xref: /netbsd-src/sys/arch/arm/arm32/db_machdep.c (revision eceb233b9bd0dfebb902ed73b531ae6964fa3f9b)
1 /*	$NetBSD: db_machdep.c,v 1.35 2020/08/14 16:18:36 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1996 Mark Brinicombe
5  *
6  * Mach Operating System
7  * Copyright (c) 1991,1990 Carnegie Mellon University
8  * All Rights Reserved.
9  *
10  * Permission to use, copy, modify and distribute this software and its
11  * documentation is hereby granted, provided that both the copyright
12  * notice and this permission notice appear in all copies of the
13  * software, derivative works or modified versions, and any portions
14  * thereof, and that both notices appear in supporting documentation.
15  *
16  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
17  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
18  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
19  *
20  * Carnegie Mellon requests users of this software to return to
21  *
22  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
23  *  School of Computer Science
24  *  Carnegie Mellon University
25  *  Pittsburgh PA 15213-3890
26  *
27  * any improvements or extensions that they make and grant Carnegie the
28  * rights to redistribute these changes.
29  */
30 
31 #ifdef _KERNEL_OPT
32 #include "opt_cputypes.h"
33 #include "opt_multiprocessor.h"
34 #endif
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: db_machdep.c,v 1.35 2020/08/14 16:18:36 skrll Exp $");
38 
39 #include <sys/param.h>
40 
41 #include <sys/cpu.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/systm.h>
45 
46 #include <arm/arm32/db_machdep.h>
47 #include <arm/arm32/machdep.h>
48 #include <arm/cpufunc.h>
49 
50 #include <ddb/db_access.h>
51 #include <ddb/db_sym.h>
52 #include <ddb/db_output.h>
53 #include <ddb/db_variables.h>
54 #include <ddb/db_command.h>
55 #include <ddb/db_run.h>
56 
57 #ifndef _KERNEL
58 #include <stddef.h>
59 #endif
60 
61 #ifdef _KERNEL
62 static long nil;
63 
64 void db_md_cpuinfo_cmd(db_expr_t, bool, db_expr_t, const char *);
65 
66 int db_access_und_sp(const struct db_variable *, db_expr_t *, int);
67 int db_access_abt_sp(const struct db_variable *, db_expr_t *, int);
68 int db_access_irq_sp(const struct db_variable *, db_expr_t *, int);
69 #endif
70 
71 static int
72 ddb_reg_var(const struct db_variable *v, db_expr_t *ep, int op)
73 {
74 	register_t * const rp = (register_t *)DDB_REGS;
75 	if (op == DB_VAR_SET) {
76 		rp[(uintptr_t)v->valuep] = *ep;
77 	} else {
78 		*ep = rp[(uintptr_t)v->valuep];
79 	}
80 	return 0;
81 }
82 
83 
84 #define XO(f) ((long *)(offsetof(db_regs_t, f) / sizeof(register_t)))
85 const struct db_variable db_regs[] = {
86 	{ "spsr", XO(tf_spsr), ddb_reg_var, NULL },
87 	{ "r0", XO(tf_r0), ddb_reg_var, NULL },
88 	{ "r1", XO(tf_r1), ddb_reg_var, NULL },
89 	{ "r2", XO(tf_r2), ddb_reg_var, NULL },
90 	{ "r3", XO(tf_r3), ddb_reg_var, NULL },
91 	{ "r4", XO(tf_r4), ddb_reg_var, NULL },
