xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: fault.c,v 1.91 2013/11/06 02:37:58 christos Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.91 2013/11/06 02:37:58 christos Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93 
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99 
100 #include <arm/locore.h>
101 
102 #include <arm/arm32/katelib.h>
103 
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap	kgdb_trap
112 #endif
113 #endif
114 
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117 
118 extern char fusubailout[];
119 
120 #ifdef DEBUG
121 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
122 #endif
123 
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define	CPU_ABORT_FIXUP_REQUIRED
128 #endif
129 
130 struct data_abort {
131 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 	const char *desc;
133 };
134 
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 
139 static const struct data_abort data_aborts[] = {
140 	{dab_fatal,	"Vector Exception"},
141 	{dab_align,	"Alignment Fault 1"},
142 	{dab_fatal,	"Terminal Exception"},
143 	{dab_align,	"Alignment Fault 3"},
144 	{dab_buserr,	"External Linefetch Abort (S)"},
145 	{NULL,		"Translation Fault (S)"},
146 	{dab_buserr,	"External Linefetch Abort (P)"},
147 	{NULL,		"Translation Fault (P)"},
148 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
149 	{NULL,		"Domain Fault (S)"},
150 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
151 	{NULL,		"Domain Fault (P)"},
152 	{dab_buserr,	"External Translation Abort (L1)"},
153 	{NULL,		"Permission Fault (S)"},
154 	{dab_buserr,	"External Translation Abort (L2)"},
155 	{NULL,		"Permission Fault (P)"}
156 };
157 
158 /* Determine if 'x' is a permission fault */
159 #define	IS_PERMISSION_FAULT(x)					\
160 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
161 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162 
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
168 #endif
169 
170 static inline void
171 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
172 {
173 
174 	TRAPSIGNAL(l, ksi);
175 }
176 
177 static inline int
178 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
179 {
180 #ifdef CPU_ABORT_FIXUP_REQUIRED
181 	int error;
182 
183 	/* Call the CPU specific data abort fixup routine */
184 	error = cpu_dataabt_fixup(tf);
185 	if (__predict_true(error != ABORT_FIXUP_FAILED))
186 		return (error);
187 
188 	/*
189 	 * Oops, couldn't fix up the instruction
190 	 */
191 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
192 	    TRAP_USERMODE(tf) ? "user" : "kernel");
193 #ifdef THUMB_CODE
194 	if (tf->tf_spsr & PSR_T_bit) {
195 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
196 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
197 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
198 	}
199 	else
200 #endif
201 	{
202 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
203 		    *((u_int *)tf->tf_pc));
204 	}
205 	disassemble(tf->tf_pc);
206 
207 	/* Die now if this happened in kernel mode */
208 	if (!TRAP_USERMODE(tf))
209 		dab_fatal(tf, fsr, far, l, NULL);
210 
211 	return (error);
212 #else
213 	return (ABORT_FIXUP_OK);
214 #endif /* CPU_ABORT_FIXUP_REQUIRED */
215 }
216 
217 void
218 data_abort_handler(trapframe_t *tf)
219 {
220 	struct vm_map *map;
221 	struct lwp * const l = curlwp;
222 	struct cpu_info * const ci = curcpu();
223 	u_int far, fsr;
224 	vm_prot_t ftype;
225 	void *onfault;
226 	vaddr_t va;
227 	int error;
228 	ksiginfo_t ksi;
229 
230 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
231 
232 	/* Grab FAR/FSR before enabling interrupts */
233 	far = cpu_faultaddress();
234 	fsr = cpu_faultstatus();
235 
236 	/* Update vmmeter statistics */
237 	ci->ci_data.cpu_ntrap++;
238 
239 	/* Re-enable interrupts if they were enabled previously */
240 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
241 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
242 		restore_interrupts(tf->tf_spsr & IF32_bits);
243 
244 	/* Get the current lwp structure */
245 
246 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
247 	    tf->tf_pc, l, far, fsr);
248 
249 	/* Data abort came from user mode? */
250 	bool user = (TRAP_USERMODE(tf) != 0);
251 	if (user)
252 		LWP_CACHE_CREDS(l, l->l_proc);
253 
254 	/* Grab the current pcb */
255 	struct pcb * const pcb = lwp_getpcb(l);
256 
257 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
258 
259 	/* Invoke the appropriate handler, if necessary */
260 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
261 #ifdef DIAGNOSTIC
262 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
263 		    __func__, fsr, far);
264 #endif
265 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
266 		    l, &ksi))
267 			goto do_trapsignal;
268 		goto out;
269 	}
270 
271 	/*
272 	 * At this point, we're dealing with one of the following data aborts:
273 	 *
274 	 *  FAULT_TRANS_S  - Translation -- Section
275 	 *  FAULT_TRANS_P  - Translation -- Page
276 	 *  FAULT_DOMAIN_S - Domain -- Section
277 	 *  FAULT_DOMAIN_P - Domain -- Page
278 	 *  FAULT_PERM_S   - Permission -- Section
279 	 *  FAULT_PERM_P   - Permission -- Page
280 	 *
281 	 * These are the main virtual memory-related faults signalled by
282 	 * the MMU.
