1 /* $NetBSD: cpu.c,v 1.51 2003/06/23 11:01:06 martin Exp $ */ 2 3 /* 4 * Copyright (c) 1995 Mark Brinicombe. 5 * Copyright (c) 1995 Brini. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Brini. 19 * 4. The name of the company nor the name of the author may be used to 20 * endorse or promote products derived from this software without specific 21 * prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * RiscBSD kernel project 36 * 37 * cpu.c 38 * 39 * Probing and configuration for the master cpu 40 * 41 * Created : 10/10/95 42 */ 43 44 #include "opt_armfpe.h" 45 #include "opt_multiprocessor.h" 46 47 #include <sys/param.h> 48 49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.51 2003/06/23 11:01:06 martin Exp $"); 50 51 #include <sys/systm.h> 52 #include <sys/malloc.h> 53 #include <sys/device.h> 54 #include <sys/proc.h> 55 #include <sys/conf.h> 56 #include <uvm/uvm_extern.h> 57 #include <machine/cpu.h> 58 59 #include <arm/cpuconf.h> 60 #include <arm/undefined.h> 61 62 #ifdef ARMFPE 63 #include <machine/bootconfig.h> /* For boot args */ 64 #include <arm/fpe-arm/armfpe.h> 65 #endif 66 67 char cpu_model[256]; 68 69 /* Prototypes */ 70 void identify_arm_cpu(struct device *dv, struct cpu_info *); 71 72 /* 73 * Identify the master (boot) CPU 74 */ 75 76 void 77 cpu_attach(struct device *dv) 78 { 79 int usearmfpe; 80 81 usearmfpe = 1; /* when compiled in, its enabled by default */ 82 83 curcpu()->ci_dev = dv; 84 85 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC, 86 NULL, dv->dv_xname, "arm700swibug"); 87 88 /* Get the cpu ID from coprocessor 15 */ 89 90 curcpu()->ci_arm_cpuid = cpu_id(); 91 curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK; 92 curcpu()->ci_arm_cpurev = 93 curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK; 94 95 identify_arm_cpu(dv, curcpu()); 96 97 if (curcpu()->ci_arm_cputype == CPU_ID_SA110 && 98 curcpu()->ci_arm_cpurev < 3) { 99 aprint_normal("%s: SA-110 with bugged STM^ instruction\n", 100 dv->dv_xname); 101 } 102 103 #ifdef CPU_ARM8 104 if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) { 105 int clock = arm8_clock_config(0, 0); 106 char *fclk; 107 aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock); 108 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : ""); 109 aprint_normal("%s", (clock & 2) ? " sync" : ""); 110 switch ((clock >> 2) & 3) { 111 case 0: 112 fclk = "bus clock"; 113 break; 114 case 1: 115 fclk = "ref clock"; 116 break; 117 case 3: 118 fclk = "pll"; 119 break; 120 default: 121 fclk = "illegal"; 122 break; 123 } 124 aprint_normal(" fclk source=%s\n", fclk); 125 } 126 #endif 127 128 #ifdef ARMFPE 129 /* 130 * Ok now we test for an FPA 131 * At this point no floating point emulator has been installed. 132 * This means any FP instruction will cause undefined exception. 133 * We install a temporay coproc 1 handler which will modify 134 * undefined_test if it is called. 135 * We then try to read the FP status register. If undefined_test 136 * has been decremented then the instruction was not handled by 137 * an FPA so we know the FPA is missing. If undefined_test is 138 * still 1 then we know the instruction was handled by an FPA. 139 * We then remove our test handler and look at the 140 * FP status register for identification. 141 */ 142 143 /* 144 * Ok if ARMFPE is defined and the boot options request the 145 * ARM FPE then it will be installed as the FPE. 146 * This is just while I work on integrating the new FPE. 147 * It means the new FPE gets installed if compiled int (ARMFPE 148 * defined) and also gives me a on/off option when I boot in 149 * case the new FPE is causing panics. 150 */ 151 152 153 if (boot_args) 154 get_bootconf_option(boot_args, "armfpe", 155 BOOTOPT_TYPE_BOOLEAN, &usearmfpe); 156 if (usearmfpe) 157 initialise_arm_fpe(); 158 #endif 159 } 160 161 enum cpu_class { 162 CPU_CLASS_NONE, 163 CPU_CLASS_ARM2, 164 CPU_CLASS_ARM2AS, 165 CPU_CLASS_ARM3, 166 CPU_CLASS_ARM6, 167 CPU_CLASS_ARM7, 168 CPU_CLASS_ARM7TDMI, 169 CPU_CLASS_ARM8, 170 CPU_CLASS_ARM9TDMI, 171 CPU_CLASS_ARM9ES, 172 CPU_CLASS_SA1, 173 CPU_CLASS_XSCALE, 174 CPU_CLASS_ARM10E 175 }; 176 177 static const char * const generic_steppings[16] = { 178 "rev 0", "rev 1", "rev 2", "rev 3", 179 "rev 4", "rev 5", "rev 6", "rev 7", 180 "rev 8", "rev 9", "rev 10", "rev 11", 