xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /*	$NetBSD: cpu.c,v 1.153 2022/03/03 06:26:05 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_cputypes.h"
46 #include "opt_multiprocessor.h"
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.153 2022/03/03 06:26:05 riastradh Exp $");
50 
51 #include <sys/param.h>
52 
53 #include <sys/conf.h>
54 #include <sys/cpu.h>
55 #include <sys/device.h>
56 #include <sys/kmem.h>
57 #include <sys/proc.h>
58 #include <sys/reboot.h>
59 #include <sys/systm.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <arm/locore.h>
64 #include <arm/undefined.h>
65 #include <arm/cpu_topology.h>
66 
67 extern const char *cpu_arch;
68 
69 #ifdef MULTIPROCESSOR
70 #ifdef MPDEBUG
71 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
72 #endif
73 
74 #endif
75 
76 /* Prototypes */
77 void identify_arm_cpu(device_t, struct cpu_info *);
78 void identify_features(device_t, struct cpu_info *);
79 void identify_cortex_caches(device_t);
80 
81 /*
82  * Identify the master (boot) CPU
83  */
84 
85 void
86 cpu_attach(device_t dv, cpuid_t id)
87 {
88 	const char * const xname = device_xname(dv);
89 	const int unit = device_unit(dv);
90 	struct cpu_info *ci;
91 
92 	if (unit == 0) {
93 		ci = curcpu();
94 
95 		/* Read SCTLR from cpu */
96 		ci->ci_ctrl = cpu_control(0, 0);
97 
98 		/* Get the CPU ID from coprocessor 15 */
99 		ci->ci_cpuid = id;
100 		ci->ci_arm_cpuid = cpu_idnum();
101 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
102 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
103 
104 		/*
105 		 * Get other sysregs for BP. APs information is grabbed in
106 		 * cpu_init_secondary_processor.
107 		 */
108 		ci->ci_actlr = armreg_auxctl_read();
109 		ci->ci_revidr = armreg_revidr_read();
110 	} else {
111 #ifdef MULTIPROCESSOR
112 		if ((boothowto & RB_MD1) != 0) {
113 			aprint_naive("\n");
114 			aprint_normal(": multiprocessor boot disabled\n");
115 			return;
116 		}
117 
118 		KASSERT(unit < MAXCPUS);
119 		ci = &cpu_info_store[unit];
120 
121 		KASSERT(cpu_info[unit] == NULL);
122 		ci->ci_cpl = IPL_HIGH;
123 		ci->ci_cpuid = id;
124 		ci->ci_data.cpu_cc_freq = cpu_info_store[0].ci_data.cpu_cc_freq;
125 
126 		ci->ci_undefsave[2] = cpu_info_store[0].ci_undefsave[2];
127 
128 		cpu_info[unit] = ci;
129 		if (cpu_hatched_p(unit) == false) {
130 			ci->ci_dev = dv;
131 			device_set_private(dv, ci);
132 			aprint_naive(": disabled\n");
133 			aprint_normal(": disabled (unresponsive)\n");
134 			return;
135 		}
136 #else
137 		aprint_naive(": disabled\n");
138 		aprint_normal(": disabled (uniprocessor kernel)\n");
139 		return;
140 #endif
141 	}
142 
143 	ci->ci_dev = dv;
144 	device_set_private(dv, ci);
145 
146 	arm_cpu_do_topology(ci);
147 
148 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
149 	    NULL, xname, "arm700swibug");
150 
151 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
152 	    NULL, xname, "vector abort");
153 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
154 	    NULL, xname, "terminal abort");
155 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
156 	    NULL, xname, "external linefetch abort (S)");
157 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
158 	    NULL, xname, "external linefetch abort (P)");
159 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
160 	    NULL, xname, "external non-linefetch abort (S)");
161 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
162 	    NULL, xname, "external non-linefetch abort (P)");
163 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
164 	    NULL, xname, "external translation abort (L1)");
165 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
166 	    NULL, xname, "external translation abort (L2)");
167 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
168 	    NULL, xname, "alignment abort (0)");
169 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
170 	    NULL, xname, "alignment abort (1)");
171 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
172 	    NULL, xname, "translation abort (S)");
173 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
174 	    NULL, xname, "translation abort (P)");
175 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
176 	    NULL, xname, "domain abort (S)");
177 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
178 	    NULL, xname, "domain abort (P)");
179 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
180 	    NULL, xname, "permission abort (S)");
181 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
182 	    NULL, xname, "permission abort (P)");
183 	evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
184 	    NULL, xname, "undefined insn traps");
