xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: cpu.c,v 1.61 2005/12/11 12:16:41 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.61 2005/12/11 12:16:41 christos Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58 
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61 
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66 
67 char cpu_model[256];
68 
69 /* Prototypes */
70 void identify_arm_cpu(struct device *dv, struct cpu_info *);
71 
72 /*
73  * Identify the master (boot) CPU
74  */
75 
76 void
77 cpu_attach(struct device *dv)
78 {
79 	int usearmfpe;
80 
81 	usearmfpe = 1;	/* when compiled in, its enabled by default */
82 
83 	curcpu()->ci_dev = dv;
84 
85 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
86 	    NULL, dv->dv_xname, "arm700swibug");
87 
88 	/* Get the CPU ID from coprocessor 15 */
89 
90 	curcpu()->ci_arm_cpuid = cpu_id();
91 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
92 	curcpu()->ci_arm_cpurev =
93 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
94 
95 	identify_arm_cpu(dv, curcpu());
96 
97 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
98 	    curcpu()->ci_arm_cpurev < 3) {
99 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
100 		       dv->dv_xname);
101 	}
102 
103 #ifdef CPU_ARM8
104 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
105 		int clock = arm8_clock_config(0, 0);
106 		char *fclk;
107 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
108 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
109 		aprint_normal("%s", (clock & 2) ? " sync" : "");
110 		switch ((clock >> 2) & 3) {
111 		case 0:
112 			fclk = "bus clock";
113 			break;
114 		case 1:
115 			fclk = "ref clock";
116 			break;
117 		case 3:
118 			fclk = "pll";
119 			break;
120 		default:
121 			fclk = "illegal";
122 			break;
123 		}
124 		aprint_normal(" fclk source=%s\n", fclk);
125  	}
126 #endif
127 
128 #ifdef ARMFPE
129 	/*
130 	 * Ok now we test for an FPA
131 	 * At this point no floating point emulator has been installed.
132 	 * This means any FP instruction will cause undefined exception.
133 	 * We install a temporay coproc 1 handler which will modify
134 	 * undefined_test if it is called.
135 	 * We then try to read the FP status register. If undefined_test
136 	 * has been decremented then the instruction was not handled by
137 	 * an FPA so we know the FPA is missing. If undefined_test is
138 	 * still 1 then we know the instruction was handled by an FPA.
139 	 * We then remove our test handler and look at the
140 	 * FP status register for identification.
141 	 */
142 
143 	/*
144 	 * Ok if ARMFPE is defined and the boot options request the
145 	 * ARM FPE then it will be installed as the FPE.
146 	 * This is just while I work on integrating the new FPE.
147 	 * It means the new FPE gets installed if compiled int (ARMFPE
148 	 * defined) and also gives me a on/off option when I boot in
149 	 * case the new FPE is causing panics.
150 	 */
151 
152 
153 	if (boot_args)
154 		get_bootconf_option(boot_args, "armfpe",
155 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
156 	if (usearmfpe)
157 		initialise_arm_fpe();
158 #endif
159 }
160 
161 enum cpu_class {
162 	CPU_CLASS_NONE,
163 	CPU_CLASS_ARM2,
164 	CPU_CLASS_ARM2AS,
165 	CPU_CLASS_ARM3,
166 	CPU_CLASS_ARM6,
167 	CPU_CLASS_ARM7,
168 	CPU_CLASS_ARM7TDMI,
169 	CPU_CLASS_ARM8,
170 	CPU_CLASS_ARM9TDMI,
171 	CPU_CLASS_ARM9ES,
172 	CPU_CLASS_ARM10E,
173 	CPU_CLASS_ARM10EJ,
174 	CPU_CLASS_SA1,
175 	CPU_CLASS_XSCALE,
176 	CPU_CLASS_ARM11J
177 };
178 
179 static const char * const generic_steppings[16] = {
180 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
181 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
182 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
183 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
184 };
185 
186 static const char * const sa110_steppings[16] = {
187 	"rev 0",	"step J",	"step K",	"step S",
188 	"step T",	"rev 5",	"rev 6",	"rev 7",
189 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
190 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
191 };
192 
193 static const char * const sa1100_steppings[16] = {
194 	"rev 0",	"step B",	"step C",	"rev 3",
195 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
196 	"step D",	"step E",	"rev 10"	"step G",
197 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
198 };
199 
200 static const char * const sa1110_steppings[16] = {
201 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
202 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
203 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
204 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
205 };
206 
207 static const char * const ixp12x0_steppings[16] = {
208 	"(IXP1200 step A)",		"(IXP1200 step B)",
209 	"rev 2",			"(IXP1200 step C)",
210 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
211 	"(IXP1240 step B)",		"(IXP1250 step B)",
212 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
214 };
215 
216 static const char * const xscale_steppings[16] = {
217 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
218 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
219 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
221 };
222 
223 static const char * const i80321_steppings[16] = {
224 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
225 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
226 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
227 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
228 };
229 
230 static const char * const i80219_steppings[16] = {
231 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
232 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
233 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
234 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
235 };
236 
237 /* Steppings for PXA2[15]0 */
238 static const char * const pxa2x0_steppings[16] = {
239 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
240 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
241 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
242 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
243 };
244 
245 /* Steppings for PXA255/26x.
