xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: cpu.c,v 1.144 2020/02/15 08:16:11 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.144 2020/02/15 08:16:11 skrll Exp $");
50 
51 #include <sys/param.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <arm/locore.h>
63 #include <arm/undefined.h>
64 #include <arm/cpu_topology.h>
65 
66 extern const char *cpu_arch;
67 
68 #ifdef MULTIPROCESSOR
69 #ifdef MPDEBUG
70 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
71 #endif
72 
73 #endif
74 
75 /* Prototypes */
76 void identify_arm_cpu(device_t, struct cpu_info *);
77 void identify_cortex_caches(device_t);
78 void identify_features(device_t);
79 
80 /*
81  * Identify the master (boot) CPU
82  */
83 
84 void
85 cpu_attach(device_t dv, cpuid_t id)
86 {
87 	const char * const xname = device_xname(dv);
88 	const int unit = device_unit(dv);
89 	struct cpu_info *ci;
90 
91 	if (unit == 0) {
92 		ci = curcpu();
93 
94 		/* Read SCTLR from cpu */
95 		ci->ci_ctrl = cpu_control(0, 0);
96 
97 		/* Get the CPU ID from coprocessor 15 */
98 
99 		ci->ci_cpuid = id;
100 		ci->ci_arm_cpuid = cpu_idnum();
101 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
102 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
103 	} else {
104 #ifdef MULTIPROCESSOR
105 		if ((boothowto & RB_MD1) != 0) {
106 			aprint_naive("\n");
107 			aprint_normal(": multiprocessor boot disabled\n");
108 			return;
109 		}
110 
111 		KASSERT(unit < MAXCPUS);
112 		ci = &cpu_info_store[unit];
113 
114 		KASSERT(cpu_info[unit] == NULL);
115 		ci->ci_cpl = IPL_HIGH;
116 		ci->ci_cpuid = id;
117 		ci->ci_data.cpu_cc_freq = cpu_info_store[0].ci_data.cpu_cc_freq;
118 
119 		ci->ci_undefsave[2] = cpu_info_store[0].ci_undefsave[2];
120 
121 		cpu_info[unit] = ci;
122 		if (cpu_hatched_p(unit) == false) {
123 			ci->ci_dev = dv;
124 			dv->dv_private = ci;
125 			aprint_naive(": disabled\n");
126 			aprint_normal(": disabled (unresponsive)\n");
127 			return;
128 		}
129 #else
130 		aprint_naive(": disabled\n");
131 		aprint_normal(": disabled (uniprocessor kernel)\n");
132 		return;
133 #endif
134 	}
135 
136 	ci->ci_dev = dv;
137 	dv->dv_private = ci;
138 
139 	arm_cpu_do_topology(ci);
140 
141 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
142 	    NULL, xname, "arm700swibug");
143 
144 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
145 	    NULL, xname, "vector abort");
146 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
147 	    NULL, xname, "terminal abort");
148 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
149 	    NULL, xname, "external linefetch abort (S)");
150 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
151 	    NULL, xname, "external linefetch abort (P)");
152 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
153 	    NULL, xname, "external non-linefetch abort (S)");
154 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
155 	    NULL, xname, "external non-linefetch abort (P)");
156 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
157 	    NULL, xname, "external translation abort (L1)");
158 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
159 	    NULL, xname, "external translation abort (L2)");
160 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
161 	    NULL, xname, "alignment abort (0)");
162 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
163 	    NULL, xname, "alignment abort (1)");
164 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
165 	    NULL, xname, "translation abort (S)");
166 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
167 	    NULL, xname, "translation abort (P)");
168 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
169 	    NULL, xname, "domain abort (S)");
170 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
171 	    NULL, xname, "domain abort (P)");
172 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
173 	    NULL, xname, "permission abort (S)");
174 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
175 	    NULL, xname, "permission abort (P)");
176 	evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
177 	    NULL, xname, "undefined insn traps");
178 	evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
179 	    NULL, xname, "undefined cp15 insn traps");
180 
181 #ifdef MULTIPROCESSOR
182 	/*
183 	 * and we are done if this is a secondary processor.
