xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/cpu.h>
54 #include <sys/device.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 
58 #include <uvm/uvm_extern.h>
59 
60 #include <arm/locore.h>
61 #include <arm/undefined.h>
62 
63 extern const char *cpu_arch;
64 
65 #ifdef MULTIPROCESSOR
66 volatile u_int arm_cpu_hatched = 0;
67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0;
68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 };
69 u_int arm_cpu_max = 1;
70 #endif
71 
72 /* Prototypes */
73 void identify_arm_cpu(device_t, struct cpu_info *);
74 void identify_cortex_caches(device_t);
75 void identify_features(device_t);
76 
77 /*
78  * Identify the master (boot) CPU
79  */
80 
81 void
82 cpu_attach(device_t dv, cpuid_t id)
83 {
84 	const char * const xname = device_xname(dv);
85 	struct cpu_info *ci;
86 
87 	if (id == 0) {
88 		ci = curcpu();
89 
90 		/* Get the CPU ID from coprocessor 15 */
91 
92 		ci->ci_arm_cpuid = cpu_id();
93 		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
94 		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
95 	} else {
96 #ifdef MULTIPROCESSOR
97 		KASSERT(cpu_info[id] == NULL);
98 		ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
99 		KASSERT(ci != NULL);
100 		ci->ci_cpl = IPL_HIGH;
101 		ci->ci_cpuid = id;
102 		uint32_t mpidr = armreg_mpidr_read();
103 		if (mpidr & MPIDR_MT) {
104 			ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0;
105 			ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1;
106 			ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2;
107 		} else {
108 			ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0;
109 			ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1;
110 		}
111 		ci->ci_data.cpu_core_id = id;
112 		ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
113 		ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
114 		ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
115 		ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
116 		ci->ci_ctrl = cpu_info_store.ci_ctrl;
117 		ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2];
118 		cpu_info[ci->ci_cpuid] = ci;
119 		if ((arm_cpu_hatched & (1 << id)) == 0) {
120 			ci->ci_dev = dv;
121 			dv->dv_private = ci;
122 			aprint_naive(": disabled\n");
123 			aprint_normal(": disabled (unresponsive)\n");
124 			return;
125 		}
126 #else
127 		aprint_naive(": disabled\n");
128 		aprint_normal(": disabled (uniprocessor kernel)\n");
129 		return;
130 #endif
131 	}
132 
133 	ci->ci_dev = dv;
134 	dv->dv_private = ci;
135 
136 	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
137 	    NULL, xname, "arm700swibug");
138 
139 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
140 	    NULL, xname, "vector abort");
141 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
142 	    NULL, xname, "terminal abort");
143 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
144 	    NULL, xname, "external linefetch abort (S)");
145 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
146 	    NULL, xname, "external linefetch abort (P)");
147 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
148 	    NULL, xname, "external non-linefetch abort (S)");
149 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
150 	    NULL, xname, "external non-linefetch abort (P)");
151 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
152 	    NULL, xname, "external translation abort (L1)");
153 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
154 	    NULL, xname, "external translation abort (L2)");
155 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
156 	    NULL, xname, "alignment abort (0)");
157 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
158 	    NULL, xname, "alignment abort (1)");
159 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
160 	    NULL, xname, "translation abort (S)");
161 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
162 	    NULL, xname, "translation abort (P)");
163 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
164 	    NULL, xname, "domain abort (S)");
165 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
166 	    NULL, xname, "domain abort (P)");
167 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
168 	    NULL, xname, "permission abort (S)");
169 	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
170 	    NULL, xname, "permission abort (P)");
171 	evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP,
172 	    NULL, xname, "undefined insn traps");
173 	evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP,
174 	    NULL, xname, "undefined cp15 insn traps");
175 
176 #ifdef MULTIPROCESSOR
177 	/*
178 	 * and we are done if this is a secondary processor.
