xref: /netbsd-src/sys/arch/arm/arm32/fault.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $	*/
2 
3 /*
4  * Copyright 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed for the NetBSD Project by
20  *      Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 /*
38  * Copyright (c) 1994-1997 Mark Brinicombe.
39  * Copyright (c) 1994 Brini.
40  * All rights reserved.
41  *
42  * This code is derived from software written for Brini by Mark Brinicombe
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by Brini.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * RiscBSD kernel project
72  *
73  * fault.c
74  *
75  * Fault handlers
76  *
77  * Created      : 28/11/94
78  */
79 
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #include <arm/cpuconf.h>
96 
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap	kgdb_trap
108 #endif
109 #endif
110 
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113 
114 extern char fusubailout[];
115 
116 #ifdef DEBUG
117 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
118 #endif
119 
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define	CPU_ABORT_FIXUP_REQUIRED
124 #endif
125 
126 struct data_abort {
127 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 	const char *desc;
129 };
130 
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 
135 static const struct data_abort data_aborts[] = {
136 	{dab_fatal,	"Vector Exception"},
137 	{dab_align,	"Alignment Fault 1"},
138 	{dab_fatal,	"Terminal Exception"},
139 	{dab_align,	"Alignment Fault 3"},
140 	{dab_buserr,	"External Linefetch Abort (S)"},
141 	{NULL,		"Translation Fault (S)"},
142 	{dab_buserr,	"External Linefetch Abort (P)"},
143 	{NULL,		"Translation Fault (P)"},
144 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
145 	{NULL,		"Domain Fault (S)"},
146 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
147 	{NULL,		"Domain Fault (P)"},
148 	{dab_buserr,	"External Translation Abort (L1)"},
149 	{NULL,		"Permission Fault (S)"},
150 	{dab_buserr,	"External Translation Abort (L2)"},
151 	{NULL,		"Permission Fault (P)"}
152 };
153 
154 /* Determine if a fault came from user mode */
155 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156 
157 /* Determine if 'x' is a permission fault */
158 #define	IS_PERMISSION_FAULT(x)					\
159 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
160 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161 
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
167 #endif
168 
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172 
173 	KERNEL_PROC_LOCK(l->l_proc);
174 	TRAPSIGNAL(l, ksi);
175 	KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177 
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 	int error;
183 
184 	/* Call the CPU specific data abort fixup routine */
185 	error = cpu_dataabt_fixup(tf);
186 	if (__predict_true(error != ABORT_FIXUP_FAILED))
187 		return (error);
188 
189 	/*
190 	 * Oops, couldn't fix up the instruction
191 	 */
192 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 	    TRAP_USERMODE(tf) ? "user" : "kernel");
194 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 	    *((u_int *)tf->tf_pc));
196 	disassemble(tf->tf_pc);
197 
198 	/* Die now if this happened in kernel mode */
199 	if (!TRAP_USERMODE(tf))
200 		dab_fatal(tf, fsr, far, l, NULL);
201 
202 	return (error);
203 #else
204 	return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207 
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 	struct vm_map *map;
212 	struct pcb *pcb;
213 	struct lwp *l;
214 	u_int user, far, fsr;
215 	vm_prot_t ftype;
216 	void *onfault;
217 	vaddr_t va;
218 	int error;
219 	ksiginfo_t ksi;
220 
221 	/* Grab FAR/FSR before enabling interrupts */
222 	far = cpu_faultaddress();
223 	fsr = cpu_faultstatus();
224 
225 	/* Update vmmeter statistics */
226 	uvmexp.traps++;
227 
228 	/* Re-enable interrupts if they were enabled previously */
229 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 		enable_interrupts(I32_bit);
231 
232 	/* Get the current lwp structure or lwp0 if there is none */
233 	l = (curlwp != NULL) ? curlwp : &lwp0;
234 
235 	/* Data abort came from user mode? */
236 	user = TRAP_USERMODE(tf);
237 
238 	/* Grab the current pcb */
239 	pcb = &l->l_addr->u_pcb;
240 
241 	/* Invoke the appropriate handler, if necessary */
242 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 		    l, &ksi))
245 			goto do_trapsignal;
246 		goto out;
247 	}
248 
249 	/*
250 	 * At this point, we're dealing with one of the following data aborts:
251 	 *
252 	 *  FAULT_TRANS_S  - Translation -- Section
253 	 *  FAULT_TRANS_P  - Translation -- Page
254 	 *  FAULT_DOMAIN_S - Domain -- Section
255 	 *  FAULT_DOMAIN_P - Domain -- Page
256 	 *  FAULT_PERM_S   - Permission -- Section
257 	 *  FAULT_PERM_P   - Permission -- Page
258 	 *
259 	 * These are the main virtual memory-related faults signalled by
260 	 * the MMU.