184 	 */
185 	if (unit != 0) {
186 		aprint_naive("\n");
187 		aprint_normal("\n");
188 		mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 		pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 		return;
193 	}
194 #endif
195 
196 	identify_arm_cpu(dv, ci);
197 
198 #ifdef CPU_STRONGARM
199 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 	    ci->ci_arm_cpurev < 3) {
201 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 	}
203 #endif
204 
205 #ifdef CPU_ARM8
206 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 		int clock = arm8_clock_config(0, 0);
208 		char *fclk;
209 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 		aprint_normal("%s", (clock & 2) ? " sync" : "");
212 		switch ((clock >> 2) & 3) {
213 		case 0:
214 			fclk = "bus clock";
215 			break;
216 		case 1:
217 			fclk = "ref clock";
218 			break;
219 		case 3:
220 			fclk = "pll";
221 			break;
222 		default:
223 			fclk = "illegal";
224 			break;
225 		}
226 		aprint_normal(" fclk source=%s\n", fclk);
227  	}
228 #endif
229 
230 	vfp_attach(ci);		/* XXX SMP */
231 }
232 
233 enum cpu_class {
234 	CPU_CLASS_NONE,
235 	CPU_CLASS_ARM2,
236 	CPU_CLASS_ARM2AS,
237 	CPU_CLASS_ARM3,
238 	CPU_CLASS_ARM6,
239 	CPU_CLASS_ARM7,
240 	CPU_CLASS_ARM7TDMI,
241 	CPU_CLASS_ARM8,
242 	CPU_CLASS_ARM9TDMI,
243 	CPU_CLASS_ARM9ES,
244 	CPU_CLASS_ARM9EJS,
245 	CPU_CLASS_ARM10E,
246 	CPU_CLASS_ARM10EJ,
247 	CPU_CLASS_SA1,
248 	CPU_CLASS_XSCALE,
249 	CPU_CLASS_ARM11J,
250 	CPU_CLASS_ARMV4,
251 	CPU_CLASS_CORTEX,
252 	CPU_CLASS_PJ4B,
253 };
254 
255 static const char * const generic_steppings[16] = {
256 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
257 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
258 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
259 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
260 };
261 
262 static const char * const pN_steppings[16] = {
263 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
264 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
265 };
266 
267 static const char * const sa110_steppings[16] = {
268 	"rev 0",	"step J",	"step K",	"step S",
269 	"step T",	"rev 5",	"rev 6",	"rev 7",
270 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
271 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
272 };
273 
274 static const char * const sa1100_steppings[16] = {
275 	"rev 0",	"step B",	"step C",	"rev 3",
276 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
277 	"step D",	"step E",	"rev 10"	"step G",
278 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
279 };
280 
281 static const char * const sa1110_steppings[16] = {
282 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
283 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
284 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
285 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
286 };
287 
288 static const char * const ixp12x0_steppings[16] = {
289 	"(IXP1200 step A)",		"(IXP1200 step B)",
290 	"rev 2",			"(IXP1200 step C)",
291 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
292 	"(IXP1240 step B)",		"(IXP1250 step B)",
293 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
294 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
295 };
296 
297 static const char * const xscale_steppings[16] = {
298 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
299 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
300 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
301 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
302 };
303 
304 static const char * const i80321_steppings[16] = {
305 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
306 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
307 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
308 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
309 };
310 
311 static const char * const i80219_steppings[16] = {
312 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
313 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
314 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
315 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
316 };
317 
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
321 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
322 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
323 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
324 };
325 
326 /* Steppings for PXA255/26x.
