 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
837 
838 	/* Get fault address */
839 	fault_pc = tf->tf_pc;
840 	lwp_settrapframe(l, tf);
841 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)",
842 	    fault_pc, l, tf, 0);
843 
844 	/* Ok validate the address, can only execute in USER space */
845 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
846 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
847 		KSI_INIT_TRAP(&ksi);
848 		ksi.ksi_signo = SIGSEGV;
849 		ksi.ksi_code = SEGV_ACCERR;
850 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
851 		ksi.ksi_trap = fault_pc;
852 		goto do_trapsignal;
853 	}
854 
855 	map = &l->l_proc->p_vmspace->vm_map;
856 	va = trunc_page(fault_pc);
857 
858 	/*
859 	 * See if the pmap can handle this fault on its own...
860 	 */
861 #ifdef DEBUG
862 	last_fault_code = -1;
863 #endif
864 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
865 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
866 		goto out;
867 	}
868 
869 #ifdef DIAGNOSTIC
870 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
871 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
872 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
873 	}
874 #endif
875 
876 	KASSERT(pcb->pcb_onfault == NULL);
877 	error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
878 
879 	if (__predict_true(error == 0)) {
880 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
881 		goto out;
882 	}
883 	KSI_INIT_TRAP(&ksi);
884 
885 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
886 
887 	if (error == ENOMEM) {
888 		printf("UVM: pid %d (%s), uid %d killed: "
889 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
890 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
891 		ksi.ksi_signo = SIGKILL;
892 	} else
893 		ksi.ksi_signo = SIGSEGV;
894 
895 	ksi.ksi_code = SEGV_MAPERR;
896 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
897 	ksi.ksi_trap = fault_pc;
898 
899 do_trapsignal:
900 	call_trapsignal(l, tf, &ksi);
901 
902 out:
903 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
904 	userret(l);
905 }
906 
907 /*
908  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
909  * If the read succeeds, the value is written to 'rptr' and zero is returned.
910  * Else, return EFAULT.
911  */
912 int
913 badaddr_read(void *addr, size_t size, void *rptr)
914 {
915 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
916 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
917 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
918 	union {
919 		uint8_t v1;
920 		uint16_t v2;
921 		uint32_t v4;
922 	} u;
923 	int rv, s;
924 
925 	cpu_drain_writebuf();
926 
927 	s = splhigh();
928 
929 	/* Read from the test address. */
930 	switch (size) {
931 	case sizeof(uint8_t):
932 		rv = badaddr_read_1(addr, &u.v1);
933 		if (rv == 0 && rptr)
934 			*(uint8_t *) rptr = u.v1;
935 		break;
936 
937 	case sizeof(uint16_t):
938 		rv = badaddr_read_2(addr, &u.v2);
939 		if (rv == 0 && rptr)
940 			*(uint16_t *) rptr = u.v2;
941 		break;
942 
943 	case sizeof(uint32_t):
944 		rv = badaddr_read_4(addr, &u.v4);
945 		if (rv == 0 && rptr)
946 			*(uint32_t *) rptr = u.v4;
947 		break;
948 
949 	default:
950 		panic("%s: invalid size (%zu)", __func__, size);
951 	}
952 
953 	splx(s);
954 
955 	/* Return EFAULT if the address was invalid, else zero */
956 	return (rv);
957 }
958