xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: cpu.c,v 1.77 2010/10/02 05:37:58 kiyohara Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.77 2010/10/02 05:37:58 kiyohara Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58 
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61 
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66 
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70 
71 char cpu_model[256];
72 
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75 
76 /*
77  * Identify the master (boot) CPU
78  */
79 
80 void
81 cpu_attach(struct device *dv)
82 {
83 	int usearmfpe;
84 
85 	usearmfpe = 1;	/* when compiled in, its enabled by default */
86 
87 	curcpu()->ci_dev = dv;
88 
89 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 	    NULL, dv->dv_xname, "arm700swibug");
91 
92 	/* Get the CPU ID from coprocessor 15 */
93 
94 	curcpu()->ci_arm_cpuid = cpu_id();
95 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 	curcpu()->ci_arm_cpurev =
97 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98 
99 	identify_arm_cpu(dv, curcpu());
100 
101 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 	    curcpu()->ci_arm_cpurev < 3) {
103 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 		       dv->dv_xname);
105 	}
106 
107 #ifdef CPU_ARM8
108 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 		int clock = arm8_clock_config(0, 0);
110 		char *fclk;
111 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 		aprint_normal("%s", (clock & 2) ? " sync" : "");
114 		switch ((clock >> 2) & 3) {
115 		case 0:
116 			fclk = "bus clock";
117 			break;
118 		case 1:
119 			fclk = "ref clock";
120 			break;
121 		case 3:
122 			fclk = "pll";
123 			break;
124 		default:
125 			fclk = "illegal";
126 			break;
127 		}
128 		aprint_normal(" fclk source=%s\n", fclk);
129  	}
130 #endif
131 
132 #ifdef ARMFPE
133 	/*
134 	 * Ok now we test for an FPA
135 	 * At this point no floating point emulator has been installed.
136 	 * This means any FP instruction will cause undefined exception.
137 	 * We install a temporay coproc 1 handler which will modify
138 	 * undefined_test if it is called.
139 	 * We then try to read the FP status register. If undefined_test
140 	 * has been decremented then the instruction was not handled by
141 	 * an FPA so we know the FPA is missing. If undefined_test is
142 	 * still 1 then we know the instruction was handled by an FPA.
143 	 * We then remove our test handler and look at the
144 	 * FP status register for identification.
145 	 */
146 
147 	/*
148 	 * Ok if ARMFPE is defined and the boot options request the
149 	 * ARM FPE then it will be installed as the FPE.
150 	 * This is just while I work on integrating the new FPE.
151 	 * It means the new FPE gets installed if compiled int (ARMFPE
152 	 * defined) and also gives me a on/off option when I boot in
153 	 * case the new FPE is causing panics.
154 	 */
155 
156 
157 	if (boot_args)
158 		get_bootconf_option(boot_args, "armfpe",
159 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 	if (usearmfpe)
161 		initialise_arm_fpe();
162 #endif
163 
164 #ifdef FPU_VFP
165 	vfp_attach();
166 #endif
167 }
168 
169 enum cpu_class {
170 	CPU_CLASS_NONE,
171 	CPU_CLASS_ARM2,
172 	CPU_CLASS_ARM2AS,
173 	CPU_CLASS_ARM3,
174 	CPU_CLASS_ARM6,
175 	CPU_CLASS_ARM7,
176 	CPU_CLASS_ARM7TDMI,
177 	CPU_CLASS_ARM8,
178 	CPU_CLASS_ARM9TDMI,
179 	CPU_CLASS_ARM9ES,
180 	CPU_CLASS_ARM9EJS,
181 	CPU_CLASS_ARM10E,
182 	CPU_CLASS_ARM10EJ,
183 	CPU_CLASS_SA1,
184 	CPU_CLASS_XSCALE,
185 	CPU_CLASS_ARM11J,
186 	CPU_CLASS_ARMV4,
187 	CPU_CLASS_CORTEX,
188 };
189 
190 static const char * const generic_steppings[16] = {
191 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
193 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
195 };
196 
197 static const char * const pN_steppings[16] = {
198 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
199 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
200 };
201 
202 static const char * const sa110_steppings[16] = {
203 	"rev 0",	"step J",	"step K",	"step S",
204 	"step T",	"rev 5",	"rev 6",	"rev 7",
205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
207 };
208 
209 static const char * const sa1100_steppings[16] = {
210 	"rev 0",	"step B",	"step C",	"rev 3",
211 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
212 	"step D",	"step E",	"rev 10"	"step G",
213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
214 };
215 
216 static const char * const sa1110_steppings[16] = {
217 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
218 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
219 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
221 };
222 
223 static const char * const ixp12x0_steppings[16] = {
224 	"(IXP1200 step A)",		"(IXP1200 step B)",