246  * rev 5: PXA26x B0, rev 6: PXA255 A0
247  */
248 static const char * const pxa255_steppings[16] = {
249 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
250 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
251 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
252 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
253 };
254 
255 /* Stepping for PXA27x */
256 static const char * const pxa27x_steppings[16] = {
257 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
258 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
259 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
260 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
261 };
262 
263 static const char * const ixp425_steppings[16] = {
264 	"step 0",	"rev 1",	"rev 2",	"rev 3",
265 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
266 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
267 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
268 };
269 
270 struct cpuidtab {
271 	u_int32_t	cpuid;
272 	enum		cpu_class cpu_class;
273 	const char	*cpu_name;
274 	const char * const *cpu_steppings;
275 };
276 
277 const struct cpuidtab cpuids[] = {
278 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
279 	  generic_steppings },
280 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
281 	  generic_steppings },
282 
283 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
284 	  generic_steppings },
285 
286 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
287 	  generic_steppings },
288 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
289 	  generic_steppings },
290 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
291 	  generic_steppings },
292 
293 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
294 	  generic_steppings },
295 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
296 	  generic_steppings },
297 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
298 	  generic_steppings },
299 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
300 	  generic_steppings },
301 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
302 	  generic_steppings },
303 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
304 	  generic_steppings },
305 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
306 	  generic_steppings },
307 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
308 	  generic_steppings },
309 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
310 	  generic_steppings },
311 
312 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
313 	  generic_steppings },
314 
315 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
316 	  generic_steppings },
317 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
318 	  generic_steppings },
319 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
320 	  generic_steppings },
321 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
322 	  generic_steppings },
323 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
324 	  generic_steppings },
325 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
326 	  generic_steppings },
327 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
328 	  generic_steppings },
329 
330 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
331 	  generic_steppings },
332 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
333 	  generic_steppings },
334 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
335 	  generic_steppings },
336 
337 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
338 	  sa110_steppings },
339 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
340 	  sa1100_steppings },
341 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
342 	  sa1110_steppings },
343 
344 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
345 	  ixp12x0_steppings },
346 
347 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
348 	  xscale_steppings },
349 
350 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
351 	  i80321_steppings },
352 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
353 	  i80321_steppings },
354 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
355 	  i80321_steppings },
356 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
357 	  i80321_steppings },
358 
359 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
360 	  i80219_steppings },
361 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
