xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: cpu.c,v 1.114 2016/07/11 14:35:00 kiyohara Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.114 2016/07/11 14:35:00 kiyohara Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 
58 #include <uvm/uvm_extern.h>
59 
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62 
63 extern const char *cpu_arch;
64 
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0;
68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
69 u_int arm_cpu_max = 1;
70 #endif
71 
72 /* Prototypes */
73 void identify_arm_cpu(device_t, struct cpu_info *);
74 void identify_cortex_caches(device_t);
75 void identify_features(device_t);
76 
77 /*
78  * Identify the master (boot) CPU
79  */
80 
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 	const char * const xname = device_xname(dv);
85 	struct cpu_info *ci;
86 
87 	if (id == 0) {
88 		ci = curcpu();
89 
90 		/* Get the CPU ID from coprocessor 15 */
91 
92 		ci->ci_arm_cpuid = cpu_idnum();
93 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 	} else {
96 #ifdef MULTIPROCESSOR
97 		KASSERT(cpu_info[id] == NULL);
98 		ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 		KASSERT(ci != NULL);
100 		ci->ci_cpl = IPL_HIGH;
101 		ci->ci_cpuid = id;
102 		uint32_t mpidr = armreg_mpidr_read();
103 		if (mpidr & MPIDR_MT) {
104 			ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0;
105 			ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1;
106 			ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2;
107 		} else {
108 			ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0;
109 			ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1;
110 		}
111 		ci->ci_data.cpu_core_id = id;
112 		ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
113 		ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
114 		ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
115 		ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
116 		ci->ci_ctrl = cpu_info_store.ci_ctrl;
117 		ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2];
118 		cpu_info[ci->ci_cpuid] = ci;
119 		if ((arm_cpu_hatched & (1 << id)) == 0) {
120 			ci->ci_dev = dv;
121 			dv->dv_private = ci;
122 			aprint_naive(": disabled\n");
123 			aprint_normal(": disabled (unresponsive)\n");
124 			return;
125 		}
126 #else
127 		aprint_naive(": disabled\n");
128 		aprint_normal(": disabled (uniprocessor kernel)\n");
129 		return;
130 #endif
131 	}
132 
133 	ci->ci_dev = dv;
134 	dv->dv_private = ci;
135 
136 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
137 	    NULL, xname, "arm700swibug");
138 
139 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
140 	    NULL, xname, "vector abort");
141 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
142 	    NULL, xname, "terminal abort");
143 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
144 	    NULL, xname, "external linefetch abort (S)");
145 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
146 	    NULL, xname, "external linefetch abort (P)");
147 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
148 	    NULL, xname, "external non-linefetch abort (S)");
149 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
150 	    NULL, xname, "external non-linefetch abort (P)");
151 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
152 	    NULL, xname, "external translation abort (L1)");
153 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
154 	    NULL, xname, "external translation abort (L2)");
155 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
156 	    NULL, xname, "alignment abort (0)");
157 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
158 	    NULL, xname, "alignment abort (1)");
159 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
160 	    NULL, xname, "translation abort (S)");
161 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
162 	    NULL, xname, "translation abort (P)");
163 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
164 	    NULL, xname, "domain abort (S)");
165 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
166 	    NULL, xname, "domain abort (P)");
167 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
168 	    NULL, xname, "permission abort (S)");
169 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
170 	    NULL, xname, "permission abort (P)");
171 	evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
172 	    NULL, xname, "undefined insn traps");
173 	evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
174 	    NULL, xname, "undefined cp15 insn traps");
175 
176 #ifdef MULTIPROCESSOR
177 	/*
178 	 * and we are done if this is a secondary processor.