225 	"rev 2",			"(IXP1200 step C)",
226 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
227 	"(IXP1240 step B)",		"(IXP1250 step B)",
228 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
229 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
230 };
231 
232 static const char * const xscale_steppings[16] = {
233 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
234 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
235 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
236 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
237 };
238 
239 static const char * const i80321_steppings[16] = {
240 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
241 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
244 };
245 
246 static const char * const i80219_steppings[16] = {
247 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
248 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
249 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
250 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
251 };
252 
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
256 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
257 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
258 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
259 };
260 
261 /* Steppings for PXA255/26x.
262  * rev 5: PXA26x B0, rev 6: PXA255 A0
263  */
264 static const char * const pxa255_steppings[16] = {
265 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
266 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
267 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
268 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
269 };
270 
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
274 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
275 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
276 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
277 };
278 
279 static const char * const ixp425_steppings[16] = {
280 	"step 0",	"rev 1",	"rev 2",	"rev 3",
281 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
282 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
283 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
284 };
285 
286 struct cpuidtab {
287 	u_int32_t	cpuid;
288 	enum		cpu_class cpu_class;
289 	const char	*cpu_classname;
290 	const char * const *cpu_steppings;
291 };
292 
293 const struct cpuidtab cpuids[] = {
294 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
295 	  generic_steppings },
296 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
297 	  generic_steppings },
298 
299 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
300 	  generic_steppings },
301 
302 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
303 	  generic_steppings },
304 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
305 	  generic_steppings },
306 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
307 	  generic_steppings },
308 
309 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
310 	  generic_steppings },
311 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
312 	  generic_steppings },
313 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
314 	  generic_steppings },
315 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
316 	  generic_steppings },
317 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
318 	  generic_steppings },
319 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
320 	  generic_steppings },
321 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
322 	  generic_steppings },
323 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 	  generic_steppings },
325 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 	  generic_steppings },
327 
328 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
329 	  generic_steppings },
330 
331 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
332 	  generic_steppings },
333 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
334 	  generic_steppings },
335 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
336 	  generic_steppings },
337 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
338 	  generic_steppings },
339 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
340 	  generic_steppings },
341 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
342 	  generic_steppings },
343 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
344 	  generic_steppings },
345 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
346 	  generic_steppings },
347 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
348 	  generic_steppings },
349 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
350 	  generic_steppings },
351 
352 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
353 	  generic_steppings },
354 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