92 	{ "r5", XO(tf_r5), ddb_reg_var, NULL },
93 	{ "r6", XO(tf_r6), ddb_reg_var, NULL },
94 	{ "r7", XO(tf_r7), ddb_reg_var, NULL },
95 	{ "r8", XO(tf_r8), ddb_reg_var, NULL },
96 	{ "r9", XO(tf_r9), ddb_reg_var, NULL },
97 	{ "r10", XO(tf_r10), ddb_reg_var, NULL },
98 	{ "r11", XO(tf_r11), ddb_reg_var, NULL },
99 	{ "r12", XO(tf_r12), ddb_reg_var, NULL },
100 	{ "usr_sp", XO(tf_usr_sp), ddb_reg_var, NULL },
101 	{ "usr_lr", XO(tf_usr_lr), ddb_reg_var, NULL },
102 	{ "svc_sp", XO(tf_svc_sp), ddb_reg_var, NULL },
103 	{ "svc_lr", XO(tf_svc_lr), ddb_reg_var, NULL },
104 	{ "pc", XO(tf_pc), ddb_reg_var, NULL },
105 #ifdef _KERNEL
106 	{ "und_sp", &nil, db_access_und_sp, NULL },
107 	{ "abt_sp", &nil, db_access_abt_sp, NULL },
108 	{ "irq_sp", &nil, db_access_irq_sp, NULL },
109 #endif
110 };
111 #undef XO
112 
113 const struct db_variable * const db_eregs = db_regs + sizeof(db_regs)/sizeof(db_regs[0]);
114 
115 const struct db_command db_machine_command_table[] = {
116 #ifdef _KERNEL
117 #if defined(MULTIPROCESSOR)
118 	{ DDB_ADD_CMD("cpu",	db_switch_cpu_cmd,	0,
119 			"switch to a different cpu",
120 		     	NULL,NULL) },
121 #endif /* MULTIPROCESSOR */
122 	{ DDB_ADD_CMD("cpuinfo", db_md_cpuinfo_cmd,	0,
123 			"Displays the cpuinfo",
124 		    NULL, NULL)
125 	},
126 	{ DDB_ADD_CMD("fault",	db_show_fault_cmd,	0,
127 			"Displays the fault registers",
128 		     	NULL,NULL) },
129 #endif
130 	{ DDB_ADD_CMD("frame",	db_show_frame_cmd,	0,
131 			"Displays the contents of a trapframe",
132 			"[address]",
133 			"   address:\taddress of trapfame to display")},
134 #ifdef _KERNEL
135 	{ DDB_ADD_CMD("reset",	db_reset_cmd,		0,
136 			"Reset the system",
137 			NULL,NULL) },
138 #if defined(CPU_CORTEXA5) || defined(CPU_CORTEXA7)
139 	{ DDB_ADD_CMD("tlb",	db_show_tlb_cmd,	0,
140 			"Displays the TLB",
141 		     	NULL,NULL) },
142 #endif
143 #endif /* _KERNEL */
144 
145 	{ DDB_ADD_CMD(NULL,     NULL,           0,NULL,NULL,NULL) }
146 };
147 
148 void
149 db_show_frame_cmd(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
150 {
151 	struct trapframe *frame;
152 
153 	if (!have_addr) {
154 		db_printf("frame address must be specified\n");
155 		return;
156 	}
157 
158 	frame = (struct trapframe *)addr;
159 
160 	db_printf("frame address = %08x  ", (u_int)frame);
161 	db_printf("spsr=%08x\n", frame->tf_spsr);
162 	db_printf("r0 =%08x r1 =%08x r2 =%08x r3 =%08x\n",
163 	    frame->tf_r0, frame->tf_r1, frame->tf_r2, frame->tf_r3);
164 	db_printf("r4 =%08x r5 =%08x r6 =%08x r7 =%08x\n",
165 	    frame->tf_r4, frame->tf_r5, frame->tf_r6, frame->tf_r7);
166 	db_printf("r8 =%08x r9 =%08x r10=%08x r11=%08x\n",
167 	    frame->tf_r8, frame->tf_r9, frame->tf_r10, frame->tf_r11);
168 	db_printf("r12=%08x r13=%08x r14=%08x r15=%08x\n",
169 	    frame->tf_r12, frame->tf_usr_sp, frame->tf_usr_lr, frame->tf_pc);
170 	db_printf("slr=%08x ssp=%08x\n", frame->tf_svc_lr, frame->tf_svc_sp);
171 }
172 
173 #ifdef _KERNEL
174 int