327  * rev 5: PXA26x B0, rev 6: PXA255 A0
328  */
329 static const char * const pxa255_steppings[16] = {
330 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
331 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
332 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
333 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
334 };
335 
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
339 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
340 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
341 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
342 };
343 
344 static const char * const ixp425_steppings[16] = {
345 	"step 0",	"rev 1",	"rev 2",	"rev 3",
346 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
347 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
348 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
349 };
350 
351 struct cpuidtab {
352 	uint32_t	cpuid;
353 	enum		cpu_class cpu_class;
354 	const char	*cpu_classname;
355 	const char * const *cpu_steppings;
356 	char		cpu_arch[8];
357 };
358 
359 const struct cpuidtab cpuids[] = {
360 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
361 	  generic_steppings, "2" },
362 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
363 	  generic_steppings, "2" },
364 
365 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
366 	  generic_steppings, "2A" },
367 
368 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
369 	  generic_steppings, "3" },
370 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
371 	  generic_steppings, "3" },
372 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
373 	  generic_steppings, "3" },
374 
375 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
376 	  generic_steppings, "3" },
377 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
378 	  generic_steppings, "3" },
379 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
380 	  generic_steppings, "3" },
381 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
382 	  generic_steppings, "3" },
383 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
384 	  generic_steppings, "3" },
385 
386 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
387 	  generic_steppings, "4" },
388 
389 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
390 	  sa110_steppings, "4" },
391 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
392 	  sa1100_steppings, "4" },
393 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
394 	  sa1110_steppings, "4" },
395 
396 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
397 	  generic_steppings, "4" },
398 
399 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
400 	  ixp12x0_steppings, "4" },
401 
402 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
403 	  generic_steppings, "4T" },
404 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
405 	  generic_steppings, "4T" },
406 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 	  generic_steppings, "4T" },
408 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 	  generic_steppings, "4T" },
410 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
411 	  generic_steppings, "4T" },
412 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
413 	  generic_steppings, "4T" },
414 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
415 	  generic_steppings, "4T" },
416 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
417 	  generic_steppings, "4T" },
418 
419 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
420 	  generic_steppings, "5TE" },
421 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
422 	  generic_steppings, "5TE" },
423 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
424 	  generic_steppings, "5TE" },
425 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
426 	  generic_steppings, "5TE" },
427 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
428 	  generic_steppings, "5TE" },
429 
430 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
431 	  xscale_steppings, "5TE" },
432 
433 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
434 	  i80321_steppings, "5TE" },
435 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
436 	  i80321_steppings, "5TE" },
437 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
438 	  i80321_steppings, "5TE" },
439 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
440 	  i80321_steppings, "5TE" },
441 
442 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
443 	  i80219_steppings, "5TE" },
444 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
445 	  i80219_steppings, "5TE" },
446 
447 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
448 	  pxa27x_steppings, "5TE" },
449 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
450 	  pxa2x0_steppings, "5TE" },
451 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
452 	  pxa2x0_steppings, "5TE" },
453 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
454 	  pxa2x0_steppings, "5TE" },
455 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