181 "rev 12", "rev 13", "rev 14", "rev 15", 182 }; 183 184 static const char * const sa110_steppings[16] = { 185 "rev 0", "step J", "step K", "step S", 186 "step T", "rev 5", "rev 6", "rev 7", 187 "rev 8", "rev 9", "rev 10", "rev 11", 188 "rev 12", "rev 13", "rev 14", "rev 15", 189 }; 190 191 static const char * const sa1100_steppings[16] = { 192 "rev 0", "step B", "step C", "rev 3", 193 "rev 4", "rev 5", "rev 6", "rev 7", 194 "step D", "step E", "rev 10" "step G", 195 "rev 12", "rev 13", "rev 14", "rev 15", 196 }; 197 198 static const char * const sa1110_steppings[16] = { 199 "step A-0", "rev 1", "rev 2", "rev 3", 200 "step B-0", "step B-1", "step B-2", "step B-3", 201 "step B-4", "step B-5", "rev 10", "rev 11", 202 "rev 12", "rev 13", "rev 14", "rev 15", 203 }; 204 205 static const char * const ixp12x0_steppings[16] = { 206 "(IXP1200 step A)", "(IXP1200 step B)", 207 "rev 2", "(IXP1200 step C)", 208 "(IXP1200 step D)", "(IXP1240/1250 step A)", 209 "(IXP1240 step B)", "(IXP1250 step B)", 210 "rev 8", "rev 9", "rev 10", "rev 11", 211 "rev 12", "rev 13", "rev 14", "rev 15", 212 }; 213 214 static const char * const xscale_steppings[16] = { 215 "step A-0", "step A-1", "step B-0", "step C-0", 216 "step D-0", "rev 5", "rev 6", "rev 7", 217 "rev 8", "rev 9", "rev 10", "rev 11", 218 "rev 12", "rev 13", "rev 14", "rev 15", 219 }; 220 221 static const char * const i80321_steppings[16] = { 222 "step A-0", "step B-0", "rev 2", "rev 3", 223 "rev 4", "rev 5", "rev 6", "rev 7", 224 "rev 8", "rev 9", "rev 10", "rev 11", 225 "rev 12", "rev 13", "rev 14", "rev 15", 226 }; 227 228 static const char * const pxa2x0_steppings[16] = { 229 "step A-0", "step A-1", "step B-0", "step B-1", 230 "step B-2", "step C-0", "rev 6", "rev 7", 231 "rev 8", "rev 9", "rev 10", "rev 11", 232 "rev 12", "rev 13", "rev 14", "rev 15", 233 }; 234 235 static const char * const ixp425_steppings[16] = { 236 "step 0", "rev 1", "rev 2", "rev 3", 237 "rev 4", "rev 5", "rev 6", "rev 7", 238 "rev 8", "rev 9", "rev 10", "rev 11", 239 "rev 12", "rev 13", "rev 14", "rev 15", 240 }; 241 242 struct cpuidtab { 243 u_int32_t cpuid; 244 enum cpu_class cpu_class; 245 const char *cpu_name; 246 const char * const *cpu_steppings; 247 }; 248 249 const struct cpuidtab cpuids[] = { 250 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2", 251 generic_steppings }, 252 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250", 253 generic_steppings }, 254 255 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3", 256 generic_steppings }, 257 258 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600", 259 generic_steppings }, 260 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610", 261 generic_steppings }, 262 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620", 263 generic_steppings }, 264 265 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700", 266 generic_steppings }, 267 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710", 268 generic_steppings }, 269 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500", 270 generic_steppings }, 271 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a", 272 generic_steppings }, 273 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE", 274 generic_steppings }, 275 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T", 276 generic_steppings }, 277 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T", 278 generic_steppings }, 279 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)", 280 generic_steppings }, 281 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)", 282 generic_steppings }, 283 284 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810", 285 generic_steppings }, 286 287 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T", 288 generic_steppings }, 289 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T", 290 generic_steppings }, 291 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T", 292 generic_steppings }, 293 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S", 294 generic_steppings }, 295 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S", 296 generic_steppings }, 297 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S", 298 generic_steppings }, 299 300 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110", 301 sa110_steppings }, 302 