175 db_access_und_sp(const struct db_variable *vp, db_expr_t *valp, int rw)
176 {
177 
178 	if (rw == DB_VAR_GET)
179 		*valp = get_stackptr(PSR_UND32_MODE);
180 	return(0);
181 }
182 
183 int
184 db_access_abt_sp(const struct db_variable *vp, db_expr_t *valp, int rw)
185 {
186 
187 	if (rw == DB_VAR_GET)
188 		*valp = get_stackptr(PSR_ABT32_MODE);
189 	return(0);
190 }
191 
192 int
193 db_access_irq_sp(const struct db_variable *vp, db_expr_t *valp, int rw)
194 {
195 
196 	if (rw == DB_VAR_GET)
197 		*valp = get_stackptr(PSR_IRQ32_MODE);
198 	return(0);
199 }
200 
201 void
202 db_show_fault_cmd(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
203 {
204 	db_printf("DFAR=%#x DFSR=%#x IFAR=%#x IFSR=%#x\n",
205 	    armreg_dfar_read(), armreg_dfsr_read(),
206 	    armreg_ifar_read(), armreg_ifsr_read());
207 	db_printf("CONTEXTIDR=%#x TTBCR=%#x TTBR=%#x\n",
208 	    armreg_contextidr_read(), armreg_ttbcr_read(),
209 	    armreg_ttbr_read());
210 }
211 
212 void
213 db_reset_cmd(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
214 {
215 	if (cpu_reset_address == NULL) {
216 		db_printf("cpu_reset_address is not set\n");
217 		return;
218 	}
219 
220 	cpu_reset_address();
221 }
222 
223 #if defined(CPU_CORTEXA5) || defined(CPU_CORTEXA7)
224 static void
225 tlb_print_common_header(const char *str)
226 {
227 	db_printf("-W/I-- ----VA---- ----PA---- --SIZE-- D AP XN ASD %s\n", str);
228 }
229 
230 static void
231 tlb_print_addr(size_t way, size_t va_index, vaddr_t vpn, paddr_t pfn)
232 {
233 	db_printf("[%1zu:%02zx] 0x%05lx000 0x%05lx000", way, va_index, vpn, pfn);
234 }
235 
236 static void
237 tlb_print_size_domain_prot(const char *sizestr, u_int domain, u_int ap,
238     bool xn_p)
239 {
240 	db_printf(" %8s %1x %2d %s", sizestr, domain, ap, (xn_p ? "XN" : "--"));
241 }
242 
243 static void
244 tlb_print_asid(bool ng_p, tlb_asid_t asid)
245 {
246 	if (ng_p) {
247 		db_printf(" %3d", asid);
248 	} else {
249 		db_printf(" ---");
250 	}
251 }
252 
253 struct db_tlbinfo {
254 	vaddr_t (*dti_decode_vpn)(size_t, uint32_t, uint32_t);
255 	void (*dti_print_header)(void);
256 	void (*dti_print_entry)(size_t, size_t, uint32_t, uint32_t);
257 	u_int dti_index;
258 };
259 
260 #if defined(CPU_CORTEXA5)
261 static void
262 tlb_print_cortex_a5_header(void)
263 {
264 	tlb_print_common_header(" S TEX C B");
265 }
266 
267 static vaddr_t
268 tlb_decode_cortex_a5_vpn(size_t va_index, uint32_t d0, uint32_t d1)
269 {
270 	const uint64_t d = ((uint64_t)d1 << 32) | d0;
271 
272 	const u_int size = __SHIFTOUT(d, ARM_A5_TLBDATA_SIZE);
273 	return __SHIFTOUT(d, ARM_A5_TLBDATA_VA) * (ARM_A5_TLBDATAOP_INDEX + 1)
274 	    + (va_index << (4*size));
275 }
276 
277 static void
278 tlb_print_cortex_a5_entry(size_t way, size_t va_index, uint32_t d0, uint32_t d1)
279 {
280 	static const char size_strings[4][8] = {
281 	    "  4KB  ", " 64KB  ", "  1MB  ", " 16MB  ",
282 	};
283 
284 	const uint64_t d = ((uint64_t)d1 << 32) | d0;