456 	  pxa2x0_steppings, "5TE" },
457 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
458 	  pxa255_steppings, "5TE" },
459 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
460 	  pxa2x0_steppings, "5TE" },
461 
462 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
463 	  ixp425_steppings, "5TE" },
464 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
465 	  ixp425_steppings, "5TE" },
466 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
467 	  ixp425_steppings, "5TE" },
468 
469 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
470 	  generic_steppings, "5TE" },
471 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
472 	  generic_steppings, "5TE" },
473 
474 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
475 	  generic_steppings, "5TEJ" },
476 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
477 	  generic_steppings, "5TEJ" },
478 
479 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
480 	  pN_steppings, "6J" },
481 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
482 	  pN_steppings, "6J" },
483 #if 0
484 	/* The ARM1156T2-S only has a memory protection unit */
485 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
486 	  pN_steppings, "6T2" },
487 #endif
488 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
489 	  pN_steppings, "6ZK" },
490 
491 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
492 	  generic_steppings, "6K" },
493 
494 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
495 	  pN_steppings, "7A" },
496 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
497 	  pN_steppings, "7A" },
498 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
499 	  pN_steppings, "7A" },
500 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
501 	  pN_steppings, "7A" },
502 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
503 	  pN_steppings, "7A" },
504 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
505 	  pN_steppings, "7A" },
506 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
507 	  pN_steppings, "7A" },
508 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
509 	  pN_steppings, "7A" },
510 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
511 	  pN_steppings, "7A" },
512 	{ CPU_ID_CORTEXA12R0,	CPU_CLASS_CORTEX,	"Cortex-A17(A12) r0",	/* A12 was rebranded A17 */
513 	  pN_steppings, "7A" },
514 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
515 	  pN_steppings, "7A" },
516 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
517 	  pN_steppings, "7A" },
518 	{ CPU_ID_CORTEXA15R4,	CPU_CLASS_CORTEX,	"Cortex-A15 r4",
519 	  pN_steppings, "7A" },
520 	{ CPU_ID_CORTEXA17R1,	CPU_CLASS_CORTEX,	"Cortex-A17 r1",
521 	  pN_steppings, "7A" },
522 	{ CPU_ID_CORTEXA35R0,	CPU_CLASS_CORTEX,	"Cortex-A35 r0",
523 	  pN_steppings, "8A" },
524 	{ CPU_ID_CORTEXA53R0,	CPU_CLASS_CORTEX,	"Cortex-A53 r0",
525 	  pN_steppings, "8A" },
526 	{ CPU_ID_CORTEXA57R0,	CPU_CLASS_CORTEX,	"Cortex-A57 r0",
527 	  pN_steppings, "8A" },
528 	{ CPU_ID_CORTEXA57R1,	CPU_CLASS_CORTEX,	"Cortex-A57 r1",
529 	  pN_steppings, "8A" },
530 	{ CPU_ID_CORTEXA72R0,	CPU_CLASS_CORTEX,	"Cortex-A72 r0",
531 	  pN_steppings, "8A" },
532 
533 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
534 	  generic_steppings },
535 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
536 	  generic_steppings },
537 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
538 	  generic_steppings },
539 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
540 	  generic_steppings },
541 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
542 	  generic_steppings },
543 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
544 	  generic_steppings },
545 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
546 	  generic_steppings },
547 
548 
549 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
550 };
551 
552 struct cpu_classtab {
553 	const char	*class_name;
554 	const char	*class_option;
555 };
556 
557 const struct cpu_classtab cpu_classes[] = {
558 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
559 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
560 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
561 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
562 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
563 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
564 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
565 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
566 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
567 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
568 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
569 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
570 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
571 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
572 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
573 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