261 	 */
262 
263 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
264 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 		tf->tf_r0 = EFAULT;
266 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 		return;
268 	}
269 
270 	if (user)
271 		l->l_addr->u_pcb.pcb_tf = tf;
272 
273 	/*
274 	 * Make sure the Program Counter is sane. We could fall foul of
275 	 * someone executing Thumb code, in which case the PC might not
276 	 * be word-aligned. This would cause a kernel alignment fault
277 	 * further down if we have to decode the current instruction.
278 	 * XXX: It would be nice to be able to support Thumb at some point.
279 	 */
280 	if (__predict_false((tf->tf_pc & 3) != 0)) {
281 		if (user) {
282 			/*
283 			 * Give the user an illegal instruction signal.
284 			 */
285 			/* Deliver a SIGILL to the process */
286 			KSI_INIT_TRAP(&ksi);
287 			ksi.ksi_signo = SIGILL;
288 			ksi.ksi_code = ILL_ILLOPC;
289 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 			ksi.ksi_trap = fsr;
291 			goto do_trapsignal;
292 		}
293 
294 		/*
295 		 * The kernel never executes Thumb code.
296 		 */
297 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 		    "Program Counter\n");
299 		dab_fatal(tf, fsr, far, l, NULL);
300 	}
301 
302 	/* See if the CPU state needs to be fixed up */
303 	switch (data_abort_fixup(tf, fsr, far, l)) {
304 	case ABORT_FIXUP_RETURN:
305 		return;
306 	case ABORT_FIXUP_FAILED:
307 		/* Deliver a SIGILL to the process */
308 		KSI_INIT_TRAP(&ksi);
309 		ksi.ksi_signo = SIGILL;
310 		ksi.ksi_code = ILL_ILLOPC;
311 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 		ksi.ksi_trap = fsr;
313 		goto do_trapsignal;
314 	default:
315 		break;
316 	}
317 
318 	va = trunc_page((vaddr_t)far);
319 
320 	/*
321 	 * It is only a kernel address space fault iff:
322 	 *	1. user == 0  and
323 	 *	2. pcb_onfault not set or
324 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 	 */
326 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 	    __predict_true((pcb->pcb_onfault == NULL ||
329 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 		map = kernel_map;
331 
332 		/* Was the fault due to the FPE/IPKDB ? */
333 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 			KSI_INIT_TRAP(&ksi);
335 			ksi.ksi_signo = SIGSEGV;
336 			ksi.ksi_code = SEGV_ACCERR;
337 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 			ksi.ksi_trap = fsr;
339 
340 			/*
341 			 * Force exit via userret()
342 			 * This is necessary as the FPE is an extension to
343 			 * userland that actually runs in a priveledged mode
344 			 * but uses USR mode permissions for its accesses.
345 			 */
346 			user = 1;
347 			goto do_trapsignal;
348 		}
349 	} else {
350 		map = &l->l_proc->p_vmspace->vm_map;
351 		if (l->l_flag & L_SA) {
352 			l->l_savp->savp_faultaddr = (vaddr_t)far;
353 			l->l_flag |= L_SA_PAGEFAULT;
354 		}
355 	}
356 
357 	/*
358 	 * We need to know whether the page should be mapped
359 	 * as R or R/W. The MMU does not give us the info as
360 	 * to whether the fault was caused by a read or a write.