283 	 */
284 
285 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
286 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
287 		tf->tf_r0 = EFAULT;
288 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
289 		return;
290 	}
291 
292 	if (user) {
293 		lwp_settrapframe(l, tf);
294 	}
295 
296 	/*
297 	 * Make sure the Program Counter is sane. We could fall foul of
298 	 * someone executing Thumb code, in which case the PC might not
299 	 * be word-aligned. This would cause a kernel alignment fault
300 	 * further down if we have to decode the current instruction.
301 	 */
302 #ifdef THUMB_CODE
303 	/*
304 	 * XXX: It would be nice to be able to support Thumb in the kernel
305 	 * at some point.
306 	 */
307 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
308 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
309 		    __func__);
310 		dab_fatal(tf, fsr, far, l, NULL);
311 	}
312 #else
313 	if (__predict_false((tf->tf_pc & 3) != 0)) {
314 		if (user) {
315 			/*
316 			 * Give the user an illegal instruction signal.
317 			 */
318 			/* Deliver a SIGILL to the process */
319 			KSI_INIT_TRAP(&ksi);
320 			ksi.ksi_signo = SIGILL;
321 			ksi.ksi_code = ILL_ILLOPC;
322 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
323 			ksi.ksi_trap = fsr;
324 			goto do_trapsignal;
325 		}
326 
327 		/*
328 		 * The kernel never executes Thumb code.
329 		 */
330 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
331 		    __func__);
332 		dab_fatal(tf, fsr, far, l, NULL);
333 	}
334 #endif
335 
336 	/* See if the CPU state needs to be fixed up */
337 	switch (data_abort_fixup(tf, fsr, far, l)) {
338 	case ABORT_FIXUP_RETURN:
339 		return;
340 	case ABORT_FIXUP_FAILED:
341 		/* Deliver a SIGILL to the process */
342 		KSI_INIT_TRAP(&ksi);
343 		ksi.ksi_signo = SIGILL;
344 		ksi.ksi_code = ILL_ILLOPC;
345 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
346 		ksi.ksi_trap = fsr;
347 		goto do_trapsignal;
348 	default:
349 		break;
350 	}
351 
352 	va = trunc_page((vaddr_t)far);
353 
354 	/*
355 	 * It is only a kernel address space fault iff:
356 	 *	1. user == 0  and
357 	 *	2. pcb_onfault not set or
358 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
359 	 */
360 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
361 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
362 	    __predict_true((pcb->pcb_onfault == NULL ||
363 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
364 		map = kernel_map;
365 
366 		/* Was the fault due to the FPE/IPKDB ? */
367 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
368 			KSI_INIT_TRAP(&ksi);
369 			ksi.ksi_signo = SIGSEGV;
370 			ksi.ksi_code = SEGV_ACCERR;
371 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
372 			ksi.ksi_trap = fsr;
373 
374 			/*
375 			 * Force exit via userret()
376 			 * This is necessary as the FPE is an extension to
377 			 * userland that actually runs in a priveledged mode
378 			 * but uses USR mode permissions for its accesses.
379 			 */
380 			user = true;
381 			goto do_trapsignal;
382 		}
383 	} else {
384 		map = &l->l_proc->p_vmspace->vm_map;
385 	}
386 
387 	/*
388 	 * We need to know whether the page should be mapped
389 	 * as R or R/W. The MMU does not give us the info as
390 	 * to whether the fault was caused by a read or a write.