574 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
575 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
576 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
577 };
578 
579 /*
580  * Report the type of the specified arm processor. This uses the generic and
581  * arm specific information in the CPU structure to identify the processor.
582  * The remaining fields in the CPU structure are filled in appropriately.
583  */
584 
585 static const char * const wtnames[] = {
586 	"write-through",
587 	"write-back",
588 	"write-back",
589 	"**unknown 3**",
590 	"**unknown 4**",
591 	"write-back-locking",		/* XXX XScale-specific? */
592 	"write-back-locking-A",
593 	"write-back-locking-B",
594 	"**unknown 8**",
595 	"**unknown 9**",
596 	"**unknown 10**",
597 	"**unknown 11**",
598 	"write-back",
599 	"write-back-locking-line",
600 	"write-back-locking-C",
601 	"write-back-locking-D",
602 };
603 
604 static void
605 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
606 {
607 	if (info->cache_unified) {
608 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
609 		    info->dcache_size / 1024,
610 		    info->dcache_line_size, info->dcache_ways,
611 		    wtnames[info->cache_type], level + 1,
612 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
613 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
614 	} else {
615 		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
616 		    info->icache_size / 1024,
617 		    info->icache_line_size, info->icache_ways, level + 1,
618 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
619 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
620 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
621 		    info->dcache_size / 1024,
622 		    info->dcache_line_size, info->dcache_ways,
623 		    wtnames[info->cache_type], level + 1,
624 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
625 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
626 	}
627 }
628 
629 static enum cpu_class
630 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
631 {
632 	enum cpu_class cpu_class = CPU_CLASS_NONE;
633 	for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
634 		if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
635 			const char *steppingstr =
636 			    id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
637 			cpu_arch = id->cpu_arch;
638 			cpu_class = id->cpu_class;
639 			snprintf(buf, len, "%s%s%s (%s V%s core)",
640 			    id->cpu_classname,
641 			    steppingstr[0] == '*' ? "" : " ",
642 			    &steppingstr[steppingstr[0] == '*'],
643 			    cpu_classes[cpu_class].class_name,
644 			    cpu_arch);
645 			return cpu_class;
646 		}
647 	}
648 
649 	snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
650 	return cpu_class;
651 }
652 
653 void
654 identify_arm_cpu(device_t dv, struct cpu_info *ci)
655 {
656 	const uint32_t arm_cpuid = ci->ci_arm_cpuid;
657 	const char * const xname = device_xname(dv);
658 	char model[128];
659 	const char *m;
660 
661 	if (arm_cpuid == 0) {
662 		aprint_error("Processor failed probe - no CPU ID\n");
663 		return;
664 	}
665 
666 	const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
667 	     model, sizeof(model));
668 	if (ci->ci_cpuid == 0) {
669 		m = cpu_getmodel();
670 		if (m == NULL || *m == 0)
671 			cpu_setmodel("%s", model);
672 	}
673 
674 	if (ci->ci_data.cpu_cc_freq != 0) {
675 		char freqbuf[10];
676 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
677 		    "Hz", 1000);
678 
679 		aprint_naive(": %s %s\n", freqbuf, model);
680 		aprint_normal(": %s %s\n", freqbuf, model);
681 	} else {
682 		aprint_naive(": %s\n", model);
683 		aprint_normal(": %s\n", model);
684 	}
685 
686 	aprint_debug_dev(dv, "midr:   %#x\n", arm_cpuid);
687 
688 	aprint_normal("%s:", xname);
689 
690 	switch (cpu_class) {
691 	case CPU_CLASS_ARM6:
692 	case CPU_CLASS_ARM7:
693 	case CPU_CLASS_ARM7TDMI:
694 	case CPU_CLASS_ARM8:
695 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
696 			aprint_normal(" IDC disabled");
697 		else
698 			aprint_normal(" IDC enabled");
699 		break;
700 	case CPU_CLASS_ARM9TDMI:
701 	case CPU_CLASS_ARM9ES:
702 	case CPU_CLASS_ARM9EJS:
703 	case CPU_CLASS_ARM10E:
704 	case CPU_CLASS_ARM10EJ:
705 	case CPU_CLASS_SA1:
706 	case CPU_CLASS_XSCALE:
707 	case CPU_CLASS_ARM11J:
708 	case CPU_CLASS_ARMV4:
709 	case CPU_CLASS_CORTEX:
710 	case CPU_CLASS_PJ4B:
711 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
712 			aprint_normal(" DC disabled");
713 		else
714 			aprint_normal(" DC enabled");
715 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
716 			aprint_normal(" IC disabled");
717 		else
718 			aprint_normal(" IC enabled");
719 		break;
720 	default:
721 		break;
722 	}
723 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
724 		aprint_normal(" WB disabled");
725 	else
726 		aprint_normal(" WB enabled");
727 
728 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
729 		aprint_normal(" LABT");
730 	else