361 	 *
362 	 * However, we know that a permission fault can only be
363 	 * the result of a write to a read-only location, so
364 	 * we can deal with those quickly.
365 	 *
366 	 * Otherwise we need to disassemble the instruction
367 	 * responsible to determine if it was a write.
368 	 */
369 	if (IS_PERMISSION_FAULT(fsr))
370 		ftype = VM_PROT_WRITE;
371 	else {
372 		u_int insn = ReadWord(tf->tf_pc);
373 
374 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
375 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
376 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
377 			ftype = VM_PROT_WRITE;
378 		else
379 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
380 			ftype = VM_PROT_READ | VM_PROT_WRITE;
381 		else
382 			ftype = VM_PROT_READ;
383 	}
384 
385 	/*
386 	 * See if the fault is as a result of ref/mod emulation,
387 	 * or domain mismatch.
388 	 */
389 #ifdef DEBUG
390 	last_fault_code = fsr;
391 #endif
392 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
393 		if (map != kernel_map)
394 			l->l_flag &= ~L_SA_PAGEFAULT;
395 		goto out;
396 	}
397 
398 	if (__predict_false(current_intr_depth > 0)) {
399 		if (pcb->pcb_onfault) {
400 			tf->tf_r0 = EINVAL;
401 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
402 			return;
403 		}
404 		printf("\nNon-emulated page fault with intr_depth > 0\n");
405 		dab_fatal(tf, fsr, far, l, NULL);
406 	}
407 
408 	onfault = pcb->pcb_onfault;
409 	pcb->pcb_onfault = NULL;
410 	error = uvm_fault(map, va, 0, ftype);
411 	pcb->pcb_onfault = onfault;
412 
413 	if (map != kernel_map)
414 		l->l_flag &= ~L_SA_PAGEFAULT;
415 
416 	if (__predict_true(error == 0)) {
417 		if (user)
418 			uvm_grow(l->l_proc, va); /* Record any stack growth */
419 		goto out;
420 	}
421 
422 	if (user == 0) {
423 		if (pcb->pcb_onfault) {
424 			tf->tf_r0 = error;
425 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
426 			return;
427 		}
428 
429 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
430 		    error);
431 		dab_fatal(tf, fsr, far, l, NULL);
432 	}
433 
434 	KSI_INIT_TRAP(&ksi);
435 
436 	if (error == ENOMEM) {
437 		printf("UVM: pid %d (%s), uid %d killed: "
438 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
439 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
440 		     l->l_proc->p_ucred->cr_uid : -1);
441 		ksi.ksi_signo = SIGKILL;
442 	} else
443 		ksi.ksi_signo = SIGSEGV;
444 
445 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
446 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
447 	ksi.ksi_trap = fsr;
448 
449 do_trapsignal:
450 	call_trapsignal(l, &ksi);
451 out:
452 	/* If returning to user mode, make sure to invoke userret() */
453 	if (user)
454 		userret(l);
455 }
456 
457 /*
458  * dab_fatal() handles the following data aborts:
459  *
460  *  FAULT_WRTBUF_0 - Vector Exception
461  *  FAULT_WRTBUF_1 - Terminal Exception
462  *
463  * We should never see these on a properly functioning system.
464  *
465  * This function is also called by the other handlers if they
466  * detect a fatal problem.