185 	evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
186 	    NULL, xname, "undefined cp15 insn traps");
187 
188 	ci->ci_kfpu_spl = -1;
189 
190 #ifdef MULTIPROCESSOR
191 	if (unit != 0) {
192 		mi_cpu_attach(ci);
193 #ifdef ARM_MMU_EXTENDED
194 		pmap_tlb_info_attach(&pmap_tlb0_info, ci);
195 #endif
196 	}
197 #endif
198 
199 	identify_arm_cpu(dv, ci);
200 
201 #ifdef CPU_STRONGARM
202 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
203 	    ci->ci_arm_cpurev < 3) {
204 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
205 	}
206 #endif
207 
208 #ifdef CPU_ARM8
209 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
210 		int clock = arm8_clock_config(0, 0);
211 		char *fclk;
212 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
213 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
214 		aprint_normal("%s", (clock & 2) ? " sync" : "");
215 		switch ((clock >> 2) & 3) {
216 		case 0:
217 			fclk = "bus clock";
218 			break;
219 		case 1:
220 			fclk = "ref clock";
221 			break;
222 		case 3:
223 			fclk = "pll";
224 			break;
225 		default:
226 			fclk = "illegal";
227 			break;
228 		}
229 		aprint_normal(" fclk source=%s\n", fclk);
230  	}
231 #endif
232 
233 	vfp_attach(ci);
234 }
235 
236 enum cpu_class {
237 	CPU_CLASS_NONE,
238 	CPU_CLASS_ARM2,
239 	CPU_CLASS_ARM2AS,
240 	CPU_CLASS_ARM3,
241 	CPU_CLASS_ARM6,
242 	CPU_CLASS_ARM7,
243 	CPU_CLASS_ARM7TDMI,
244 	CPU_CLASS_ARM8,
245 	CPU_CLASS_ARM9TDMI,
246 	CPU_CLASS_ARM9ES,
247 	CPU_CLASS_ARM9EJS,
248 	CPU_CLASS_ARM10E,
249 	CPU_CLASS_ARM10EJ,
250 	CPU_CLASS_SA1,
251 	CPU_CLASS_XSCALE,
252 	CPU_CLASS_ARM11J,
253 	CPU_CLASS_ARMV4,
254 	CPU_CLASS_CORTEX,
255 	CPU_CLASS_PJ4B,
256 };
257 
258 static const char * const generic_steppings[16] = {
259 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
260 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
261 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
262 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
263 };
264 
265 static const char * const pN_steppings[16] = {
266 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
267 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
268 };
269 
270 static const char * const sa110_steppings[16] = {
271 	"rev 0",	"step J",	"step K",	"step S",
272 	"step T",	"rev 5",	"rev 6",	"rev 7",
273 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
274 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
275 };
276 
277 static const char * const sa1100_steppings[16] = {
278 	"rev 0",	"step B",	"step C",	"rev 3",
279 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
280 	"step D",	"step E",	"rev 10"	"step G",
281 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
282 };
283 
284 static const char * const sa1110_steppings[16] = {
285 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
286 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
287 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
288 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
289 };
290 
291 static const char * const ixp12x0_steppings[16] = {
292 	"(IXP1200 step A)",		"(IXP1200 step B)",
293 	"rev 2",			"(IXP1200 step C)",
294 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
295 	"(IXP1240 step B)",		"(IXP1250 step B)",
296 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
297 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
298 };
299 
300 static const char * const xscale_steppings[16] = {
301 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
302 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
303 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
304 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
305 };
306 
307 static const char * const i80321_steppings[16] = {
308 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
309 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
310 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
311 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
312 };
313 
314 static const char * const i80219_steppings[16] = {
315 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
316 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
317 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
318 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
319 };
320 
321 /* Steppings for PXA2[15]0 */
322 static const char * const pxa2x0_steppings[16] = {
323 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
324 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
325 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
326 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
327 };
328 
329 /* Steppings for PXA255/26x.