391 	 *
392 	 * However, we know that a permission fault can only be
393 	 * the result of a write to a read-only location, so
394 	 * we can deal with those quickly.
395 	 *
396 	 * Otherwise we need to disassemble the instruction
397 	 * responsible to determine if it was a write.
398 	 */
399 	if (IS_PERMISSION_FAULT(fsr))
400 		ftype = VM_PROT_WRITE;
401 	else {
402 #ifdef THUMB_CODE
403 		/* Fast track the ARM case.  */
404 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
405 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
406 			u_int insn_f8 = insn & 0xf800;
407 			u_int insn_fe = insn & 0xfe00;
408 
409 			if (insn_f8 == 0x6000 || /* STR(1) */
410 			    insn_f8 == 0x7000 || /* STRB(1) */
411 			    insn_f8 == 0x8000 || /* STRH(1) */
412 			    insn_f8 == 0x9000 || /* STR(3) */
413 			    insn_f8 == 0xc000 || /* STM */
414 			    insn_fe == 0x5000 || /* STR(2) */
415 			    insn_fe == 0x5200 || /* STRH(2) */
416 			    insn_fe == 0x5400)   /* STRB(2) */
417 				ftype = VM_PROT_WRITE;
418 			else
419 				ftype = VM_PROT_READ;
420 		}
421 		else
422 #endif
423 		{
424 			u_int insn = ReadWord(tf->tf_pc);
425 
426 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
427 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
428 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
429 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
430 				ftype = VM_PROT_WRITE;
431 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
432 				ftype = VM_PROT_READ | VM_PROT_WRITE;
433 			else
434 				ftype = VM_PROT_READ;
435 		}
436 	}
437 
438 	/*
439 	 * See if the fault is as a result of ref/mod emulation,
440 	 * or domain mismatch.
441 	 */
442 #ifdef DEBUG
443 	last_fault_code = fsr;
444 #endif
445 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
446 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
447 		goto out;
448 	}
449 
450 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
451 		if (pcb->pcb_onfault) {
452 			tf->tf_r0 = EINVAL;
453 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
454 			return;
455 		}
456 		printf("\nNon-emulated page fault with intr_depth > 0\n");
457 		dab_fatal(tf, fsr, far, l, NULL);
458 	}
459 
460 	onfault = pcb->pcb_onfault;
461 	pcb->pcb_onfault = NULL;
462 	error = uvm_fault(map, va, ftype);
463 	pcb->pcb_onfault = onfault;
464 
465 	if (__predict_true(error == 0)) {
466 		if (user)
467 			uvm_grow(l->l_proc, va); /* Record any stack growth */
468 		else
469 			ucas_ras_check(tf);
470 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
471 		goto out;
472 	}
473 
474 	if (user == 0) {
475 		if (pcb->pcb_onfault) {
476 			tf->tf_r0 = error;
477 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
478 			return;
479 		}
480 
481 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
482 		    error);
483 		dab_fatal(tf, fsr, far, l, NULL);
484 	}
485 
486 	KSI_INIT_TRAP(&ksi);
487 
488 	if (error == ENOMEM) {
489 		printf("UVM: pid %d (%s), uid %d killed: "
490 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
491 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
492 		ksi.ksi_signo = SIGKILL;
493 	} else
494 		ksi.ksi_signo = SIGSEGV;
495 
496 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
497 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
498 	ksi.ksi_trap = fsr;
499 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
500 
501 do_trapsignal:
502 	call_trapsignal(l, &ksi);
503 out:
504 	/* If returning to user mode, make sure to invoke userret() */
505 	if (user)
506 		userret(l);
507 }
508 
509 /*
510  * dab_fatal() handles the following data aborts:
511  *
512  *  FAULT_WRTBUF_0 - Vector Exception
513  *  FAULT_WRTBUF_1 - Terminal Exception
514  *
515  * We should never see these on a properly functioning system.
516  *
517  * This function is also called by the other handlers if they
518  * detect a fatal problem.