179 	 */
180 	if (id != 0) {
181 #if 1
182 		aprint_naive("\n");
183 		aprint_normal("\n");
184 #else
185 		aprint_naive(": %s\n", cpu_getmodel());
186 		aprint_normal(": %s\n", cpu_getmodel());
187 #endif
188 		mi_cpu_attach(ci);
189 #ifdef ARM_MMU_EXTENDED
190 		pmap_tlb_info_attach(&pmap_tlb0_info, ci);
191 #endif
192 		return;
193 	}
194 #endif
195 
196 	identify_arm_cpu(dv, ci);
197 
198 #ifdef CPU_STRONGARM
199 	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
200 	    ci->ci_arm_cpurev < 3) {
201 		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
202 	}
203 #endif
204 
205 #ifdef CPU_ARM8
206 	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
207 		int clock = arm8_clock_config(0, 0);
208 		char *fclk;
209 		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
210 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
211 		aprint_normal("%s", (clock & 2) ? " sync" : "");
212 		switch ((clock >> 2) & 3) {
213 		case 0:
214 			fclk = "bus clock";
215 			break;
216 		case 1:
217 			fclk = "ref clock";
218 			break;
219 		case 3:
220 			fclk = "pll";
221 			break;
222 		default:
223 			fclk = "illegal";
224 			break;
225 		}
226 		aprint_normal(" fclk source=%s\n", fclk);
227  	}
228 #endif
229 
230 	vfp_attach(ci);		/* XXX SMP */
231 }
232 
233 enum cpu_class {
234 	CPU_CLASS_NONE,
235 	CPU_CLASS_ARM2,
236 	CPU_CLASS_ARM2AS,
237 	CPU_CLASS_ARM3,
238 	CPU_CLASS_ARM6,
239 	CPU_CLASS_ARM7,
240 	CPU_CLASS_ARM7TDMI,
241 	CPU_CLASS_ARM8,
242 	CPU_CLASS_ARM9TDMI,
243 	CPU_CLASS_ARM9ES,
244 	CPU_CLASS_ARM9EJS,
245 	CPU_CLASS_ARM10E,
246 	CPU_CLASS_ARM10EJ,
247 	CPU_CLASS_SA1,
248 	CPU_CLASS_XSCALE,
249 	CPU_CLASS_ARM11J,
250 	CPU_CLASS_ARMV4,
251 	CPU_CLASS_CORTEX,
252 	CPU_CLASS_PJ4B,
253 };
254 
255 static const char * const generic_steppings[16] = {
256 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
257 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
258 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
259 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
260 };
261 
262 static const char * const pN_steppings[16] = {
263 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
264 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
265 };
266 
267 static const char * const sa110_steppings[16] = {
268 	"rev 0",	"step J",	"step K",	"step S",
269 	"step T",	"rev 5",	"rev 6",	"rev 7",
270 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
271 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
272 };
273 
274 static const char * const sa1100_steppings[16] = {
275 	"rev 0",	"step B",	"step C",	"rev 3",
276 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
277 	"step D",	"step E",	"rev 10"	"step G",
278 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
279 };
280 
281 static const char * const sa1110_steppings[16] = {
282 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
283 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
284 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
285 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
286 };
287 
288 static const char * const ixp12x0_steppings[16] = {
289 	"(IXP1200 step A)",		"(IXP1200 step B)",
290 	"rev 2",			"(IXP1200 step C)",
291 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
292 	"(IXP1240 step B)",		"(IXP1250 step B)",
293 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
294 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
295 };
296 
297 static const char * const xscale_steppings[16] = {
298 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
299 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
300 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
301 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
302 };
303 
304 static const char * const i80321_steppings[16] = {
305 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
306 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
307 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
308 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
309 };
310 
311 static const char * const i80219_steppings[16] = {
312 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
313 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
314 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
315 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
316 };
317 
318 /* Steppings for PXA2[15]0 */
319 static const char * const pxa2x0_steppings[16] = {
320 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
321 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
322 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
323 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
324 };
325 
326 /* Steppings for PXA255/26x.