330  * rev 5: PXA26x B0, rev 6: PXA255 A0
331  */
332 static const char * const pxa255_steppings[16] = {
333 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
334 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
335 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
336 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
337 };
338 
339 /* Stepping for PXA27x */
340 static const char * const pxa27x_steppings[16] = {
341 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
342 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
343 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
344 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
345 };
346 
347 static const char * const ixp425_steppings[16] = {
348 	"step 0",	"rev 1",	"rev 2",	"rev 3",
349 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
350 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
351 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
352 };
353 
354 struct cpuidtab {
355 	uint32_t	cpuid;
356 	enum		cpu_class cpu_class;
357 	const char	*cpu_classname;
358 	const char * const *cpu_steppings;
359 	char		cpu_arch[8];
360 };
361 
362 const struct cpuidtab cpuids[] = {
363 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
364 	  generic_steppings, "2" },
365 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
366 	  generic_steppings, "2" },
367 
368 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
369 	  generic_steppings, "2A" },
370 
371 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
372 	  generic_steppings, "3" },
373 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
374 	  generic_steppings, "3" },
375 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
376 	  generic_steppings, "3" },
377 
378 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
379 	  generic_steppings, "3" },
380 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
381 	  generic_steppings, "3" },
382 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
383 	  generic_steppings, "3" },
384 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
385 	  generic_steppings, "3" },
386 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
387 	  generic_steppings, "3" },
388 
389 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
390 	  generic_steppings, "4" },
391 
392 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
393 	  sa110_steppings, "4" },
394 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
395 	  sa1100_steppings, "4" },
396 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
397 	  sa1110_steppings, "4" },
398 
399 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
400 	  generic_steppings, "4" },
401 
402 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
403 	  ixp12x0_steppings, "4" },
404 
405 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
406 	  generic_steppings, "4T" },
407 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
408 	  generic_steppings, "4T" },
409 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
410 	  generic_steppings, "4T" },
411 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
412 	  generic_steppings, "4T" },
413 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
414 	  generic_steppings, "4T" },
415 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
416 	  generic_steppings, "4T" },
417 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
418 	  generic_steppings, "4T" },
419 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
420 	  generic_steppings, "4T" },
421 
422 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
423 	  generic_steppings, "5TE" },
424 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
425 	  generic_steppings, "5TE" },
426 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
427 	  generic_steppings, "5TE" },
428 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
429 	  generic_steppings, "5TE" },
430 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
431 	  generic_steppings, "5TE" },
432 
433 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
434 	  xscale_steppings, "5TE" },
435 
436 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
437 	  i80321_steppings, "5TE" },
438 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
439 	  i80321_steppings, "5TE" },
440 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
441 	  i80321_steppings, "5TE" },
442 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
443 	  i80321_steppings, "5TE" },
444 
445 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
446 	  i80219_steppings, "5TE" },
447 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
448 	  i80219_steppings, "5TE" },
449 
450 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
451 	  pxa27x_steppings, "5TE" },
452 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
453 	  pxa2x0_steppings, "5TE" },
454 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
455 	  pxa2x0_steppings, "5TE" },
456 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
457 	  pxa2x0_steppings, "5TE" },
458 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
459 	  pxa2x0_steppings, "5TE" },
460 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