519  *
520  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
521  */
522 static int
523 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
524 {
525 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
526 
527 	if (l != NULL) {
528 		printf("Fatal %s mode data abort: '%s'\n", mode,
529 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
530 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
531 		if ((fsr & FAULT_IMPRECISE) == 0)
532 			printf("%08x, ", far);
533 		else
534 			printf("Invalid,  ");
535 		printf("spsr=%08x\n", tf->tf_spsr);
536 	} else {
537 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
538 		    mode, tf->tf_pc);
539 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
540 	}
541 
542 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
543 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
544 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
545 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
546 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
547 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
548 	printf("r12=%08x, ", tf->tf_r12);
549 
550 	if (TRAP_USERMODE(tf))
551 		printf("usp=%08x, ulr=%08x",
552 		    tf->tf_usr_sp, tf->tf_usr_lr);
553 	else
554 		printf("ssp=%08x, slr=%08x",
555 		    tf->tf_svc_sp, tf->tf_svc_lr);
556 	printf(", pc =%08x\n\n", tf->tf_pc);
557 
558 #if defined(DDB) || defined(KGDB)
559 	kdb_trap(T_FAULT, tf);
560 #endif
561 	panic("Fatal abort");
562 	/*NOTREACHED*/
563 }
564 
565 /*
566  * dab_align() handles the following data aborts:
567  *
568  *  FAULT_ALIGN_0 - Alignment fault
569  *  FAULT_ALIGN_0 - Alignment fault
570  *
571  * These faults are fatal if they happen in kernel mode. Otherwise, we
572  * deliver a bus error to the process.
573  */
574 static int
575 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
576 {
577 	/* Alignment faults are always fatal if they occur in kernel mode */
578 	if (!TRAP_USERMODE(tf))
579 		dab_fatal(tf, fsr, far, l, NULL);
580 
581 	/* pcb_onfault *must* be NULL at this point */
582 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
583 
584 	/* See if the CPU state needs to be fixed up */
585 	(void) data_abort_fixup(tf, fsr, far, l);
586 
587 	/* Deliver a bus error signal to the process */
588 	KSI_INIT_TRAP(ksi);
589 	ksi->ksi_signo = SIGBUS;
590 	ksi->ksi_code = BUS_ADRALN;
591 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
592 	ksi->ksi_trap = fsr;
593 
594 	lwp_settrapframe(l, tf);
595 
596 	return (1);
597 }
598 
599 /*
600  * dab_buserr() handles the following data aborts:
601  *
602  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
603  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
604  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
605  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
606  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
607  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
608  *
609  * If pcb_onfault is set, flag the fault and return to the handler.
610  * If the fault occurred in user mode, give the process a SIGBUS.
611  *
612  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
613  * can be flagged as imprecise in the FSR. This causes a real headache
614  * since some of the machine state is lost. In this case, tf->tf_pc
615  * may not actually point to the offending instruction. In fact, if
616  * we've taken a double abort fault, it generally points somewhere near
617  * the top of "data_abort_entry" in exception.S.
618  *
619  * In all other cases, these data aborts are considered fatal.
620  */
621 static int
622 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
623     ksiginfo_t *ksi)
624 {
625 	struct pcb *pcb = lwp_getpcb(l);
626 
627 #ifdef __XSCALE__
628 	if ((fsr & FAULT_IMPRECISE) != 0 &&
629 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
630 		/*
631 		 * Oops, an imprecise, double abort fault. We've lost the
632 		 * r14_abt/spsr_abt values corresponding to the original
633 		 * abort, and the spsr saved in the trapframe indicates
634 		 * ABT mode.
635 		 */
636 		tf->tf_spsr &= ~PSR_MODE;
637 
638 		/*
639 		 * We use a simple heuristic to determine if the double abort
640 		 * happened as a result of a kernel or user mode access.
641 		 * If the current trapframe is at the top of the kernel stack,
642 		 * the fault _must_ have come from user mode.
643 		 */
644 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
645 			/*
646 			 * Kernel mode. We're either about to die a
647 			 * spectacular death, or pcb_onfault will come
648 			 * to our rescue. Either way, the current value
649 			 * of tf->tf_pc is irrelevant.
650 			 */
651 			tf->tf_spsr |= PSR_SVC32_MODE;
652 			if (pcb->pcb_onfault == NULL)
653 				printf("\nKernel mode double abort!\n");
654 		} else {
655 			/*
656 			 * User mode. We've lost the program counter at the
657 			 * time of the fault (not that it was accurate anyway;
658 			 * it's not called an imprecise fault for nothing).