355 	  generic_steppings },
356 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
357 	  generic_steppings },
358 
359 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
360 	  sa110_steppings },
361 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
362 	  sa1100_steppings },
363 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
364 	  sa1110_steppings },
365 
366 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
367 	  ixp12x0_steppings },
368 
369 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
370 	  xscale_steppings },
371 
372 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
373 	  i80321_steppings },
374 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
375 	  i80321_steppings },
376 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
377 	  i80321_steppings },
378 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
379 	  i80321_steppings },
380 
381 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
382 	  i80219_steppings },
383 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
384 	  i80219_steppings },
385 
386 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
387 	  pxa27x_steppings },
388 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
389 	  pxa2x0_steppings },
390 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
391 	  pxa2x0_steppings },
392 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
393 	  pxa2x0_steppings },
394 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
395 	  pxa2x0_steppings },
396 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
397 	  pxa255_steppings },
398 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
399 	  pxa2x0_steppings },
400 
401 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
402 	  ixp425_steppings },
403 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
404 	  ixp425_steppings },
405 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
406 	  ixp425_steppings },
407 
408 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
409 	  pN_steppings },
410 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
411 	  pN_steppings },
412 	{ CPU_ID_ARM1176JS,	CPU_CLASS_ARM11J,	"ARM1176J-S r0",
413 	  pN_steppings },
414 
415 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
416 	  pN_steppings },
417 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
418 	  pN_steppings },
419 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
420 	  pN_steppings },
421 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
422 	  pN_steppings },
423 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_ARM11J,	"Cortex-A8 r3",
424 	  pN_steppings },
425 
426 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
427 	  generic_steppings },
428 
429 	{ 0, CPU_CLASS_NONE, NULL, NULL }
430 };
431 
432 struct cpu_classtab {
433 	const char	*class_name;
434 	const char	*class_option;
435 };
436 
437 const struct cpu_classtab cpu_classes[] = {
438 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
439 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
440 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
441 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
442 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
443 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
444 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
445 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
446 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
447 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
448 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
449 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
450 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
451 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
452 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
453 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
454 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
455 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
456 };
457 
458 /*
459  * Report the type of the specified arm processor. This uses the generic and
460  * arm specific information in the CPU structure to identify the processor.
461  * The remaining fields in the CPU structure are filled in appropriately.
462  */
463 
464 static const char * const wtnames[] = {
465 	"write-through",
466 	"write-back",
467 	"write-back",
468 	"**unknown 3**",
469 	"**unknown 4**",
470 	"write-back-locking",		/* XXX XScale-specific? */
471 	"write-back-locking-A",
472 	"write-back-locking-B",
473 	"**unknown 8**",
474 	"**unknown 9**",
475 	"**unknown 10**",
476 	"**unknown 11**",
477 	"**unknown 12**",
478 	"**unknown 13**",
479 	"write-back-locking-C",
480 	"**unknown 15**",
481 };
482 
483 void
484 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
485 {