461 	  pxa255_steppings, "5TE" },
462 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
463 	  pxa2x0_steppings, "5TE" },
464 
465 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
466 	  ixp425_steppings, "5TE" },
467 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
468 	  ixp425_steppings, "5TE" },
469 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
470 	  ixp425_steppings, "5TE" },
471 
472 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
473 	  generic_steppings, "5TE" },
474 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
475 	  generic_steppings, "5TE" },
476 
477 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
478 	  generic_steppings, "5TEJ" },
479 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S r0",
480 	  pN_steppings, "5TEJ" },
481 
482 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
483 	  pN_steppings, "6J" },
484 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
485 	  pN_steppings, "6J" },
486 #if 0
487 	/* The ARM1156T2-S only has a memory protection unit */
488 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
489 	  pN_steppings, "6T2" },
490 #endif
491 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
492 	  pN_steppings, "6ZK" },
493 
494 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
495 	  generic_steppings, "6K" },
496 
497 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
498 	  pN_steppings, "7A" },
499 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
500 	  pN_steppings, "7A" },
501 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
502 	  pN_steppings, "7A" },
503 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
504 	  pN_steppings, "7A" },
505 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
506 	  pN_steppings, "7A" },
507 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
508 	  pN_steppings, "7A" },
509 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
510 	  pN_steppings, "7A" },
511 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
512 	  pN_steppings, "7A" },
513 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
514 	  pN_steppings, "7A" },
515 	{ CPU_ID_CORTEXA12R0,	CPU_CLASS_CORTEX,	"Cortex-A17(A12) r0",	/* A12 was rebranded A17 */
516 	  pN_steppings, "7A" },
517 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
518 	  pN_steppings, "7A" },
519 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
520 	  pN_steppings, "7A" },
521 	{ CPU_ID_CORTEXA15R4,	CPU_CLASS_CORTEX,	"Cortex-A15 r4",
522 	  pN_steppings, "7A" },
523 	{ CPU_ID_CORTEXA17R1,	CPU_CLASS_CORTEX,	"Cortex-A17 r1",
524 	  pN_steppings, "7A" },
525 	{ CPU_ID_CORTEXA35R0,	CPU_CLASS_CORTEX,	"Cortex-A35 r0",
526 	  pN_steppings, "8A" },
527 	{ CPU_ID_CORTEXA53R0,	CPU_CLASS_CORTEX,	"Cortex-A53 r0",
528 	  pN_steppings, "8A" },
529 	{ CPU_ID_CORTEXA57R0,	CPU_CLASS_CORTEX,	"Cortex-A57 r0",
530 	  pN_steppings, "8A" },
531 	{ CPU_ID_CORTEXA57R1,	CPU_CLASS_CORTEX,	"Cortex-A57 r1",
532 	  pN_steppings, "8A" },
533 	{ CPU_ID_CORTEXA72R0,	CPU_CLASS_CORTEX,	"Cortex-A72 r0",
534 	  pN_steppings, "8A" },
535 
536 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
537 	  generic_steppings },
538 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
539 	  generic_steppings },
540 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
541 	  generic_steppings },
542 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
543 	  generic_steppings },
544 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
545 	  generic_steppings },
546 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
547 	  generic_steppings },
548 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
549 	  generic_steppings },
550 
551 
552 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
553 };
554 
555 struct cpu_classtab {
556 	const char	*class_name;
557 	const char	*class_option;
558 };
559 
560 const struct cpu_classtab cpu_classes[] = {
561 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
562 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
563 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
564 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
565 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
566 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
567 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
568 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
569 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
570 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
571 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
572 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
573 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
574 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
575 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
576 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
577 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
578 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
579 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
580 };
581 
582 /*
583  * Report the type of the specified arm processor. This uses the generic and
584  * arm specific information in the CPU structure to identify the processor.