327  * rev 5: PXA26x B0, rev 6: PXA255 A0
328  */
329 static const char * const pxa255_steppings[16] = {
330 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
331 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
332 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
333 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
334 };
335 
336 /* Stepping for PXA27x */
337 static const char * const pxa27x_steppings[16] = {
338 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
339 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
340 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
341 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
342 };
343 
344 static const char * const ixp425_steppings[16] = {
345 	"step 0",	"rev 1",	"rev 2",	"rev 3",
346 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
347 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
348 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
349 };
350 
351 struct cpuidtab {
352 	uint32_t	cpuid;
353 	enum		cpu_class cpu_class;
354 	const char	*cpu_classname;
355 	const char * const *cpu_steppings;
356 	char		cpu_arch[8];
357 };
358 
359 const struct cpuidtab cpuids[] = {
360 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
361 	  generic_steppings, "2" },
362 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
363 	  generic_steppings, "2" },
364 
365 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
366 	  generic_steppings, "2A" },
367 
368 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
369 	  generic_steppings, "3" },
370 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
371 	  generic_steppings, "3" },
372 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
373 	  generic_steppings, "3" },
374 
375 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
376 	  generic_steppings, "3" },
377 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
378 	  generic_steppings, "3" },
379 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
380 	  generic_steppings, "3" },
381 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
382 	  generic_steppings, "3" },
383 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
384 	  generic_steppings, "3" },
385 
386 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
387 	  generic_steppings, "4" },
388 
389 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
390 	  sa110_steppings, "4" },
391 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
392 	  sa1100_steppings, "4" },
393 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
394 	  sa1110_steppings, "4" },
395 
396 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
397 	  generic_steppings, "4" },
398 
399 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
400 	  ixp12x0_steppings, "4" },
401 
402 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
403 	  generic_steppings, "4T" },
404 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
405 	  generic_steppings, "4T" },
406 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
407 	  generic_steppings, "4T" },
408 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
409 	  generic_steppings, "4T" },
410 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
411 	  generic_steppings, "4T" },
412 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
413 	  generic_steppings, "4T" },
414 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
415 	  generic_steppings, "4T" },
416 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
417 	  generic_steppings, "4T" },
418 
419 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
420 	  generic_steppings, "5TE" },
421 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
422 	  generic_steppings, "5TE" },
423 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
424 	  generic_steppings, "5TE" },
425 	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
426 	  generic_steppings, "5TE" },
427 	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
428 	  generic_steppings, "5TE" },
429 
430 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
431 	  xscale_steppings, "5TE" },
432 
433 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
434 	  i80321_steppings, "5TE" },
435 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
436 	  i80321_steppings, "5TE" },
437 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
438 	  i80321_steppings, "5TE" },
439 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
440 	  i80321_steppings, "5TE" },
441 
442 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
443 	  i80219_steppings, "5TE" },
444 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
445 	  i80219_steppings, "5TE" },
446 
447 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