467  *
468  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
469  */
470 static int
471 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
472 {
473 	const char *mode;
474 
475 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
476 
477 	if (l != NULL) {
478 		printf("Fatal %s mode data abort: '%s'\n", mode,
479 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
480 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
481 		if ((fsr & FAULT_IMPRECISE) == 0)
482 			printf("%08x, ", far);
483 		else
484 			printf("Invalid,  ");
485 		printf("spsr=%08x\n", tf->tf_spsr);
486 	} else {
487 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
488 		    mode, tf->tf_pc);
489 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
490 	}
491 
492 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
493 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
494 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
495 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
496 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
497 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
498 	printf("r12=%08x, ", tf->tf_r12);
499 
500 	if (TRAP_USERMODE(tf))
501 		printf("usp=%08x, ulr=%08x",
502 		    tf->tf_usr_sp, tf->tf_usr_lr);
503 	else
504 		printf("ssp=%08x, slr=%08x",
505 		    tf->tf_svc_sp, tf->tf_svc_lr);
506 	printf(", pc =%08x\n\n", tf->tf_pc);
507 
508 #if defined(DDB) || defined(KGDB)
509 	kdb_trap(T_FAULT, tf);
510 #endif
511 	panic("Fatal abort");
512 	/*NOTREACHED*/
513 }
514 
515 /*
516  * dab_align() handles the following data aborts:
517  *
518  *  FAULT_ALIGN_0 - Alignment fault
519  *  FAULT_ALIGN_0 - Alignment fault
520  *
521  * These faults are fatal if they happen in kernel mode. Otherwise, we
522  * deliver a bus error to the process.
523  */
524 static int
525 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
526 {
527 
528 	/* Alignment faults are always fatal if they occur in kernel mode */
529 	if (!TRAP_USERMODE(tf))
530 		dab_fatal(tf, fsr, far, l, NULL);
531 
532 	/* pcb_onfault *must* be NULL at this point */
533 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
534 
535 	/* See if the CPU state needs to be fixed up */
536 	(void) data_abort_fixup(tf, fsr, far, l);
537 
538 	/* Deliver a bus error signal to the process */
539 	KSI_INIT_TRAP(ksi);
540 	ksi->ksi_signo = SIGBUS;
541 	ksi->ksi_code = BUS_ADRALN;
542 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
543 	ksi->ksi_trap = fsr;
544 
545 	l->l_addr->u_pcb.pcb_tf = tf;
546 
547 	return (1);
548 }
549 
550 /*
551  * dab_buserr() handles the following data aborts:
552  *
553  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
554  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
555  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
556  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
557  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
558  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
559  *
560  * If pcb_onfault is set, flag the fault and return to the handler.
561  * If the fault occurred in user mode, give the process a SIGBUS.
562  *
563  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
564  * can be flagged as imprecise in the FSR. This causes a real headache
565  * since some of the machine state is lost. In this case, tf->tf_pc
566  * may not actually point to the offending instruction. In fact, if
567  * we've taken a double abort fault, it generally points somewhere near
568  * the top of "data_abort_entry" in exception.S.
569  *
570  * In all other cases, these data aborts are considered fatal.
571  */
572 static int
573 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
574     ksiginfo_t *ksi)
575 {
576 	struct pcb *pcb = &l->l_addr->u_pcb;
577 
578 #ifdef __XSCALE__
579 	if ((fsr & FAULT_IMPRECISE) != 0 &&
580 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
581 		/*
582 		 * Oops, an imprecise, double abort fault. We've lost the
583 		 * r14_abt/spsr_abt values corresponding to the original
584 		 * abort, and the spsr saved in the trapframe indicates
585 		 * ABT mode.
586 		 */
587 		tf->tf_spsr &= ~PSR_MODE;
588 
589 		/*
590 		 * We use a simple heuristic to determine if the double abort
591 		 * happened as a result of a kernel or user mode access.
592 		 * If the current trapframe is at the top of the kernel stack,
593 		 * the fault _must_ have come from user mode.
594 		 */
595 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
596 			/*
597 			 * Kernel mode. We're either about to die a
598 			 * spectacular death, or pcb_onfault will come
599 			 * to our rescue. Either way, the current value
600 			 * of tf->tf_pc is irrelevant.
601 			 */
602 			tf->tf_spsr |= PSR_SVC32_MODE;
603 			if (pcb->pcb_onfault == NULL)
604 				printf("\nKernel mode double abort!\n");
605 		} else {
606 			/*
607 			 * User mode. We've lost the program counter at the
608 			 * time of the fault (not that it was accurate anyway;
609 			 * it's not called an imprecise fault for nothing).