486 	u_int cpuid;
487 	enum cpu_class cpu_class = CPU_CLASS_NONE;
488 	int i;
489 	const char *steppingstr;
490 
491 	cpuid = ci->ci_arm_cpuid;
492 
493 	if (cpuid == 0) {
494 		aprint_error("Processor failed probe - no CPU ID\n");
495 		return;
496 	}
497 
498 	for (i = 0; cpuids[i].cpuid != 0; i++)
499 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
500 			cpu_class = cpuids[i].cpu_class;
501 			steppingstr = cpuids[i].cpu_steppings[cpuid &
502 			    CPU_ID_REVISION_MASK],
503 			sprintf(cpu_model, "%s%s%s (%s core)",
504 			    cpuids[i].cpu_classname,
505 			    steppingstr[0] == '*' ? "" : " ",
506 			    &steppingstr[steppingstr[0] == '*'],
507 			    cpu_classes[cpu_class].class_name);
508 			break;
509 		}
510 
511 	if (cpuids[i].cpuid == 0)
512 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
513 
514 	aprint_naive(": %s\n", cpu_model);
515 	aprint_normal(": %s\n", cpu_model);
516 
517 	aprint_normal("%s:", dv->dv_xname);
518 
519 	switch (cpu_class) {
520 	case CPU_CLASS_ARM6:
521 	case CPU_CLASS_ARM7:
522 	case CPU_CLASS_ARM7TDMI:
523 	case CPU_CLASS_ARM8:
524 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
525 			aprint_normal(" IDC disabled");
526 		else
527 			aprint_normal(" IDC enabled");
528 		break;
529 	case CPU_CLASS_ARM9TDMI:
530 	case CPU_CLASS_ARM9ES:
531 	case CPU_CLASS_ARM9EJS:
532 	case CPU_CLASS_ARM10E:
533 	case CPU_CLASS_ARM10EJ:
534 	case CPU_CLASS_SA1:
535 	case CPU_CLASS_XSCALE:
536 	case CPU_CLASS_ARM11J:
537 	case CPU_CLASS_ARMV4:
538 	case CPU_CLASS_CORTEX:
539 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
540 			aprint_normal(" DC disabled");
541 		else
542 			aprint_normal(" DC enabled");
543 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
544 			aprint_normal(" IC disabled");
545 		else
546 			aprint_normal(" IC enabled");
547 		break;
548 	default:
549 		break;
550 	}
551 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
552 		aprint_normal(" WB disabled");
553 	else
554 		aprint_normal(" WB enabled");
555 
556 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
557 		aprint_normal(" LABT");
558 	else
559 		aprint_normal(" EABT");
560 
561 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
562 		aprint_normal(" branch prediction enabled");
563 
564 	aprint_normal("\n");
565 
566 	/* Print cache info. */
567 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
568 		goto skip_pcache;
569 
570 	if (arm_pcache_unified) {
571 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
572 		    dv->dv_xname, arm_pdcache_size / 1024,
573 		    arm_pdcache_line_size, arm_pdcache_ways,
574 		    wtnames[arm_pcache_type]);
575 	} else {
576 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
577 		    dv->dv_xname, arm_picache_size / 1024,
578 		    arm_picache_line_size, arm_picache_ways);
579 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
580 		    dv->dv_xname, arm_pdcache_size / 1024,
581 		    arm_pdcache_line_size, arm_pdcache_ways,
582 		    wtnames[arm_pcache_type]);
583 	}
584 
585  skip_pcache:
586 
587 	switch (cpu_class) {
588 #ifdef CPU_ARM2
589 	case CPU_CLASS_ARM2:
590 #endif
591 #ifdef CPU_ARM250
592 	case CPU_CLASS_ARM2AS:
593 #endif
594 #ifdef CPU_ARM3
595 	case CPU_CLASS_ARM3:
596 #endif
597 #ifdef CPU_ARM6
598 	case CPU_CLASS_ARM6:
599 #endif
600 #ifdef CPU_ARM7
601 	case CPU_CLASS_ARM7:
602 #endif
603 #ifdef CPU_ARM7TDMI
604 	case CPU_CLASS_ARM7TDMI:
605 #endif
606 #ifdef CPU_ARM8
607 	case CPU_CLASS_ARM8:
608 #endif
609 #ifdef CPU_ARM9
610 	case CPU_CLASS_ARM9TDMI:
611 #endif
612 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
613 	case CPU_CLASS_ARM9ES:
614 	case CPU_CLASS_ARM9EJS:
615 #endif
616 #ifdef CPU_ARM10
617 	case CPU_CLASS_ARM10E:
618 	case CPU_CLASS_ARM10EJ:
619 #endif
620 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
621     defined(CPU_SA1110) || defined(CPU_IXP12X0)
622 	case CPU_CLASS_SA1:
623 #endif
624 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
625     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
626 	case CPU_CLASS_XSCALE:
627 #endif
628 #if defined(CPU_ARM11)
629 	case CPU_CLASS_ARM11J:
630 #endif
631 #if defined(CPU_CORTEX)
632 	case CPU_CLASS_CORTEX:
633 #endif
634 #if defined(CPU_FA526)
635 	case CPU_CLASS_ARMV4:
636 #endif
637 		break;
638 	default:
639 		if (cpu_classes[cpu_class].class_option == NULL)
640 			aprint_error("%s: %s does not fully support this CPU."
641 			       "\n", dv->dv_xname, ostype);
642 		else {
643 			aprint_error("%s: This kernel does not fully support "
644 			       "this CPU.\n", dv->dv_xname);
645 			aprint_normal("%s: Recompile with \"options %s\" to "
646 			       "correct this.\n", dv->dv_xname,
647 			       cpu_classes[cpu_class].class_option);
648 		}
649 		break;
650 	}
651 
652 }
653 
654 /* End of cpu.c */
655