448 	  pxa27x_steppings, "5TE" },
449 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
450 	  pxa2x0_steppings, "5TE" },
451 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
452 	  pxa2x0_steppings, "5TE" },
453 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
454 	  pxa2x0_steppings, "5TE" },
455 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
456 	  pxa2x0_steppings, "5TE" },
457 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
458 	  pxa255_steppings, "5TE" },
459 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
460 	  pxa2x0_steppings, "5TE" },
461 
462 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
463 	  ixp425_steppings, "5TE" },
464 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
465 	  ixp425_steppings, "5TE" },
466 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
467 	  ixp425_steppings, "5TE" },
468 
469 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
470 	  generic_steppings, "5TE" },
471 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
472 	  generic_steppings, "5TE" },
473 
474 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
475 	  generic_steppings, "5TEJ" },
476 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
477 	  generic_steppings, "5TEJ" },
478 
479 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
480 	  pN_steppings, "6J" },
481 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
482 	  pN_steppings, "6J" },
483 #if 0
484 	/* The ARM1156T2-S only has a memory protection unit */
485 	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
486 	  pN_steppings, "6T2" },
487 #endif
488 	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
489 	  pN_steppings, "6ZK" },
490 
491 	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
492 	  generic_steppings, "6K" },
493 
494 	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
495 	  pN_steppings, "7A" },
496 	{ CPU_ID_CORTEXA7R0,	CPU_CLASS_CORTEX,	"Cortex-A7 r0",
497 	  pN_steppings, "7A" },
498 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
499 	  pN_steppings, "7A" },
500 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
501 	  pN_steppings, "7A" },
502 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
503 	  pN_steppings, "7A" },
504 	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
505 	  pN_steppings, "7A" },
506 	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
507 	  pN_steppings, "7A" },
508 	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
509 	  pN_steppings, "7A" },
510 	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
511 	  pN_steppings, "7A" },
512 	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
513 	  pN_steppings, "7A" },
514 
515 	{ CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
516 	  generic_steppings },
517 	{ CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
518 	  generic_steppings },
519 	{ CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV581x",
520 	  generic_steppings },
521 	{ CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B,    "Sheeva 88SV581x",
522 	  generic_steppings },
523 	{ CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
524 	  generic_steppings },
525 	{ CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B,    "Sheeva 88SV584x",
526 	  generic_steppings },
527 	{ CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B,      "Sheeva 88SV584x",
528 	  generic_steppings },
529 
530 
531 	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
532 };
533 
534 struct cpu_classtab {
535 	const char	*class_name;
536 	const char	*class_option;
537 };
538 
539 const struct cpu_classtab cpu_classes[] = {
540 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
541 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
542 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
543 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
544 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
545 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
546 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
547 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
548 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
549 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
550 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
551 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
552 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
553 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
554 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
555 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
556 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
557 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
558 	[CPU_CLASS_PJ4B] =	{ "Marvell",	"CPU_PJ4B" },
559 };
560 