610 			 * About all we can do is copy r14_usr to tf_pc and
611 			 * hope for the best. The process is about to get a
612 			 * SIGBUS, so it's probably history anyway.
613 			 */
614 			tf->tf_spsr |= PSR_USR32_MODE;
615 			tf->tf_pc = tf->tf_usr_lr;
616 		}
617 	}
618 
619 	/* FAR is invalid for imprecise exceptions */
620 	if ((fsr & FAULT_IMPRECISE) != 0)
621 		far = 0;
622 #endif /* __XSCALE__ */
623 
624 	if (pcb->pcb_onfault) {
625 		KDASSERT(TRAP_USERMODE(tf) == 0);
626 		tf->tf_r0 = EFAULT;
627 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
628 		return (0);
629 	}
630 
631 	/* See if the CPU state needs to be fixed up */
632 	(void) data_abort_fixup(tf, fsr, far, l);
633 
634 	/*
635 	 * At this point, if the fault happened in kernel mode, we're toast
636 	 */
637 	if (!TRAP_USERMODE(tf))
638 		dab_fatal(tf, fsr, far, l, NULL);
639 
640 	/* Deliver a bus error signal to the process */
641 	KSI_INIT_TRAP(ksi);
642 	ksi->ksi_signo = SIGBUS;
643 	ksi->ksi_code = BUS_ADRERR;
644 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
645 	ksi->ksi_trap = fsr;
646 
647 	l->l_addr->u_pcb.pcb_tf = tf;
648 
649 	return (1);
650 }
651 
652 static __inline int
653 prefetch_abort_fixup(trapframe_t *tf)
654 {
655 #ifdef CPU_ABORT_FIXUP_REQUIRED
656 	int error;
657 
658 	/* Call the CPU specific prefetch abort fixup routine */
659 	error = cpu_prefetchabt_fixup(tf);
660 	if (__predict_true(error != ABORT_FIXUP_FAILED))
661 		return (error);
662 
663 	/*
664 	 * Oops, couldn't fix up the instruction
665 	 */
666 	printf(
667 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
668 	    TRAP_USERMODE(tf) ? "user" : "kernel");
669 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
670 	    *((u_int *)tf->tf_pc));
671 	disassemble(tf->tf_pc);
672 
673 	/* Die now if this happened in kernel mode */
674 	if (!TRAP_USERMODE(tf))
675 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
676 
677 	return (error);
678 #else
679 	return (ABORT_FIXUP_OK);
680 #endif /* CPU_ABORT_FIXUP_REQUIRED */
681 }
682 
683 /*
684  * void prefetch_abort_handler(trapframe_t *tf)
685  *
686  * Abort handler called when instruction execution occurs at
687  * a non existent or restricted (access permissions) memory page.
688  * If the address is invalid and we were in SVC mode then panic as
689  * the kernel should never prefetch abort.
690  * If the address is invalid and the page is mapped then the user process
691  * does no have read permission so send it a signal.
692  * Otherwise fault the page in and try again.
693  */
694 void
695 prefetch_abort_handler(trapframe_t *tf)
696 {
697 	struct lwp *l;
698 	struct vm_map *map;
699 	vaddr_t fault_pc, va;
700 	ksiginfo_t ksi;
701 	int error;
702 
703 	/* Update vmmeter statistics */
704 	uvmexp.traps++;
705 
706 	/*
707 	 * Enable IRQ's (disabled by the abort) This always comes
708 	 * from user mode so we know interrupts were not disabled.
709 	 * But we check anyway.