659 			 * About all we can do is copy r14_usr to tf_pc and
660 			 * hope for the best. The process is about to get a
661 			 * SIGBUS, so it's probably history anyway.
662 			 */
663 			tf->tf_spsr |= PSR_USR32_MODE;
664 			tf->tf_pc = tf->tf_usr_lr;
665 #ifdef THUMB_CODE
666 			tf->tf_spsr &= ~PSR_T_bit;
667 			if (tf->tf_usr_lr & 1)
668 				tf->tf_spsr |= PSR_T_bit;
669 #endif
670 		}
671 	}
672 
673 	/* FAR is invalid for imprecise exceptions */
674 	if ((fsr & FAULT_IMPRECISE) != 0)
675 		far = 0;
676 #endif /* __XSCALE__ */
677 
678 	if (pcb->pcb_onfault) {
679 		KDASSERT(TRAP_USERMODE(tf) == 0);
680 		tf->tf_r0 = EFAULT;
681 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
682 		return (0);
683 	}
684 
685 	/* See if the CPU state needs to be fixed up */
686 	(void) data_abort_fixup(tf, fsr, far, l);
687 
688 	/*
689 	 * At this point, if the fault happened in kernel mode, we're toast
690 	 */
691 	if (!TRAP_USERMODE(tf))
692 		dab_fatal(tf, fsr, far, l, NULL);
693 
694 	/* Deliver a bus error signal to the process */
695 	KSI_INIT_TRAP(ksi);
696 	ksi->ksi_signo = SIGBUS;
697 	ksi->ksi_code = BUS_ADRERR;
698 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
699 	ksi->ksi_trap = fsr;
700 
701 	lwp_settrapframe(l, tf);
702 
703 	return (1);
704 }
705 
706 static inline int
707 prefetch_abort_fixup(trapframe_t *tf)
708 {
709 #ifdef CPU_ABORT_FIXUP_REQUIRED
710 	int error;
711 
712 	/* Call the CPU specific prefetch abort fixup routine */
713 	error = cpu_prefetchabt_fixup(tf);
714 	if (__predict_true(error != ABORT_FIXUP_FAILED))
715 		return (error);
716 
717 	/*
718 	 * Oops, couldn't fix up the instruction
719 	 */
720 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
721 	    TRAP_USERMODE(tf) ? "user" : "kernel");
722 #ifdef THUMB_CODE
723 	if (tf->tf_spsr & PSR_T_bit) {
724 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
725 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
726 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
727 	}
728 	else
729 #endif
730 	{
731 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
732 		    *((u_int *)tf->tf_pc));
733 	}
734 	disassemble(tf->tf_pc);
735 
736 	/* Die now if this happened in kernel mode */
737 	if (!TRAP_USERMODE(tf))
738 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
739 
740 	return (error);
741 #else
742 	return (ABORT_FIXUP_OK);
743 #endif /* CPU_ABORT_FIXUP_REQUIRED */
744 }
745 
746 /*
747  * void prefetch_abort_handler(trapframe_t *tf)
748  *
749  * Abort handler called when instruction execution occurs at
750  * a non existent or restricted (access permissions) memory page.
751  * If the address is invalid and we were in SVC mode then panic as
752  * the kernel should never prefetch abort.
753  * If the address is invalid and the page is mapped then the user process
754  * does no have read permission so send it a signal.
755  * Otherwise fault the page in and try again.
756  */
757 void
758 prefetch_abort_handler(trapframe_t *tf)
759 {
760 	struct lwp *l;
761 	struct pcb *pcb __diagused;
762 	struct vm_map *map;
763 	vaddr_t fault_pc, va;
764 	ksiginfo_t ksi;
765 	int error, user;
766 
767 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
768 
769 	/* Update vmmeter statistics */
770 	curcpu()->ci_data.cpu_ntrap++;
771 
772 	l = curlwp;
773 	pcb = lwp_getpcb(l);
774 
775 	if ((user = TRAP_USERMODE(tf)) != 0)
776 		LWP_CACHE_CREDS(l, l->l_proc);
777 
778 	/*
779 	 * Enable IRQ's (disabled by the abort) This always comes
780 	 * from user mode so we know interrupts were not disabled.