585  * The remaining fields in the CPU structure are filled in appropriately.
586  */
587 
588 static const char * const wtnames[] = {
589 	"write-through",
590 	"write-back",
591 	"write-back",
592 	"**unknown 3**",
593 	"**unknown 4**",
594 	"write-back-locking",		/* XXX XScale-specific? */
595 	"write-back-locking-A",
596 	"write-back-locking-B",
597 	"**unknown 8**",
598 	"**unknown 9**",
599 	"**unknown 10**",
600 	"**unknown 11**",
601 	"write-back",
602 	"write-back-locking-line",
603 	"write-back-locking-C",
604 	"write-back-locking-D",
605 };
606 
607 static void
608 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
609 {
610 	if (info->cache_unified) {
611 		aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %s %cI%cT Unified cache\n",
612 		    level + 1,
613 		    info->dcache_size / 1024,
614 		    info->dcache_line_size, info->dcache_ways,
615 		    info->dcache_sets ? info->dcache_sets :
616 			info->dcache_size /
617 			    (info->dcache_line_size * info->dcache_ways),
618 		    wtnames[info->cache_type],
619 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
620 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
621 	} else {
622 		aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %cI%cT Instruction cache\n",
623 		    level + 1,
624 		    info->icache_size / 1024,
625 		    info->icache_line_size, info->icache_ways,
626 		    info->icache_sets ? info->icache_sets :
627 			info->icache_size /
628 			    (info->icache_line_size * info->icache_ways),
629 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
630 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
631 		aprint_normal_dev(dv, "L%u %dKB/%dB %d-way (%u set) %s %cI%cT Data cache\n",
632 		    level + 1,
633 		    info->dcache_size / 1024,
634 		    info->dcache_line_size, info->dcache_ways,
635 		    info->dcache_sets ? info->dcache_sets :
636 			info->dcache_size /
637 			    (info->dcache_line_size * info->dcache_ways),
638 		    wtnames[info->cache_type],
639 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
640 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
641 	}
642 }
643 
644 static enum cpu_class
645 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
646 {
647 	enum cpu_class cpu_class = CPU_CLASS_NONE;
648 	for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
649 		if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
650 			const char *steppingstr =
651 			    id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
652 			cpu_arch = id->cpu_arch;
653 			cpu_class = id->cpu_class;
654 			snprintf(buf, len, "%s%s%s (%s V%s core)",
655 			    id->cpu_classname,
656 			    steppingstr[0] == '*' ? "" : " ",
657 			    &steppingstr[steppingstr[0] == '*'],
658 			    cpu_classes[cpu_class].class_name,
659 			    cpu_arch);
660 			return cpu_class;
661 		}
662 	}
663 
664 	snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
665 	return cpu_class;
666 }
667 
668 void
669 identify_arm_cpu(device_t dv, struct cpu_info *ci)
670 {
671 	const uint32_t arm_cpuid = ci->ci_arm_cpuid;
672 	const char * const xname = device_xname(dv);
673 	char model[128];
674 	const char *m;
675 
676 	if (arm_cpuid == 0) {
677 		aprint_error("Processor failed probe - no CPU ID\n");
678 		return;
679 	}
680 
681 	const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
682 	     model, sizeof(model));
683 	if (ci->ci_cpuid == 0) {
684 		m = cpu_getmodel();
685 		if (m == NULL || *m == 0)
686 			cpu_setmodel("%s", model);
687 	}
688 
689 	if (ci->ci_data.cpu_cc_freq != 0) {
690 		char freqbuf[10];
691 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
692 		    "Hz", 1000);
693 
694 		aprint_naive(": %s %s\n", freqbuf, model);
695 		aprint_normal(": %s %s\n", freqbuf, model);
696 	} else {
697 		aprint_naive(": %s\n", model);
698 		aprint_normal(": %s\n", model);
699 	}
700 
701 	aprint_debug_dev(dv, "midr:   %#x\n", arm_cpuid);
702 
703 	aprint_normal("%s:", xname);
704 
705 	switch (cpu_class) {
706 	case CPU_CLASS_ARM6:
707 	case CPU_CLASS_ARM7:
708 	case CPU_CLASS_ARM7TDMI:
709 	case CPU_CLASS_ARM8:
710 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
711 			aprint_normal(" IDC disabled");
712 		else
713 			aprint_normal(" IDC enabled");
714 		break;
715 	case CPU_CLASS_ARM9TDMI:
716 	case CPU_CLASS_ARM9ES:
717 	case CPU_CLASS_ARM9EJS:
718 	case CPU_CLASS_ARM10E:
719 	case CPU_CLASS_ARM10EJ:
720 	case CPU_CLASS_SA1:
721 	case CPU_CLASS_XSCALE:
722 	case CPU_CLASS_ARM11J:
723 	case CPU_CLASS_ARMV4:
724 	case CPU_CLASS_CORTEX:
725 	case CPU_CLASS_PJ4B:
726 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
727 			aprint_normal(" DC disabled");
728 		else
729 			aprint_normal(" DC enabled");
730 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
731 			aprint_normal(" IC disabled");
732 		else
733 			aprint_normal(" IC enabled");
734 		break;
735 	default:
736 		break;
737 	}
738 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
739 		aprint_normal(" WB disabled");
740 	else
741 		aprint_normal(" WB enabled");
742 
743 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
744 		aprint_normal(" LABT");
745 	else
746 		aprint_normal(" EABT");
747 