710 	 */
711 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
712 		enable_interrupts(I32_bit);
713 
714 	/* See if the CPU state needs to be fixed up */
715 	switch (prefetch_abort_fixup(tf)) {
716 	case ABORT_FIXUP_RETURN:
717 		return;
718 	case ABORT_FIXUP_FAILED:
719 		/* Deliver a SIGILL to the process */
720 		KSI_INIT_TRAP(&ksi);
721 		ksi.ksi_signo = SIGILL;
722 		ksi.ksi_code = ILL_ILLOPC;
723 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
724 		l = curlwp;
725 		l->l_addr->u_pcb.pcb_tf = tf;
726 		goto do_trapsignal;
727 	default:
728 		break;
729 	}
730 
731 	/* Prefetch aborts cannot happen in kernel mode */
732 	if (__predict_false(!TRAP_USERMODE(tf)))
733 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
734 
735 	/* Get fault address */
736 	fault_pc = tf->tf_pc;
737 	l = curlwp;
738 	l->l_addr->u_pcb.pcb_tf = tf;
739 
740 	/* Ok validate the address, can only execute in USER space */
741 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
742 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
743 		KSI_INIT_TRAP(&ksi);
744 		ksi.ksi_signo = SIGSEGV;
745 		ksi.ksi_code = SEGV_ACCERR;
746 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
747 		ksi.ksi_trap = fault_pc;
748 		goto do_trapsignal;
749 	}
750 
751 	map = &l->l_proc->p_vmspace->vm_map;
752 	va = trunc_page(fault_pc);
753 
754 	/*
755 	 * See if the pmap can handle this fault on its own...
756 	 */
757 #ifdef DEBUG
758 	last_fault_code = -1;
759 #endif
760 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
761 		goto out;
762 
763 #ifdef DIAGNOSTIC
764 	if (__predict_false(current_intr_depth > 0)) {
765 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
766 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
767 	}
768 #endif
769 
770 	error = uvm_fault(map, va, 0, VM_PROT_READ);
771 	if (__predict_true(error == 0))
772 		goto out;
773 
774 	KSI_INIT_TRAP(&ksi);
775 
776 	if (error == ENOMEM) {
777 		printf("UVM: pid %d (%s), uid %d killed: "
778 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
779 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
780 		     l->l_proc->p_ucred->cr_uid : -1);
781 		ksi.ksi_signo = SIGKILL;
782 	} else
783 		ksi.ksi_signo = SIGSEGV;
784 
785 	ksi.ksi_code = SEGV_MAPERR;
786 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
787 	ksi.ksi_trap = fault_pc;
788 
789 do_trapsignal:
790 	call_trapsignal(l, &ksi);
791 
792 out:
793 	userret(l);
794 }
795 
796 /*
797  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
798  * If the read succeeds, the value is written to 'rptr' and zero is returned.
799  * Else, return EFAULT.
800  */
801 int
802 badaddr_read(void *addr, size_t size, void *rptr)
803 {
804 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
805 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
806 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
807 	union {
808 		uint8_t v1;
809 		uint16_t v2;
810 		uint32_t v4;
811 	} u;
812 	struct pcb *curpcb_save;
813 	int rv, s;
814 
815 	cpu_drain_writebuf();
816 
817 	/*
818 	 * We might be called at interrupt time, so arrange to steal
819 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
820 	 * handling works correctly.
821 	 */
822 	s = splhigh();
823 	if ((curpcb_save = curpcb) == NULL)
824 		curpcb = &lwp0.l_addr->u_pcb;
825 
826 	/* Read from the test address. */
827 	switch (size) {
828 	case sizeof(uint8_t):
829 		rv = badaddr_read_1(addr, &u.v1);
830 		if (rv == 0 && rptr)
831 			*(uint8_t *) rptr = u.v1;
832 		break;
833 
834 	case sizeof(uint16_t):
835 		rv = badaddr_read_2(addr, &u.v2);
836 		if (rv == 0 && rptr)
837 			*(uint16_t *) rptr = u.v2;
838 		break;
839 
840 	case sizeof(uint32_t):
841 		rv = badaddr_read_4(addr, &u.v4);
842 		if (rv == 0 && rptr)
843 			*(uint32_t *) rptr = u.v4;
844 		break;
845 
846 	default:
847 		curpcb = curpcb_save;
848 		panic("badaddr: invalid size (%lu)", (u_long) size);
849 	}
850 
851 	/* Restore curpcb */
852 	curpcb = curpcb_save;
853 	splx(s);
854 
855 	/* Return EFAULT if the address was invalid, else zero */
856 	return (rv);
857 }
858