561 /*
562  * Report the type of the specified arm processor. This uses the generic and
563  * arm specific information in the CPU structure to identify the processor.
564  * The remaining fields in the CPU structure are filled in appropriately.
565  */
566 
567 static const char * const wtnames[] = {
568 	"write-through",
569 	"write-back",
570 	"write-back",
571 	"**unknown 3**",
572 	"**unknown 4**",
573 	"write-back-locking",		/* XXX XScale-specific? */
574 	"write-back-locking-A",
575 	"write-back-locking-B",
576 	"**unknown 8**",
577 	"**unknown 9**",
578 	"**unknown 10**",
579 	"**unknown 11**",
580 	"**unknown 12**",
581 	"write-back-locking-line",
582 	"write-back-locking-C",
583 	"write-back-locking-D",
584 };
585 
586 static void
587 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
588 {
589 	if (info->cache_unified) {
590 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n",
591 		    info->dcache_size / 1024,
592 		    info->dcache_line_size, info->dcache_ways,
593 		    wtnames[info->cache_type], level + 1,
594 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
595 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
596 	} else {
597 		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n",
598 		    info->icache_size / 1024,
599 		    info->icache_line_size, info->icache_ways, level + 1,
600 		    info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
601 		    info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
602 		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n",
603 		    info->dcache_size / 1024,
604 		    info->dcache_line_size, info->dcache_ways,
605 		    wtnames[info->cache_type], level + 1,
606 		    info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V',
607 		    info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V');
608 	}
609 }
610 
611 static enum cpu_class
612 identify_arm_model(uint32_t cpuid, char *buf, size_t len)
613 {
614 	enum cpu_class cpu_class = CPU_CLASS_NONE;
615 	for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) {
616 		if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) {
617 			const char *steppingstr =
618 			    id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK];
619 			cpu_arch = id->cpu_arch;
620 			cpu_class = id->cpu_class;
621 			snprintf(buf, len, "%s%s%s (%s V%s core)",
622 			    id->cpu_classname,
623 			    steppingstr[0] == '*' ? "" : " ",
624 			    &steppingstr[steppingstr[0] == '*'],
625 			    cpu_classes[cpu_class].class_name,
626 			    cpu_arch);
627 			return cpu_class;
628 		}
629 	}
630 
631 	snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid);
632 	return cpu_class;
633 }
634 
635 void
636 identify_arm_cpu(device_t dv, struct cpu_info *ci)
637 {
638 	const uint32_t arm_cpuid = ci->ci_arm_cpuid;
639 	const char * const xname = device_xname(dv);
640 	char model[128];
641 
642 	if (arm_cpuid == 0) {
643 		aprint_error("Processor failed probe - no CPU ID\n");
644 		return;
645 	}
646 
647 	const enum cpu_class cpu_class = identify_arm_model(arm_cpuid,
648 	     model, sizeof(model));
649 	if (ci->ci_cpuid == 0) {
650 		cpu_setmodel("%s", model);
651 	}
652 
653 	if (ci->ci_data.cpu_cc_freq != 0) {
654 		char freqbuf[8];
655 		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
656 		    "Hz", 1000);
657 
658 		aprint_naive(": %s %s\n", freqbuf, model);
659 		aprint_normal(": %s %s\n", freqbuf, model);
660 	} else {
661 		aprint_naive(": %s\n", model);
662 		aprint_normal(": %s\n", model);
663 	}
664 
665 	aprint_normal("%s:", xname);
666 
667 	switch (cpu_class) {
668 	case CPU_CLASS_ARM6:
669 	case CPU_CLASS_ARM7:
670 	case CPU_CLASS_ARM7TDMI:
671 	case CPU_CLASS_ARM8:
672 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
673 			aprint_normal(" IDC disabled");
674 		else
675 			aprint_normal(" IDC enabled");
676 		break;
677 	case CPU_CLASS_ARM9TDMI:
678 	case CPU_CLASS_ARM9ES:
679 	case CPU_CLASS_ARM9EJS:
680 	case CPU_CLASS_ARM10E:
681 	case CPU_CLASS_ARM10EJ:
682 	case CPU_CLASS_SA1:
683 	case CPU_CLASS_XSCALE:
684 	case CPU_CLASS_ARM11J:
685 	case CPU_CLASS_ARMV4:
686 	case CPU_CLASS_CORTEX:
687 	case CPU_CLASS_PJ4B:
688 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
689 			aprint_normal(" DC disabled");
690 		else
691 			aprint_normal(" DC enabled");
692 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
693 			aprint_normal(" IC disabled");
694 		else
695 			aprint_normal(" IC enabled");
696 		break;
697 	default:
698 		break;
699 	}
700 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
701 		aprint_normal(" WB disabled");
702 	else
703 		aprint_normal(" WB enabled");
704 
705 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
706 		aprint_normal(" LABT");