179 	 */
180 	if (id != 0) {
181 #if 1
182 		aprint_naive("\n");
183 		aprint_normal("\n");
184 #else
185 		aprint_naive(": %s\n", cpu_getmodel());
186 		aprint_normal(": %s\n", cpu_getmodel());
187 #endif
188 		mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 		pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 		return;
193 	}
194 #endif
195 
196 	identify_arm_cpu(dv, ci);
197 
198 #ifdef CPU_STRONGARM
199 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 	    ci->ci_arm_cpurev < 3) {
201 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 	}
203 #endif
204 
205 #ifdef CPU_ARM8
206 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 		int clock = arm8_clock_config(0, 0);
208 		char *fclk;
209 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 		aprint_normal("%s", (clock & 2) ? " sync" : "");
212 		switch ((clock >> 2) & 3) {
213 		case 0:
214 			fclk = "bus clock";
215 			break;
216 		case 1:
217 			fclk = "ref clock";
218 			break;
219 		case 3:
220 			fclk = "pll";
221 			break;
222 		default:
223 			fclk = "illegal";
224 			break;
225 		}
226 		aprint_normal(" fclk source=%s\n", fclk);
227  	}
228 #endif
229 
230 	vfp_attach(ci);		/* XXX SMP */
231 }
232 
233 enum cpu_class {
234 	CPU_CLASS_NONE,
235 	CPU_CLASS_ARM2,
236 	CPU_CLASS_ARM2AS,
237 	CPU_CLASS_ARM3,
238 	CPU_CLASS_ARM6,
239 	CPU_CLASS_ARM7,
240 	CPU_CLASS_ARM7TDMI,
241 	CPU_CLASS_ARM8,
242 	CPU_CLASS_ARM9TDMI,
243 	CPU_CLASS_ARM9ES,
244 	CPU_CLASS_ARM9EJS,
245 	CPU_CLASS_ARM10E,
246 	CPU_CLASS_ARM10EJ,
247 	CPU_CLASS_SA1,
248 	CPU_CLASS_XSCALE,
249 	CPU_CLASS_ARM11J,
250 	CPU_CLASS_ARMV4,
251 	CPU_CLASS_CORTEX,
252 	CPU_CLASS_PJ4B,
253 };
254 
255 static const char * const generic_steppings[16] = {
256 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
257 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
258 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
259 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
260 };
261 
262 static const char * const pN_steppings[16] = {
263 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
264 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
265 };
266 
267 static const char * const sa110_steppings[16] = {
268 	"rev 0",	"step J",	"step K",	"step S",
269 	"step T",	"rev 5",	"rev 6",	"rev 7",
270 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
271 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
272 };
273 
274 static const char * const sa1100_steppings[16] = {
275 	"rev 0",	"step B",	"step C",	"rev 3",
276 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
277 	"step D",	"step E",	"rev 10"	"step G",
278 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
279 };
280 
281 static const char * const sa1110_steppings[16] = {
282 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
283 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
284 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
285 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
286 };
287 
288 static const char * const ixp12x0_steppings[16] = {
289 	"(IXP1200 step A)",		"(IXP1200 step B)",
290 	"rev 2",			"(IXP1200 step C)",
291 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
292 	"(IXP1240 step B)",		"(IXP1250 step B)",
293 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
294 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
295 };
296 
297 static const char * const xscale_steppings[16] = {
298 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
299 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
300 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
301 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
302 };
303 
304 static const char * const i80321_steppings[16] = {
305 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
306 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
307 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
308 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
309 };
310 
311 static const char * const i80219_steppings[16] = {
312 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
313 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
314 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
315 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
316 };
317 
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
321 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
322 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
323 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
324 };
325 
326 /* Steppings for PXA255/26x.
327  * rev 5: PXA26x B0, rev 6: PXA255 A0
328  */
329 static const char * const pxa255_steppings[16] = {
330 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
331 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
332 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
333 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
334 };
335 
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
339 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
340 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
341 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
342 };
343 
344 static const char * const ixp425_steppings[16] = {
345 	"step 0",	"rev 1",	"rev 2",	"rev 3",
346 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
347 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
348 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
349 };
350 
351 struct cpuidtab {
352 	uint32_t	cpuid;
353 	enum		cpu_class cpu_class;
354 	const char	*cpu_classname;
355 	const char * const *cpu_steppings;
356 	char		cpu_arch[8];
357 };
358 
359 const struct cpuidtab cpuids[] = {
360 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
361 	  generic_steppings, "2" },
362 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
363 	  generic_steppings, "2" },
364 
365 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
366 	  generic_steppings, "2A" },
367 
368 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
369 	  generic_steppings, "3" },
370 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
371 	  generic_steppings, "3" },
372 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
373 	  generic_steppings, "3" },
374 
375 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
376 	  generic_steppings, "3" },
377 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
378 	  generic_steppings, "3" },
379 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
380 	  generic_steppings, "3" },
381 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
382 	  generic_steppings, "3" },
383 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
384 	  generic_steppings, "3" },
385 
386 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
387 	  generic_steppings, "4" },
388 
389 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
390 	  sa110_steppings, "4" },
391 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
392 	  sa1100_steppings, "4" },
393 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
394 	  sa1110_steppings, "4" },
395 
396 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
397 	  generic_steppings, "4" },
398 
399 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
400 	  ixp12x0_steppings, "4" },
401 
402 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