362 	  i80219_steppings },
363 
364 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
365 	  pxa27x_steppings },
366 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
367 	  pxa2x0_steppings },
368 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
369 	  pxa2x0_steppings },
370 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
371 	  pxa2x0_steppings },
372 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
373 	  pxa2x0_steppings },
374 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
375 	  pxa255_steppings },
376 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
377 	  pxa2x0_steppings },
378 
379 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
380 	  ixp425_steppings },
381 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
382 	  ixp425_steppings },
383 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
384 	  ixp425_steppings },
385 
386 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S",
387 	  generic_steppings },
388 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S R1",
389 	  generic_steppings },
390 
391 	{ 0, CPU_CLASS_NONE, NULL, NULL }
392 };
393 
394 struct cpu_classtab {
395 	const char	*class_name;
396 	const char	*class_option;
397 };
398 
399 const struct cpu_classtab cpu_classes[] = {
400 	{ "unknown",	NULL },			/* CPU_CLASS_NONE */
401 	{ "ARM2",	"CPU_ARM2" },		/* CPU_CLASS_ARM2 */
402 	{ "ARM2as",	"CPU_ARM250" },		/* CPU_CLASS_ARM2AS */
403 	{ "ARM3",	"CPU_ARM3" },		/* CPU_CLASS_ARM3 */
404 	{ "ARM6",	"CPU_ARM6" },		/* CPU_CLASS_ARM6 */
405 	{ "ARM7",	"CPU_ARM7" },		/* CPU_CLASS_ARM7 */
406 	{ "ARM7TDMI",	"CPU_ARM7TDMI" },	/* CPU_CLASS_ARM7TDMI */
407 	{ "ARM8",	"CPU_ARM8" },		/* CPU_CLASS_ARM8 */
408 	{ "ARM9TDMI",	NULL },			/* CPU_CLASS_ARM9TDMI */
409 	{ "ARM9E-S",	NULL },			/* CPU_CLASS_ARM9ES */
410 	{ "ARM10E",	"CPU_ARM10" },		/* CPU_CLASS_ARM10E */
411 	{ "ARM10EJ",	"CPU_ARM10" },		/* CPU_CLASS_ARM10EJ */
412 	{ "SA-1",	"CPU_SA110" },		/* CPU_CLASS_SA1 */
413 	{ "XScale",	"CPU_XSCALE_..." },	/* CPU_CLASS_XSCALE */
414 	{ "ARM11J",	"CPU_ARM11" },		/* CPU_CLASS_ARM11J */
415 };
416 
417 /*
418  * Report the type of the specified arm processor. This uses the generic and
419  * arm specific information in the CPU structure to identify the processor.
420  * The remaining fields in the CPU structure are filled in appropriately.
421  */
422 
423 static const char * const wtnames[] = {
424 	"write-through",
425 	"write-back",
426 	"write-back",
427 	"**unknown 3**",
428 	"**unknown 4**",
429 	"write-back-locking",		/* XXX XScale-specific? */
430 	"write-back-locking-A",
431 	"write-back-locking-B",
432 	"**unknown 8**",
433 	"**unknown 9**",
434 	"**unknown 10**",
435 	"**unknown 11**",
436 	"**unknown 12**",
437 	"**unknown 13**",
438 	"write-back-locking-C",
439 	"**unknown 15**",
440 };
441 
442 void
443 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
444 {
445 	u_int cpuid;
446 	enum cpu_class cpu_class = CPU_CLASS_NONE;
447 	int i;
448 
449 	cpuid = ci->ci_arm_cpuid;
450 
451 	if (cpuid == 0) {
452 		aprint_error("Processor failed probe - no CPU ID\n");
453 		return;
454 	}
455 
456 	for (i = 0; cpuids[i].cpuid != 0; i++)
457 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
458 			cpu_class = cpuids[i].cpu_class;
459 			sprintf(cpu_model, "%s %s (%s core)",
460 			    cpuids[i].cpu_name,
461 			    cpuids[i].cpu_steppings[cpuid &
462 						    CPU_ID_REVISION_MASK],
463 			    cpu_classes[cpu_class].class_name);
464 			break;
465 		}
466 
467 	if (cpuids[i].cpuid == 0)
468 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
469 
470 	aprint_naive(": %s\n", cpu_model);
471 	aprint_normal(": %s\n", cpu_model);
472 
473 	aprint_normal("%s:", dv->dv_xname);
474 
475 	switch (cpu_class) {
476 	case CPU_CLASS_ARM6:
477 	case CPU_CLASS_ARM7:
478 	case CPU_CLASS_ARM7TDMI:
479 	case CPU_CLASS_ARM8:
480 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
481 			aprint_normal(" IDC disabled");
482 		else
483 			aprint_normal(" IDC enabled");
484 		break;
485 	case CPU_CLASS_ARM9TDMI:
486 	case CPU_CLASS_ARM10E:
487 	case CPU_CLASS_ARM10EJ:
488 	case CPU_CLASS_SA1:
489 	case CPU_CLASS_XSCALE:
490 	case CPU_CLASS_ARM11J:
491 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
492 			aprint_normal(" DC disabled");
493 		else
494 			aprint_normal(" DC enabled");