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100", 303 sa1100_steppings }, 304 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110", 305 sa1110_steppings }, 306 307 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200", 308 ixp12x0_steppings }, 309 310 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200", 311 xscale_steppings }, 312 313 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz", 314 i80321_steppings }, 315 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz", 316 i80321_steppings }, 317 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz", 318 i80321_steppings }, 319 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz", 320 i80321_steppings }, 321 322 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250", 323 pxa2x0_steppings }, 324 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210", 325 pxa2x0_steppings }, 326 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250", 327 pxa2x0_steppings }, 328 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210", 329 pxa2x0_steppings }, 330 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA250", 331 pxa2x0_steppings }, 332 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210", 333 pxa2x0_steppings }, 334 335 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz", 336 ixp425_steppings }, 337 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz", 338 ixp425_steppings }, 339 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz", 340 ixp425_steppings }, 341 342 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022ES", 343 generic_steppings }, 344 345 { 0, CPU_CLASS_NONE, NULL, NULL } 346 }; 347 348 struct cpu_classtab { 349 const char *class_name; 350 const char *class_option; 351 }; 352 353 const struct cpu_classtab cpu_classes[] = { 354 { "unknown", NULL }, /* CPU_CLASS_NONE */ 355 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */ 356 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */ 357 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */ 358 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */ 359 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */ 360 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */ 361 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */ 362 { "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */ 363 { "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */ 364 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */ 365 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */ 366 { "ARM10E", NULL }, /* CPU_CLASS_ARM10E */ 367 }; 368 369 /* 370 * Report the type of the specified arm processor. This uses the generic and 371 * arm specific information in the cpu structure to identify the processor. 372 * The remaining fields in the cpu structure are filled in appropriately. 373 */ 374 375 static const char * const wtnames[] = { 376 "write-through", 377 "write-back", 378 "write-back", 379 "**unknown 3**", 380 "**unknown 4**", 381 "write-back-locking", /* XXX XScale-specific? */ 382 "write-back-locking-A", 383 "write-back-locking-B", 384 "**unknown 8**", 385 "**unknown 9**", 386 "**unknown 10**", 387 "**unknown 11**", 388 "**unknown 12**", 389 "**unknown 13**", 390 "**unknown 14**", 391 "**unknown 15**", 392 }; 393 394 void 395 identify_arm_cpu(struct device *dv, struct cpu_info *ci) 396 { 397 u_int cpuid; 398 enum cpu_class cpu_class; 399 int i; 400 401 cpuid = ci->ci_arm_cpuid; 402 403 if (cpuid == 0) { 404 aprint_error("Processor failed probe - no CPU ID\n"); 405 return; 406 } 407 408 for (i = 0; cpuids[i].cpuid != 0; i++) 409 if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) { 410 cpu_class = cpuids[i].cpu_class; 411 sprintf(cpu_model, "%s %s (%s core)", 412 cpuids[i].cpu_name, 413 cpuids[i].cpu_steppings[cpuid & 414 CPU_ID_REVISION_MASK], 415 cpu_classes[cpu_class].class_name); 416 break; 417 } 418 419 if (cpuids[i].cpuid == 0) 420 sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid); 421 422 aprint_naive(": %s\n", cpu_model); 423 aprint_normal(": %s\n", cpu_model); 424 425 aprint_normal("%s:", dv->dv_xname); 426 427 switch (cpu_class) { 428 case CPU_CLASS_ARM6: 429 case CPU_CLASS_ARM7: 430 case CPU_CLASS_ARM7TDMI: 431 case CPU_CLASS_ARM8: 432 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0) 433 aprint_normal(" IDC disabled"); 434 else 435 