403 	  generic_steppings, "4T" },
404 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
405 	  generic_steppings, "4T" },
406 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 	  generic_steppings, "4T" },
408 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 	  generic_steppings, "4T" },
410 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
411 	  generic_steppings, "4T" },
412 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
413 	  generic_steppings, "4T" },
414 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
415 	  generic_steppings, "4T" },
416 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
417 	  generic_steppings, "4T" },
418 
419 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
420 	  generic_steppings, "5TE" },
421 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
422 	  generic_steppings, "5TE" },
423 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
424 	  generic_steppings, "5TE" },
425 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
426 	  generic_steppings, "5TE" },
427 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
428 	  generic_steppings, "5TE" },
429 
430 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
431 	  xscale_steppings, "5TE" },
432 
433 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
434 	  i80321_steppings, "5TE" },
435 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
436 	  i80321_steppings, "5TE" },
437 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
438 	  i80321_steppings, "5TE" },
439 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
440 	  i80321_steppings, "5TE" },
441 
442 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
443 	  i80219_steppings, "5TE" },
444 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
445 	  i80219_steppings, "5TE" },
446 
447 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
448 	  pxa27x_steppings, "5TE" },
449 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
450 	  pxa2x0_steppings, "5TE" },
451 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
452 	  pxa2x0_steppings, "5TE" },
453 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
454 	  pxa2x0_steppings, "5TE" },
455 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
456 	  pxa2x0_steppings, "5TE" },
457 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
458 	  pxa255_steppings, "5TE" },
459 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
460 	  pxa2x0_steppings, "5TE" },
461 
462 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
463 	  ixp425_steppings, "5TE" },
464 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
465 	  ixp425_steppings, "5TE" },
466 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
467 	  ixp425_steppings, "5TE" },
468 
469 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
470 	  generic_steppings, "5TE" },
471 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
472 	  generic_steppings, "5TE" },
473 
474 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
475 	  generic_steppings, "5TEJ" },
476 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
477 	  generic_steppings, "5TEJ" },
478 
479 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
480 	  pN_steppings, "6J" },
481 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
482 	  pN_steppings, "6J" },
483 #if 0
484 	/* The ARM1156T2-S only has a memory protection unit */
485 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
486 	  pN_steppings, "6T2" },
487 #endif
488 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
489 	  pN_steppings, "6ZK" },
490 
491 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
492 	  generic_steppings, "6K" },
493 
494 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
495 	  pN_steppings, "7A" },
496 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
497 	  pN_steppings, "7A" },
498 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
499 	  pN_steppings, "7A" },
500 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
501 	  pN_steppings, "7A" },
502 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
503 	  pN_steppings, "7A" },
504 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
505 	  pN_steppings, "7A" },
506 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
507 	  pN_steppings, "7A" },
508 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
509 	  pN_steppings, "7A" },
510 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
511 	  pN_steppings, "7A" },
512 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
513 	  pN_steppings, "7A" },
514 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
515 	  pN_steppings, "7A" },
516 	{ CPU_ID_CORTEXA17R1,	CPU_CLASS_CORTEX,	"Cortex-A17 r1",
517 	  pN_steppings, "7A" },
518 	{ CPU_ID_CORTEXA53R0,	CPU_CLASS_CORTEX,	"Cortex-A53 r0",
519 	  pN_steppings, "8A" },
520 	{ CPU_ID_CORTEXA57R0,	CPU_CLASS_CORTEX,	"Cortex-A57 r0",
521 	  pN_steppings, "8A" },
522 	{ CPU_ID_CORTEXA57R1,	CPU_CLASS_CORTEX,	"Cortex-A57 r1",
523 	  pN_steppings, "8A" },
524 	{ CPU_ID_CORTEXA72R0,	CPU_CLASS_CORTEX,	"Cortex-A72 r0",
525 	  pN_steppings, "8A" },
526 
527 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
528 	  generic_steppings },
529 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
530 	  generic_steppings },
531 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
532 	  generic_steppings },
533 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
534 	  generic_steppings },
535 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
536 	  generic_steppings },
537 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
538 	  generic_steppings },
539 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
540 	  generic_steppings },
541 
542 
543 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
544 };
545 
546 struct cpu_classtab {
547 	const char	*class_name;
548 	const char	*class_option;
549 };
550 
551 const struct cpu_classtab cpu_classes[] = {
552 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
553 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
554 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
555 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
556 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
557 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
558 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
559 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
560 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
561 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
562 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
563 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
564 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
565 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
566 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
567 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
568 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
569 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
570 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
571 };
572 
573 /*
574  * Report the type of the specified arm processor. This uses the generic and
575  * arm specific information in the CPU structure to identify the processor.
576  * The remaining fields in the CPU structure are filled in appropriately.