495 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
496 			aprint_normal(" IC disabled");
497 		else
498 			aprint_normal(" IC enabled");
499 		break;
500 	default:
501 		break;
502 	}
503 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
504 		aprint_normal(" WB disabled");
505 	else
506 		aprint_normal(" WB enabled");
507 
508 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
509 		aprint_normal(" LABT");
510 	else
511 		aprint_normal(" EABT");
512 
513 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
514 		aprint_normal(" branch prediction enabled");
515 
516 	aprint_normal("\n");
517 
518 	/* Print cache info. */
519 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
520 		goto skip_pcache;
521 
522 	if (arm_pcache_unified) {
523 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
524 		    dv->dv_xname, arm_pdcache_size / 1024,
525 		    arm_pdcache_line_size, arm_pdcache_ways,
526 		    wtnames[arm_pcache_type]);
527 	} else {
528 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
529 		    dv->dv_xname, arm_picache_size / 1024,
530 		    arm_picache_line_size, arm_picache_ways);
531 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
532 		    dv->dv_xname, arm_pdcache_size / 1024,
533 		    arm_pdcache_line_size, arm_pdcache_ways,
534 		    wtnames[arm_pcache_type]);
535 	}
536 
537  skip_pcache:
538 
539 	switch (cpu_class) {
540 #ifdef CPU_ARM2
541 	case CPU_CLASS_ARM2:
542 #endif
543 #ifdef CPU_ARM250
544 	case CPU_CLASS_ARM2AS:
545 #endif
546 #ifdef CPU_ARM3
547 	case CPU_CLASS_ARM3:
548 #endif
549 #ifdef CPU_ARM6
550 	case CPU_CLASS_ARM6:
551 #endif
552 #ifdef CPU_ARM7
553 	case CPU_CLASS_ARM7:
554 #endif
555 #ifdef CPU_ARM7TDMI
556 	case CPU_CLASS_ARM7TDMI:
557 #endif
558 #ifdef CPU_ARM8
559 	case CPU_CLASS_ARM8:
560 #endif
561 #ifdef CPU_ARM9
562 	case CPU_CLASS_ARM9TDMI:
563 #endif
564 #ifdef CPU_ARM10
565 	case CPU_CLASS_ARM10E:
566 	case CPU_CLASS_ARM10EJ:
567 #endif
568 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
569     defined(CPU_SA1110) || defined(CPU_IXP12X0)
570 	case CPU_CLASS_SA1:
571 #endif
572 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
573     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
574 	case CPU_CLASS_XSCALE:
575 #endif
576 #ifdef CPU_ARM11
577 	case CPU_CLASS_ARM11J:
578 #endif
579 		break;
580 	default:
581 		if (cpu_classes[cpu_class].class_option != NULL)
582 			aprint_error("%s: %s does not fully support this CPU."
583 			       "\n", dv->dv_xname, ostype);
584 		else {
585 			aprint_error("%s: This kernel does not fully support "
586 			       "this CPU.\n", dv->dv_xname);
587 			aprint_normal("%s: Recompile with \"options %s\" to "
588 			       "correct this.\n", dv->dv_xname,
589 			       cpu_classes[cpu_class].class_option);
590 		}
591 		break;
592 	}
593 
594 }
595 #ifdef MULTIPROCESSOR
596 int
597 cpu_alloc_idlepcb(struct cpu_info *ci)
598 {
599 	vaddr_t uaddr;
600 	struct pcb *pcb;
601 	struct trapframe *tf;
602 	int error;
603 
604 	/*
605 	 * Generate a kernel stack and PCB (in essence, a u-area) for the
606 	 * new CPU.
607 	 */
608 	if (uvm_uarea_alloc(&uaddr)) {
609 		error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE,
610 		    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
611 		if (error)
612 			return error;
613 	}
614 	ci->ci_idlepcb = pcb = (struct pcb *)uaddr;
615 
616 	/*
617 	 * This code is largely derived from cpu_fork(), with which it
618 	 * should perhaps be shared.
619 	 */
620 
621 	/* Copy the pcb */
622 	*pcb = proc0.p_addr->u_pcb;
623 
624 	/* Set up the undefined stack for the process. */
625 	pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP;
626 	pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP;
627 
628 #ifdef STACKCHECKS
629 	/* Fill the undefined stack with a known pattern */
630 	memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
631 	    (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
632 	/* Fill the kernel stack with a known pattern */
633 	memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
634 	    (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
635 #endif	/* STACKCHECKS */
636 
637 	pcb->pcb_tf = tf =
638 	    (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
639 	*tf = *proc0.p_addr->u_pcb.pcb_tf;
640 	return 0;
641 }
642 #endif /* MULTIPROCESSOR */
643 
644 /* End of cpu.c */
645