aprint_normal(" IDC enabled"); 436 break; 437 case CPU_CLASS_ARM9TDMI: 438 case CPU_CLASS_SA1: 439 case CPU_CLASS_XSCALE: 440 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0) 441 aprint_normal(" DC disabled"); 442 else 443 aprint_normal(" DC enabled"); 444 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0) 445 aprint_normal(" IC disabled"); 446 else 447 aprint_normal(" IC enabled"); 448 break; 449 default: 450 break; 451 } 452 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0) 453 aprint_normal(" WB disabled"); 454 else 455 aprint_normal(" WB enabled"); 456 457 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE) 458 aprint_normal(" LABT"); 459 else 460 aprint_normal(" EABT"); 461 462 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE) 463 aprint_normal(" branch prediction enabled"); 464 465 aprint_normal("\n"); 466 467 /* Print cache info. */ 468 if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0) 469 goto skip_pcache; 470 471 if (arm_pcache_unified) { 472 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n", 473 dv->dv_xname, arm_pdcache_size / 1024, 474 arm_pdcache_line_size, arm_pdcache_ways, 475 wtnames[arm_pcache_type]); 476 } else { 477 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n", 478 dv->dv_xname, arm_picache_size / 1024, 479 arm_picache_line_size, arm_picache_ways); 480 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n", 481 dv->dv_xname, arm_pdcache_size / 1024, 482 arm_pdcache_line_size, arm_pdcache_ways, 483 wtnames[arm_pcache_type]); 484 } 485 486 skip_pcache: 487 488 switch (cpu_class) { 489 #ifdef CPU_ARM2 490 case CPU_CLASS_ARM2: 491 #endif 492 #ifdef CPU_ARM250 493 case CPU_CLASS_ARM2AS: 494 #endif 495 #ifdef CPU_ARM3 496 case CPU_CLASS_ARM3: 497 #endif 498 #ifdef CPU_ARM6 499 case CPU_CLASS_ARM6: 500 #endif 501 #ifdef CPU_ARM7 502 case CPU_CLASS_ARM7: 503 #endif 504 #ifdef CPU_ARM7TDMI 505 case CPU_CLASS_ARM7TDMI: 506 #endif 507 #ifdef CPU_ARM8 508 case CPU_CLASS_ARM8: 509 #endif 510 #ifdef CPU_ARM9 511 case CPU_CLASS_ARM9TDMI: 512 #endif 513 #if defined(CPU_SA110) || defined(CPU_SA1100) || \ 514 defined(CPU_SA1110) || defined(CPU_IXP12X0) 515 case CPU_CLASS_SA1: 516 #endif 517 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ 518 defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) 519 case CPU_CLASS_XSCALE: 520 #endif 521 break; 522 default: 523 if (cpu_classes[cpu_class].class_option != NULL) 524 aprint_error("%s: %s does not fully support this CPU." 525 "\n", dv->dv_xname, ostype); 526 else { 527 aprint_error("%s: This kernel does not fully support " 528 "this CPU.\n", dv->dv_xname); 529 aprint_normal("%s: Recompile with \"options %s\" to " 530 "correct this.\n", dv->dv_xname, 531 cpu_classes[cpu_class].class_option); 532 } 533 break; 534 } 535 536 } 537 #ifdef MULTIPROCESSOR 538 int 539 cpu_alloc_idlepcb(struct cpu_info *ci) 540 { 541 vaddr_t uaddr; 542 struct pcb *pcb; 543 struct trapframe *tf; 544 int error; 545 546 /* 547 * Generate a kernel stack and PCB (in essence, a u-area) for the 548 * new CPU. 549 */ 550 if (uvm_uarea_alloc(&uaddr)) { 551 error = uvm_fault_wire(kernel_map, uaddr, uaddr + USPACE, 552 VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE); 553 if (error) 554 return error; 555 } 556 ci->ci_idlepcb = pcb = (struct pcb *)uaddr; 557 558 /* 559 * This code is largely derived from cpu_fork(), with which it 560 * should perhaps be shared. 561 */ 562 563 /* Copy the pcb */ 564 *pcb = proc0.p_addr->u_pcb; 565 566 /* Set up the undefined stack for the process. */ 567 pcb->pcb_un.un_32.pcb32_und_sp = uaddr + USPACE_UNDEF_STACK_TOP; 568 pcb->pcb_un.un_32.pcb32_sp = uaddr + USPACE_SVC_STACK_TOP; 569 570 #ifdef STACKCHECKS 571 /* Fill the undefined stack with a known pattern */ 572 memset(((u_char *)uaddr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd, 573 (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM)); 574 /* Fill the kernel stack with a known pattern */ 575 memset(((u_char *)uaddr) + USPACE_SVC_STACK_BOTTOM, 0xdd, 576 (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM)); 577 #endif /* STACKCHECKS */ 578 579 pcb->pcb_tf = tf = 580 (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1; 581 *tf = *proc0.p_addr->u_pcb.pcb_tf; 582 return 0; 583 } 584 #endif /* MULTIPROCESSOR */ 585 586 /* End of cpu.c */ 587