577  */
578 
579 static const char * const wtnames[] = {
580 	"write-through",
581 	"write-back",
582 	"write-back",
583 	"**unknown 3**",
584 	"**unknown 4**",
585 	"write-back-locking",		/* XXX XScale-specific? */
586 	"write-back-locking-A",
587 	"write-back-locking-B",
588 	"**unknown 8**",
589 	"**unknown 9**",
590 	"**unknown 10**",
591 	"**unknown 11**",
592 	"write-back",
593 	"write-back-locking-line",
594 	"write-back-locking-C",
595 	"write-back-locking-D",
596 };
597 
598 static void
599 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
600 {
601 	if (info->cache_unified) {
602 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
603 		    info->dcache_size / 1024,
604 		    info->dcache_line_size, info->dcache_ways,
605 		    wtnames[info->cache_type], level + 1,
606 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
607 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
608 	} else {
609 		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
610 		    info->icache_size / 1024,
611 		    info->icache_line_size, info->icache_ways, level + 1,
612 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
613 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
614 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
615 		    info->dcache_size / 1024,
616 		    info->dcache_line_size, info->dcache_ways,
617 		    wtnames[info->cache_type], level + 1,
618 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
619 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
620 	}
621 }
622 
623 static enum cpu_class
624 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
625 {
626 	enum cpu_class cpu_class = CPU_CLASS_NONE;
627 	for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
628 		if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
629 			const char *steppingstr =
630 			    id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
631 			cpu_arch = id->cpu_arch;
632 			cpu_class = id->cpu_class;
633 			snprintf(buf, len, "%s%s%s (%s V%s core)",
634 			    id->cpu_classname,
635 			    steppingstr[0] == '*' ? "" : " ",
636 			    &steppingstr[steppingstr[0] == '*'],
637 			    cpu_classes[cpu_class].class_name,
638 			    cpu_arch);
639 			return cpu_class;
640 		}
641 	}
642 
643 	snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
644 	return cpu_class;
645 }
646 
647 void
648 identify_arm_cpu(device_t dv, struct cpu_info *ci)
649 {
650 	const uint32_t arm_cpuid = ci->ci_arm_cpuid;
651 	const char * const xname = device_xname(dv);
652 	char model[128];
653 
654 	if (arm_cpuid == 0) {
655 		aprint_error("Processor failed probe - no CPU ID\n");
656 		return;
657 	}
658 
659 	const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
660 	     model, sizeof(model));
661 	if (ci->ci_cpuid == 0) {
662 		cpu_setmodel("%s", model);
663 	}
664 
665 	if (ci->ci_data.cpu_cc_freq != 0) {
666 		char freqbuf[10];
667 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
668 		    "Hz", 1000);
669 
670 		aprint_naive(": %s %s\n", freqbuf, model);
671 		aprint_normal(": %s %s\n", freqbuf, model);
672 	} else {
673 		aprint_naive(": %s\n", model);
674 		aprint_normal(": %s\n", model);
675 	}
676 
677 	aprint_normal("%s:", xname);
678 
679 	switch (cpu_class) {
680 	case CPU_CLASS_ARM6:
681 	case CPU_CLASS_ARM7:
682 	case CPU_CLASS_ARM7TDMI:
683 	case CPU_CLASS_ARM8:
684 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
685 			aprint_normal(" IDC disabled");
686 		else
687 			aprint_normal(" IDC enabled");
688 		break;
689 	case CPU_CLASS_ARM9TDMI:
690 	case CPU_CLASS_ARM9ES:
691 	case CPU_CLASS_ARM9EJS:
692 	case CPU_CLASS_ARM10E:
693 	case CPU_CLASS_ARM10EJ:
694 	case CPU_CLASS_SA1:
695 	case CPU_CLASS_XSCALE:
696 	case CPU_CLASS_ARM11J:
697 	case CPU_CLASS_ARMV4:
698 	case CPU_CLASS_CORTEX:
699 	case CPU_CLASS_PJ4B:
700 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
701 			aprint_normal(" DC disabled");
702 		else
703 			aprint_normal(" DC enabled");
704 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
705 			aprint_normal(" IC disabled");
706 		else
707 			aprint_normal(" IC enabled");
708 		break;
709 	default:
710 		break;
711 	}
712 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
713 		aprint_normal(" WB disabled");
714 	else
715 		aprint_normal(" WB enabled");
716 
717 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
718 		aprint_normal(" LABT");
719 	else
720 		aprint_normal(" EABT");
721 
722 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
723 		aprint_normal(" branch prediction enabled");
724 
725 	aprint_normal("\n");
726 
727 	if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
728 		identify_features(dv);
729 	}