748 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
749 		aprint_normal(" branch prediction enabled");
750 
751 	aprint_normal("\n");
752 
753 	if (CPU_ID_CORTEX_P(arm_cpuid) ||
754 	    CPU_ID_ARM11_P(arm_cpuid) ||
755 	    CPU_ID_MV88SV58XX_P(arm_cpuid)) {
756 		if ((arm_cpuid & CPU_ID_CPU_MASK) != CPU_ID_ARM1136JS &&
757 		    (arm_cpuid & CPU_ID_CPU_MASK) != CPU_ID_ARM1176JZS) {
758 			identify_features(dv, ci);
759 		}
760 	}
761 
762 	/* Print cache info. */
763 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
764 		print_cache_info(dv, &arm_pcache, 0);
765 	}
766 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
767 		print_cache_info(dv, &arm_scache, 1);
768 	}
769 
770 
771 	switch (cpu_class) {
772 #ifdef CPU_ARM6
773 	case CPU_CLASS_ARM6:
774 #endif
775 #ifdef CPU_ARM7
776 	case CPU_CLASS_ARM7:
777 #endif
778 #ifdef CPU_ARM7TDMI
779 	case CPU_CLASS_ARM7TDMI:
780 #endif
781 #ifdef CPU_ARM8
782 	case CPU_CLASS_ARM8:
783 #endif
784 #ifdef CPU_ARM9
785 	case CPU_CLASS_ARM9TDMI:
786 #endif
787 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
788 	case CPU_CLASS_ARM9ES:
789 	case CPU_CLASS_ARM9EJS:
790 #endif
791 #ifdef CPU_ARM10
792 	case CPU_CLASS_ARM10E:
793 	case CPU_CLASS_ARM10EJ:
794 #endif
795 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
796     defined(CPU_SA1110) || defined(CPU_IXP12X0)
797 	case CPU_CLASS_SA1:
798 #endif
799 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
800     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
801 	case CPU_CLASS_XSCALE:
802 #endif
803 #if defined(CPU_ARM11)
804 	case CPU_CLASS_ARM11J:
805 #endif
806 #if defined(CPU_CORTEX)
807 	case CPU_CLASS_CORTEX:
808 #endif
809 #if defined(CPU_PJ4B)
810 	case CPU_CLASS_PJ4B:
811 #endif
812 #if defined(CPU_FA526)
813 	case CPU_CLASS_ARMV4:
814 #endif
815 		break;
816 	default:
817 		if (cpu_classes[cpu_class].class_option == NULL) {
818 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
819 			     ostype);
820 		} else {
821 			aprint_error_dev(dv, "This kernel does not fully support "
822 			       "this CPU.\n");
823 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
824 			       "correct this.\n", cpu_classes[cpu_class].class_option);
825 		}
826 		break;
827 	}
828 }
829 
830 extern int cpu_instruction_set_attributes[6];
831 extern int cpu_memory_model_features[4];
832 extern int cpu_processor_features[2];
833 extern int cpu_simd_present;
834 extern int cpu_simdex_present;
835 
836 void
837 identify_features(device_t dv, struct cpu_info *ci)
838 {
839 	const int unit = device_unit(dv);
840 
841 	aprint_debug_dev(dv, "sctlr:  %#x\n", ci->ci_ctrl);
842 	aprint_debug_dev(dv, "actlr:  %#x\n", ci->ci_actlr);
843 	aprint_debug_dev(dv, "revidr: %#x\n", ci->ci_revidr);
844 #ifdef MULTIPROCESSOR
845 	aprint_debug_dev(dv, "mpidr:  %#x\n", ci->ci_mpidr);
846 #endif
847 
848 	if (unit != 0)
849 		return;
850 
851 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
852 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
853 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
854 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
855 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
856 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
857 
858 	cpu_hwdiv_present =
859 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
860 	cpu_simd_present =
861 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
862 	cpu_simdex_present = cpu_simd_present
863 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
864 	cpu_synchprim_present =
865 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
866 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
867 
868 	cpu_memory_model_features[0] = armreg_mmfr0_read();
869 	cpu_memory_model_features[1] = armreg_mmfr1_read();
870 	cpu_memory_model_features[2] = armreg_mmfr2_read();
871 	cpu_memory_model_features[3] = armreg_mmfr3_read();
872 
873 #if 0
874 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
875 		/*
876 		* Updates to the translation tables do not require a clean
877 		* to the point of unification to ensure visibility by
878 		* subsequent translation table walks.
879 		*/
880 		pmap_needs_pte_sync = 0;
881 	}
882 #endif
883 
884 	cpu_processor_features[0] = armreg_pfr0_read();
885 	cpu_processor_features[1] = armreg_pfr1_read();
886 
887 	aprint_debug_dev(dv,
888 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
889 	    cpu_instruction_set_attributes[0],
890 	    cpu_instruction_set_attributes[1],
891 	    cpu_instruction_set_attributes[2],
892 	    cpu_instruction_set_attributes[3],
893 	    cpu_instruction_set_attributes[4],
894 	    cpu_instruction_set_attributes[5]);
895 	aprint_debug_dev(dv,
896 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
897 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
898 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
899 	aprint_debug_dev(dv,
900 	    "pfr: [0]=%#x [1]=%#x\n",
901 	    cpu_processor_features[0], cpu_processor_features[1]);
902 }
903 
904 #ifdef _ARM_ARCH_6
905 int
906 cpu_maxproc_hook(int nmaxproc)
907 {
908 
909 #ifdef ARM_MMU_EXTENDED
910 	return pmap_maxproc_set(nmaxproc);
911 #else
912 	return 0;
913 #endif
914 }
915 #endif
916