781 	 * But we check anyway.
782 	 */
783 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
784 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
785 		restore_interrupts(tf->tf_spsr & IF32_bits);
786 
787 	/* See if the CPU state needs to be fixed up */
788 	switch (prefetch_abort_fixup(tf)) {
789 	case ABORT_FIXUP_RETURN:
790 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
791 		return;
792 	case ABORT_FIXUP_FAILED:
793 		/* Deliver a SIGILL to the process */
794 		KSI_INIT_TRAP(&ksi);
795 		ksi.ksi_signo = SIGILL;
796 		ksi.ksi_code = ILL_ILLOPC;
797 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
798 		lwp_settrapframe(l, tf);
799 		goto do_trapsignal;
800 	default:
801 		break;
802 	}
803 
804 	/* Prefetch aborts cannot happen in kernel mode */
805 	if (__predict_false(!user))
806 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
807 
808 	/* Get fault address */
809 	fault_pc = tf->tf_pc;
810 	lwp_settrapframe(l, tf);
811 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
812 	    0);
813 
814 	/* Ok validate the address, can only execute in USER space */
815 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
816 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
817 		KSI_INIT_TRAP(&ksi);
818 		ksi.ksi_signo = SIGSEGV;
819 		ksi.ksi_code = SEGV_ACCERR;
820 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
821 		ksi.ksi_trap = fault_pc;
822 		goto do_trapsignal;
823 	}
824 
825 	map = &l->l_proc->p_vmspace->vm_map;
826 	va = trunc_page(fault_pc);
827 
828 	/*
829 	 * See if the pmap can handle this fault on its own...
830 	 */
831 #ifdef DEBUG
832 	last_fault_code = -1;
833 #endif
834 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
835 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
836 		goto out;
837 	}
838 
839 #ifdef DIAGNOSTIC
840 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
841 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
842 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
843 	}
844 #endif
845 
846 	KASSERT(pcb->pcb_onfault == NULL);
847 	error = uvm_fault(map, va, VM_PROT_READ);
848 
849 	if (__predict_true(error == 0)) {
850 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
851 		goto out;
852 	}
853 	KSI_INIT_TRAP(&ksi);
854 
855 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
856 	if (error == ENOMEM) {
857 		printf("UVM: pid %d (%s), uid %d killed: "
858 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
859 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
860 		ksi.ksi_signo = SIGKILL;
861 	} else
862 		ksi.ksi_signo = SIGSEGV;
863 
864 	ksi.ksi_code = SEGV_MAPERR;
865 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
866 	ksi.ksi_trap = fault_pc;
867 
868 do_trapsignal:
869 	call_trapsignal(l, &ksi);
870 
871 out:
872 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
873 	userret(l);
874 }
875 
876 /*
877  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
878  * If the read succeeds, the value is written to 'rptr' and zero is returned.
879  * Else, return EFAULT.
880  */
881 int
882 badaddr_read(void *addr, size_t size, void *rptr)
883 {
884 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
885 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
886 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
887 	union {
888 		uint8_t v1;
889 		uint16_t v2;
890 		uint32_t v4;
891 	} u;
892 	int rv, s;
893 
894 	cpu_drain_writebuf();
895 
896 	s = splhigh();
897 
898 	/* Read from the test address. */
899 	switch (size) {
900 	case sizeof(uint8_t):
901 		rv = badaddr_read_1(addr, &u.v1);
902 		if (rv == 0 && rptr)
903 			*(uint8_t *) rptr = u.v1;
904 		break;
905 
906 	case sizeof(uint16_t):
907 		rv = badaddr_read_2(addr, &u.v2);
908 		if (rv == 0 && rptr)
909 			*(uint16_t *) rptr = u.v2;
910 		break;
911 
912 	case sizeof(uint32_t):
913 		rv = badaddr_read_4(addr, &u.v4);
914 		if (rv == 0 && rptr)
915 			*(uint32_t *) rptr = u.v4;
916 		break;
917 
918 	default:
919 		panic("%s: invalid size (%zu)", __func__, size);
920 	}
921 
922 	splx(s);
923 
924 	/* Return EFAULT if the address was invalid, else zero */
925 	return (rv);
926 }
927