707 	else
708 		aprint_normal(" EABT");
709 
710 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
711 		aprint_normal(" branch prediction enabled");
712 
713 	aprint_normal("\n");
714 
715 	if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) {
716 		identify_features(dv);
717 	}
718 
719 	/* Print cache info. */
720 	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
721 		print_cache_info(dv, &arm_pcache, 0);
722 	}
723 	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
724 		print_cache_info(dv, &arm_scache, 1);
725 	}
726 
727 
728 	switch (cpu_class) {
729 #ifdef CPU_ARM2
730 	case CPU_CLASS_ARM2:
731 #endif
732 #ifdef CPU_ARM250
733 	case CPU_CLASS_ARM2AS:
734 #endif
735 #ifdef CPU_ARM3
736 	case CPU_CLASS_ARM3:
737 #endif
738 #ifdef CPU_ARM6
739 	case CPU_CLASS_ARM6:
740 #endif
741 #ifdef CPU_ARM7
742 	case CPU_CLASS_ARM7:
743 #endif
744 #ifdef CPU_ARM7TDMI
745 	case CPU_CLASS_ARM7TDMI:
746 #endif
747 #ifdef CPU_ARM8
748 	case CPU_CLASS_ARM8:
749 #endif
750 #ifdef CPU_ARM9
751 	case CPU_CLASS_ARM9TDMI:
752 #endif
753 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
754 	case CPU_CLASS_ARM9ES:
755 	case CPU_CLASS_ARM9EJS:
756 #endif
757 #ifdef CPU_ARM10
758 	case CPU_CLASS_ARM10E:
759 	case CPU_CLASS_ARM10EJ:
760 #endif
761 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
762     defined(CPU_SA1110) || defined(CPU_IXP12X0)
763 	case CPU_CLASS_SA1:
764 #endif
765 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
766     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
767 	case CPU_CLASS_XSCALE:
768 #endif
769 #if defined(CPU_ARM11)
770 	case CPU_CLASS_ARM11J:
771 #endif
772 #if defined(CPU_CORTEX)
773 	case CPU_CLASS_CORTEX:
774 #endif
775 #if defined(CPU_PJ4B)
776 	case CPU_CLASS_PJ4B:
777 #endif
778 #if defined(CPU_FA526)
779 	case CPU_CLASS_ARMV4:
780 #endif
781 		break;
782 	default:
783 		if (cpu_classes[cpu_class].class_option == NULL) {
784 			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
785 			     ostype);
786 		} else {
787 			aprint_error_dev(dv, "This kernel does not fully support "
788 			       "this CPU.\n");
789 			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
790 			       "correct this.\n", cpu_classes[cpu_class].class_option);
791 		}
792 		break;
793 	}
794 }
795 
796 extern int cpu_instruction_set_attributes[6];
797 extern int cpu_memory_model_features[4];
798 extern int cpu_processor_features[2];
799 extern int cpu_simd_present;
800 extern int cpu_simdex_present;
801 
802 void
803 identify_features(device_t dv)
804 {
805 	cpu_instruction_set_attributes[0] = armreg_isar0_read();
806 	cpu_instruction_set_attributes[1] = armreg_isar1_read();
807 	cpu_instruction_set_attributes[2] = armreg_isar2_read();
808 	cpu_instruction_set_attributes[3] = armreg_isar3_read();
809 	cpu_instruction_set_attributes[4] = armreg_isar4_read();
810 	cpu_instruction_set_attributes[5] = armreg_isar5_read();
811 
812 	cpu_hwdiv_present =
813 	    ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2;
814 	cpu_simd_present =
815 	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
816 	cpu_simdex_present = cpu_simd_present
817 	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
818 	cpu_synchprim_present =
819 	    ((cpu_instruction_set_attributes[3] >> 8) & 0xf0)
820 	    | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f);
821 
822 	cpu_memory_model_features[0] = armreg_mmfr0_read();
823 	cpu_memory_model_features[1] = armreg_mmfr1_read();
824 	cpu_memory_model_features[2] = armreg_mmfr2_read();
825 	cpu_memory_model_features[3] = armreg_mmfr3_read();
826 
827 #if 0
828 	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
829 		/*
830 		 * Updates to the translation tables do not require a clean
831 		 * to the point of unification to ensure visibility by
832 		 * subsequent translation table walks.
833 		 */
834 		pmap_needs_pte_sync = 0;
835 	}
836 #endif
837 
838 	cpu_processor_features[0] = armreg_pfr0_read();
839 	cpu_processor_features[1] = armreg_pfr1_read();
840 
841 	aprint_verbose_dev(dv,
842 	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
843 	    cpu_instruction_set_attributes[0],
844 	    cpu_instruction_set_attributes[1],
845 	    cpu_instruction_set_attributes[2],
846 	    cpu_instruction_set_attributes[3],
847 	    cpu_instruction_set_attributes[4],
848 	    cpu_instruction_set_attributes[5]);
849 	aprint_verbose_dev(dv,
850 	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
851 	    cpu_memory_model_features[0], cpu_memory_model_features[1],
852 	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
853 	aprint_verbose_dev(dv,
854 	    "pfr: [0]=%#x [1]=%#x\n",
855 	    cpu_processor_features[0], cpu_processor_features[1]);
856 }
857