285 
286 	const paddr_t pfn = __SHIFTOUT(d, ARM_A5_TLBDATA_PA);
287 	const vaddr_t vpn = tlb_decode_cortex_a5_vpn(va_index, d0, d1);
288 
289 	tlb_print_addr(way, va_index, vpn, pfn);
290 
291 	const u_int size = __SHIFTOUT(d, ARM_A5_TLBDATA_SIZE);
292 	const u_int domain = __SHIFTOUT(d, ARM_A5_TLBDATA_DOM);
293 	const u_int ap = __SHIFTOUT(d, ARM_A5_TLBDATA_AP);
294 	const bool xn_p = (d & ARM_A5_TLBDATA_XN) != 0;
295 
296 	tlb_print_size_domain_prot(size_strings[size], domain, ap, xn_p);
297 
298 	const bool ng_p = (d & ARM_A5_TLBDATA_nG) != 0;
299 	const tlb_asid_t asid = __SHIFTOUT(d, ARM_A5_TLBDATA_ASID);
300 
301 	tlb_print_asid(ng_p, asid);
302 
303 	const u_int tex = __SHIFTOUT(d, ARM_A5_TLBDATA_TEX);
304 	const bool c_p = (d & ARM_A5_TLBDATA_C) != 0;
305 	const bool b_p = (d & ARM_A5_TLBDATA_B) != 0;
306 	const bool s_p = (d & ARM_A5_TLBDATA_S) != 0;
307 
308 	db_printf(" %c  %d  %c %c\n", (s_p ? 'S' : '-'), tex,
309 	    (c_p ? 'C' : '-'), (b_p ? 'B' : '-'));
310 }
311 
312 static const struct db_tlbinfo tlb_cortex_a5_info = {
313 	.dti_decode_vpn = tlb_decode_cortex_a5_vpn,
314 	.dti_print_header = tlb_print_cortex_a5_header,
315 	.dti_print_entry = tlb_print_cortex_a5_entry,
316 	.dti_index = ARM_A5_TLBDATAOP_INDEX,
317 };
318 #endif /* CPU_CORTEXA5 */
319 
320 #if defined(CPU_CORTEXA7)
321 static const char tlb_cortex_a7_esizes[8][8] = {
322     " 4KB(S)", " 4KB(L)", "64KB(S)", "64KB(L)",
323     " 1MB(S)", " 2MB(L)", "16MB(S)", " 1GB(L)",
324 };
325 
326 static void
327 tlb_print_cortex_a7_header(void)
328 {
329 	tlb_print_common_header("IS --OS- SH");
330 }
331 
332 static inline vaddr_t
333 tlb_decode_cortex_a7_vpn(size_t va_index, uint32_t d0, uint32_t d1)
334 {
335 	const u_int size = __SHIFTOUT(d0, ARM_A7_TLBDATA0_SIZE);
336 	const u_int shift = (size & 1)
337 	    ? ((0x12090400 >> (8*size)) & 0x1f)
338 	    : (2 * size);
339 
340 	return __SHIFTOUT(d0, ARM_A7_TLBDATA0_VA) * (ARM_A7_TLBDATAOP_INDEX + 1)
341 	    + (va_index << shift);
342 }
343 
344 static void
345 tlb_print_cortex_a7_entry(size_t way, size_t va_index, uint32_t d0, uint32_t d1)
346 {
347 	const uint32_t d2 = armreg_tlbdata2_read();
348 	const uint64_t d01 = ((uint64_t)d1 << 32) | d0;
349 	const uint64_t d12 = ((uint64_t)d2 << 32) | d1;
350 
351 	const paddr_t pfn = __SHIFTOUT(d12, ARM_A7_TLBDATA12_PA);
352 	const vaddr_t vpn = tlb_decode_cortex_a7_vpn(va_index, d0, d1);
353 
354 	tlb_print_addr(way, va_index, vpn, pfn);
355 
356 	const u_int size = __SHIFTOUT(d0, ARM_A7_TLBDATA0_SIZE);
357 	const u_int domain = __SHIFTOUT(d2, ARM_A7_TLBDATA2_DOM);
358 	const u_int ap = __SHIFTOUT(d1, ARM_A7_TLBDATA1_AP);
359 	const bool xn_p = (d2 & ARM_A7_TLBDATA2_XN1) != 0;
360 
361 	tlb_print_size_domain_prot(tlb_cortex_a7_esizes[size], domain, ap, xn_p);
362 
363 	const bool ng_p = (d1 & ARM_A7_TLBDATA1_nG) != 0;
364 	const tlb_asid_t asid = __SHIFTOUT(d01, ARM_A7_TLBDATA01_ASID);
365 
366 	tlb_print_asid(ng_p, asid);