731 		aprint_normal(" EABT");
732 
733 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
734 		aprint_normal(" branch prediction enabled");
735 
736 	aprint_normal("\n");
737 
738 	if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
739 		identify_features(dv);
740 	}
741 
742 	/* Print cache info. */
743 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
744 		print_cache_info(dv, &arm_pcache, 0);
745 	}
746 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
747 		print_cache_info(dv, &arm_scache, 1);
748 	}
749 
750 
751 	switch (cpu_class) {
752 #ifdef CPU_ARM6
753 	case CPU_CLASS_ARM6:
754 #endif
755 #ifdef CPU_ARM7
756 	case CPU_CLASS_ARM7:
757 #endif
758 #ifdef CPU_ARM7TDMI
759 	case CPU_CLASS_ARM7TDMI:
760 #endif
761 #ifdef CPU_ARM8
762 	case CPU_CLASS_ARM8:
763 #endif
764 #ifdef CPU_ARM9
765 	case CPU_CLASS_ARM9TDMI:
766 #endif
767 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
768 	case CPU_CLASS_ARM9ES:
769 	case CPU_CLASS_ARM9EJS:
770 #endif
771 #ifdef CPU_ARM10
772 	case CPU_CLASS_ARM10E:
773 	case CPU_CLASS_ARM10EJ:
774 #endif
775 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
776     defined(CPU_SA1110) || defined(CPU_IXP12X0)
777 	case CPU_CLASS_SA1:
778 #endif
779 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
780     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
781 	case CPU_CLASS_XSCALE:
782 #endif
783 #if defined(CPU_ARM11)
784 	case CPU_CLASS_ARM11J:
785 #endif
786 #if defined(CPU_CORTEX)
787 	case CPU_CLASS_CORTEX:
788 #endif
789 #if defined(CPU_PJ4B)
790 	case CPU_CLASS_PJ4B:
791 #endif
792 #if defined(CPU_FA526)
793 	case CPU_CLASS_ARMV4:
794 #endif
795 		break;
796 	default:
797 		if (cpu_classes[cpu_class].class_option == NULL) {
798 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
799 			     ostype);
800 		} else {
801 			aprint_error_dev(dv, "This kernel does not fully support "
802 			       "this CPU.\n");
803 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
804 			       "correct this.\n", cpu_classes[cpu_class].class_option);
805 		}
806 		break;
807 	}
808 }
809 
810 extern int cpu_instruction_set_attributes[6];
811 extern int cpu_memory_model_features[4];
812 extern int cpu_processor_features[2];
813 extern int cpu_simd_present;
814 extern int cpu_simdex_present;
815 
816 void
817 identify_features(device_t dv)
818 {
819 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
820 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
821 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
822 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
823 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
824 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
825 
826 	cpu_hwdiv_present =
827 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
828 	cpu_simd_present =
829 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
830 	cpu_simdex_present = cpu_simd_present
831 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
832 	cpu_synchprim_present =
833 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
834 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
835 
836 	cpu_memory_model_features[0] = armreg_mmfr0_read();
837 	cpu_memory_model_features[1] = armreg_mmfr1_read();
838 	cpu_memory_model_features[2] = armreg_mmfr2_read();
839 	cpu_memory_model_features[3] = armreg_mmfr3_read();
840 
841 #if 0
842 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
843 		/*
844 		 * Updates to the translation tables do not require a clean
845 		 * to the point of unification to ensure visibility by
846 		 * subsequent translation table walks.
847 		 */
848 		pmap_needs_pte_sync = 0;
849 	}
850 #endif
851 
852 	cpu_processor_features[0] = armreg_pfr0_read();
853 	cpu_processor_features[1] = armreg_pfr1_read();
854 
855 	aprint_debug_dev(dv, "sctlr:  %#x\n", armreg_sctlr_read());
856 	aprint_debug_dev(dv, "actlr:  %#x\n", armreg_auxctl_read());
857 	aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
858 #ifdef MULTIPROCESSOR
859 	aprint_debug_dev(dv, "mpidr:  %#x\n", armreg_mpidr_read());
860 #endif
861 	aprint_debug_dev(dv,
862 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
863 	    cpu_instruction_set_attributes[0],
864 	    cpu_instruction_set_attributes[1],
865 	    cpu_instruction_set_attributes[2],
866 	    cpu_instruction_set_attributes[3],
867 	    cpu_instruction_set_attributes[4],
868 	    cpu_instruction_set_attributes[5]);
869 	aprint_debug_dev(dv,
870 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
871 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
872 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
873 	aprint_debug_dev(dv,
874 	    "pfr: [0]=%#x [1]=%#x\n",
875 	    cpu_processor_features[0], cpu_processor_features[1]);
876 }
877 
878 #ifdef _ARM_ARCH_6
879 int
880 cpu_maxproc_hook(int nmaxproc)
881 {
882 
883 #ifdef ARM_MMU_EXTENDED
884 	return pmap_maxproc_set(nmaxproc);
885 #else
886 	return 0;
887 #endif
888 }
889 #endif
890