730 
731 	/* Print cache info. */
732 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
733 		print_cache_info(dv, &arm_pcache, 0);
734 	}
735 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
736 		print_cache_info(dv, &arm_scache, 1);
737 	}
738 
739 
740 	switch (cpu_class) {
741 #ifdef CPU_ARM2
742 	case CPU_CLASS_ARM2:
743 #endif
744 #ifdef CPU_ARM250
745 	case CPU_CLASS_ARM2AS:
746 #endif
747 #ifdef CPU_ARM3
748 	case CPU_CLASS_ARM3:
749 #endif
750 #ifdef CPU_ARM6
751 	case CPU_CLASS_ARM6:
752 #endif
753 #ifdef CPU_ARM7
754 	case CPU_CLASS_ARM7:
755 #endif
756 #ifdef CPU_ARM7TDMI
757 	case CPU_CLASS_ARM7TDMI:
758 #endif
759 #ifdef CPU_ARM8
760 	case CPU_CLASS_ARM8:
761 #endif
762 #ifdef CPU_ARM9
763 	case CPU_CLASS_ARM9TDMI:
764 #endif
765 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
766 	case CPU_CLASS_ARM9ES:
767 	case CPU_CLASS_ARM9EJS:
768 #endif
769 #ifdef CPU_ARM10
770 	case CPU_CLASS_ARM10E:
771 	case CPU_CLASS_ARM10EJ:
772 #endif
773 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
774     defined(CPU_SA1110) || defined(CPU_IXP12X0)
775 	case CPU_CLASS_SA1:
776 #endif
777 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
778     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
779 	case CPU_CLASS_XSCALE:
780 #endif
781 #if defined(CPU_ARM11)
782 	case CPU_CLASS_ARM11J:
783 #endif
784 #if defined(CPU_CORTEX)
785 	case CPU_CLASS_CORTEX:
786 #endif
787 #if defined(CPU_PJ4B)
788 	case CPU_CLASS_PJ4B:
789 #endif
790 #if defined(CPU_FA526)
791 	case CPU_CLASS_ARMV4:
792 #endif
793 		break;
794 	default:
795 		if (cpu_classes[cpu_class].class_option == NULL) {
796 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
797 			     ostype);
798 		} else {
799 			aprint_error_dev(dv, "This kernel does not fully support "
800 			       "this CPU.\n");
801 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
802 			       "correct this.\n", cpu_classes[cpu_class].class_option);
803 		}
804 		break;
805 	}
806 }
807 
808 extern int cpu_instruction_set_attributes[6];
809 extern int cpu_memory_model_features[4];
810 extern int cpu_processor_features[2];
811 extern int cpu_simd_present;
812 extern int cpu_simdex_present;
813 
814 void
815 identify_features(device_t dv)
816 {
817 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
818 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
819 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
820 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
821 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
822 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
823 
824 	cpu_hwdiv_present =
825 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
826 	cpu_simd_present =
827 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
828 	cpu_simdex_present = cpu_simd_present
829 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
830 	cpu_synchprim_present =
831 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
832 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
833 
834 	cpu_memory_model_features[0] = armreg_mmfr0_read();
835 	cpu_memory_model_features[1] = armreg_mmfr1_read();
836 	cpu_memory_model_features[2] = armreg_mmfr2_read();
837 	cpu_memory_model_features[3] = armreg_mmfr3_read();
838 
839 #if 0
840 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
841 		/*
842 		 * Updates to the translation tables do not require a clean
843 		 * to the point of unification to ensure visibility by
844 		 * subsequent translation table walks.
845 		 */
846 		pmap_needs_pte_sync = 0;
847 	}
848 #endif
849 
850 	cpu_processor_features[0] = armreg_pfr0_read();
851 	cpu_processor_features[1] = armreg_pfr1_read();
852 
853 	aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read());
854 	aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read());
855 	aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read());
856 #ifdef MULTIPROCESSOR
857 	aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read());
858 #endif
859 	aprint_debug_dev(dv,
860 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
861 	    cpu_instruction_set_attributes[0],
862 	    cpu_instruction_set_attributes[1],
863 	    cpu_instruction_set_attributes[2],
864 	    cpu_instruction_set_attributes[3],
865 	    cpu_instruction_set_attributes[4],
866 	    cpu_instruction_set_attributes[5]);
867 	aprint_debug_dev(dv,
868 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
869 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
870 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
871 	aprint_debug_dev(dv,
872 	    "pfr: [0]=%#x [1]=%#x\n",
873 	    cpu_processor_features[0], cpu_processor_features[1]);
874 }
875