367 
368 	const u_int is = __SHIFTOUT(d2, ARM_A7_TLBDATA2_IS);
369 	if (is == ARM_A7_TLBDATA2_IS_DSO) {
370 		u_int mt = __SHIFTOUT(d2, ARM_A7_TLBDATA2_SDO_MT);
371 		switch (mt) {
372 		case ARM_A7_TLBDATA2_SDO_MT_D:
373 			db_printf(" DV\n");
374 			return;
375 		case ARM_A7_TLBDATA2_SDO_MT_SO:
376 			db_printf(" SO\n");
377 			return;
378 		default:
379 			db_printf(" %02u\n", mt);
380 			return;
381 		}
382 	}
383 	const u_int os = __SHIFTOUT(d2, ARM_A7_TLBDATA2_OS);
384 	const u_int sh = __SHIFTOUT(d2, ARM_A7_TLBDATA2_SH);
385 	static const char is_types[3][3] = { "NC", "WB", "WT" };
386 	static const char os_types[4][6] = { "NC", "WB+WA", "WT", "WB" };
387 	static const char sh_types[4][3] = { "NS", "na", "OS", "IS" };
388 	db_printf(" %2s %5s %2s\n", is_types[is], os_types[os], sh_types[sh]);
389 }
390 
391 static const struct db_tlbinfo tlb_cortex_a7_info = {
392 	.dti_decode_vpn = tlb_decode_cortex_a7_vpn,
393 	.dti_print_header = tlb_print_cortex_a7_header,
394 	.dti_print_entry = tlb_print_cortex_a7_entry,
395 	.dti_index = ARM_A7_TLBDATAOP_INDEX,
396 };
397 #endif /* CPU_CORTEXA7 */
398 
399 static inline const struct db_tlbinfo *
400 tlb_lookup_tlbinfo(void)
401 {
402 #if defined(CPU_CORTEXA5) && defined(CPU_CORTEXA7)
403 	const bool cortex_a5_p = CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid);
404 	const bool cortex_a7_p = CPU_ID_CORTEX_A7_P(curcpu()->ci_arm_cpuid);
405 #elif defined(CPU_CORTEXA5)
406 	const bool cortex_a5_p = true;
407 #else
408 	const bool cortex_a7_p = true;
409 #endif
410 #ifdef CPU_CORTEXA5
411 	if (cortex_a5_p) {
412 		return &tlb_cortex_a5_info;
413 	}
414 #endif
415 #ifdef CPU_CORTEXA7
416 	if (cortex_a7_p) {
417 		return &tlb_cortex_a7_info;
418 	}
419 #endif
420 	return NULL;
421 }
422 
423 void
424 db_show_tlb_cmd(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
425 {
426 	const struct db_tlbinfo * const dti = tlb_lookup_tlbinfo();
427 
428 	if (have_addr) {
429 		const vaddr_t vpn = (vaddr_t)addr >> L2_S_SHIFT;
430 		const u_int va_index = vpn & dti->dti_index;
431 		for (size_t way = 0; way < 2; way++) {
432 			armreg_tlbdataop_write(
433 			    __SHIFTIN(va_index, dti->dti_index)
434 			    | __SHIFTIN(way, ARM_TLBDATAOP_WAY));
435 			arm_isb();
436 			const uint32_t d0 = armreg_tlbdata0_read();
437 			const uint32_t d1 = armreg_tlbdata1_read();
438 			if ((d0 & ARM_TLBDATA_VALID)
439 			    && vpn == (*dti->dti_decode_vpn)(va_index, d0, d1)) {
440 				(*dti->dti_print_header)();
441 				(*dti->dti_print_entry)(way, va_index, d0, d1);
442 				return;
443 			}
444 		}
445 		db_printf("VA %#"DDB_EXPR_FMT"x not found in TLB\n", addr);
446 		return;
447 	}
448 
449 	bool first = true;
450 	size_t n = 0;
451 	for (size_t va_index = 0; va_index <= dti->dti_index; va_index++) {
452 		for (size_t way = 0; way < 2; way++) {
453 			armreg_tlbdataop_write(
454 			    __SHIFTIN(way, ARM_TLBDATAOP_WAY)
455 			    | __SHIFTIN(va_index, dti->dti_index));
456 			arm_isb();
457 			const uint32_t d0 = armreg_tlbdata0_read();
458 			const uint32_t d1 = armreg_tlbdata1_read();
459 			if (d0 & ARM_TLBDATA_VALID) {
460 				if (first) {
461 					(*dti->dti_print_header)();
462 					first = false;
463 				}
464 				(*dti->dti_print_entry)(way, va_index, d0, d1);
465 				n++;
466 			}
467 		}
468 	}
469 	db_printf("%zu TLB valid entries found\n", n);
470 }
471 #endif /* CPU_CORTEXA5 || CPU_CORTEXA7 */
472 
473 #if defined(MULTIPROCESSOR)
474 void
475 db_switch_cpu_cmd(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif)
476 {
477 	if (addr >= maxcpus) {
478 		db_printf("cpu %"DDB_EXPR_FMT"d out of range", addr);
479 		return;
480 	}
481 	struct cpu_info *new_ci = cpu_lookup(addr);
482 	if (new_ci == NULL) {
483 		db_printf("cpu %"DDB_EXPR_FMT"d does not exist", addr);
484 		return;
485 	}
486 	if (DDB_REGS->tf_spsr & PSR_T_bit) {
487 		DDB_REGS->tf_pc -= 2; /* XXX */
488 	} else {
489 		DDB_REGS->tf_pc -= 4;
490 	}
491 	db_newcpu = new_ci;
492 	db_continue_cmd(0, false, 0, "");
493 }
494 #endif
495 
496 static void
497 show_cpuinfo(struct cpu_info *kci)
498 {
499 	struct cpu_info cpuinfobuf;
500 	cpuid_t cpuid;
501 	int i;
502 
503 	db_read_bytes((db_addr_t)kci, sizeof(cpuinfobuf), (char *)&cpuinfobuf);
504 
505 	struct cpu_info *ci = &cpuinfobuf;
506 	cpuid = ci->ci_cpuid;
507 	db_printf("cpu_info=%p, cpu_name=%s\n", kci, ci->ci_cpuname);
508 	db_printf("%p cpu[%lu].ci_cpuid        = %lu\n",
509 	    &ci->ci_cpuid, cpuid, ci->ci_cpuid);
510 	db_printf("%p cpu[%lu].ci_curlwp       = %p\n",
511 	    &ci->ci_curlwp, cpuid, ci->ci_curlwp);
512 	for (i = 0; i < SOFTINT_COUNT; i++) {
513 		db_printf("%p cpu[%lu].ci_softlwps[%d]  = %p\n",
514 		    &ci->ci_softlwps[i], cpuid, i, ci->ci_softlwps[i]);
515 	}
516 	db_printf("%p cpu[%lu].ci_lastintr     = %" PRIu64 "\n",
517 	    &ci->ci_lastintr, cpuid, ci->ci_lastintr);
518 	db_printf("%p cpu[%lu].ci_want_resched = %d\n",
519 	    &ci->ci_want_resched, cpuid, ci->ci_want_resched);
520 	db_printf("%p cpu[%lu].ci_cpl          = %d\n",
521 	    &ci->ci_cpl, cpuid, ci->ci_cpl);
522 	db_printf("%p cpu[%lu].ci_softints     = 0x%08x\n",
523 	    &ci->ci_softints, cpuid, ci->ci_softints);
524 	db_printf("%p cpu[%lu].ci_intr_depth   = %u\n",
525 	    &ci->ci_intr_depth, cpuid, ci->ci_intr_depth);
526 
527 }
528 
529 void
530 db_md_cpuinfo_cmd(db_expr_t addr, bool have_addr, db_expr_t count,
531     const char *modif)
532 {
533 #ifdef MULTIPROCESSOR
534 	CPU_INFO_ITERATOR cii;
535 	struct cpu_info *ci;
536 	bool showall = false;
537 
538 	if (modif != NULL) {
539 		for (; *modif != '\0'; modif++) {
540 			switch (*modif) {
541 			case 'a':
542 				showall = true;
543 				break;
544 			}
545 		}
546 	}
547 
548 	if (showall) {
549 		for (CPU_INFO_FOREACH(cii, ci)) {
550 			show_cpuinfo(ci);
551 		}
552 	} else
553 #endif /* MULTIPROCESSOR */
554 		show_cpuinfo(curcpu());
555 }
556 
557 #endif /* _KERNEL */
558