1 /* $NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $ */ 2 3 /* 4 * Copyright (c) 1995 Mark Brinicombe. 5 * Copyright (c) 1995 Brini. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Brini. 19 * 4. The name of the company nor the name of the author may be used to 20 * endorse or promote products derived from this software without specific 21 * prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * RiscBSD kernel project 36 * 37 * cpu.c 38 * 39 * Probing and configuration for the master CPU 40 * 41 * Created : 10/10/95 42 */ 43 44 #include "opt_armfpe.h" 45 #include "opt_multiprocessor.h" 46 47 #include <sys/param.h> 48 49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.104 2014/03/28 21:39:09 matt Exp $"); 50 51 #include <sys/systm.h> 52 #include <sys/conf.h> 53 #include <sys/cpu.h> 54 #include <sys/device.h> 55 #include <sys/kmem.h> 56 #include <sys/proc.h> 57 58 #include <uvm/uvm_extern.h> 59 60 #include <arm/locore.h> 61 #include <arm/undefined.h> 62 63 extern const char *cpu_arch; 64 65 #ifdef MULTIPROCESSOR 66 volatile u_int arm_cpu_hatched = 0; 67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0; 68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 }; 69 u_int arm_cpu_max = 1; 70 #endif 71 72 /* Prototypes */ 73 void identify_arm_cpu(device_t, struct cpu_info *); 74 void identify_cortex_caches(device_t); 75 void identify_features(device_t); 76 77 /* 78 * Identify the master (boot) CPU 79 */ 80 81 void 82 cpu_attach(device_t dv, cpuid_t id) 83 { 84 const char * const xname = device_xname(dv); 85 struct cpu_info *ci; 86 87 if (id == 0) { 88 ci = curcpu(); 89 90 /* Get the CPU ID from coprocessor 15 */ 91 92 ci->ci_arm_cpuid = cpu_id(); 93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK; 94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK; 95 } else { 96 #ifdef MULTIPROCESSOR 97 KASSERT(cpu_info[id] == NULL); 98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP); 99 KASSERT(ci != NULL); 100 ci->ci_cpl = IPL_HIGH; 101 ci->ci_cpuid = id; 102 uint32_t mpidr = armreg_mpidr_read(); 103 if (mpidr & MPIDR_MT) { 104 ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0; 105 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1; 106 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2; 107 } else { 108 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0; 109 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1; 110 } 111 ci->ci_data.cpu_core_id = id; 112 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq; 113 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid; 114 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype; 115 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev; 116 ci->ci_ctrl = cpu_info_store.ci_ctrl; 117 ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2]; 118 cpu_info[ci->ci_cpuid] = ci; 119 if ((arm_cpu_hatched & (1 << id)) == 0) { 120 ci->ci_dev = dv; 121 dv->dv_private = ci; 122 aprint_naive(": disabled\n"); 123 aprint_normal(": disabled (unresponsive)\n"); 124 return; 125 } 126 #else 127 aprint_naive(": disabled\n"); 128 aprint_normal(": disabled (uniprocessor kernel)\n"); 129 return; 130 #endif 131 } 132 133 ci->ci_dev = dv; 134 dv->dv_private = ci; 135 136 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC, 137 NULL, xname, "arm700swibug"); 138 139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP, 140 NULL, xname, "vector abort"); 141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP, 142 NULL, xname, "terminal abort"); 143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP, 144 NULL, xname, "external linefetch abort (S)"); 145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP, 146 NULL, xname, "external linefetch abort (P)"); 147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP, 148 NULL, xname, "external non-linefetch abort (S)"); 149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP, 150 NULL, xname, "external non-linefetch abort (P)"); 151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP, 152 NULL, xname, "external translation abort (L1)"); 153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP, 154 NULL, xname, "external translation abort (L2)"); 155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP, 156 NULL, xname, "alignment abort (0)"); 157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP, 158 NULL, xname, "alignment abort (1)"); 159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP, 160 NULL, xname, "translation abort (S)"); 161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP, 162 NULL, xname, "translation abort (P)"); 163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP, 164 NULL, xname, "domain abort (S)"); 165 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP, 166 NULL, xname, "domain abort (P)"); 167 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP, 168 NULL, xname, "permission abort (S)"); 169 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP, 170 NULL, xname, "permission abort (P)"); 171 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP, 172 NULL, xname, "undefined insn traps"); 173 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP, 174 NULL, xname, "undefined cp15 insn traps"); 175 176 #ifdef MULTIPROCESSOR 177 /* 178 * and we are done if this is a secondary processor. 179 */ 180 if (id != 0) { 181 #if 1 182 aprint_naive("\n"); 183 aprint_normal("\n"); 184 #else 185 aprint_naive(": %s\n", cpu_getmodel()); 186 aprint_normal(": %s\n", cpu_getmodel()); 187 #endif 188 mi_cpu_attach(ci); 189 #ifdef ARM_MMU_EXTENDED 190 pmap_tlb_info_attach(&pmap_tlb0_info, ci); 191 #endif 192 return; 193 } 194 #endif 195 196 identify_arm_cpu(dv, ci); 197 198 #ifdef CPU_STRONGARM 199 if (ci->ci_arm_cputype == CPU_ID_SA110 && 200 ci->ci_arm_cpurev < 3) { 201 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n"); 202 } 203 #endif 204 205 #ifdef CPU_ARM8 206 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) { 207 int clock = arm8_clock_config(0, 0); 208 char *fclk; 209 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock); 210 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : ""); 211 aprint_normal("%s", (clock & 2) ? " sync" : ""); 212 switch ((clock >> 2) & 3) { 213 case 0: 214 fclk = "bus clock"; 215 break; 216 case 1: 217 fclk = "ref clock"; 218 break; 219 case 3: 220 fclk = "pll"; 221 break; 222 default: 223 fclk = "illegal"; 224 break; 225 } 226 aprint_normal(" fclk source=%s\n", fclk); 227 } 228 #endif 229 230 vfp_attach(ci); /* XXX SMP */ 231 } 232 233 enum cpu_class { 234 CPU_CLASS_NONE, 235 CPU_CLASS_ARM2, 236 CPU_CLASS_ARM2AS, 237 CPU_CLASS_ARM3, 238 CPU_CLASS_ARM6, 239 CPU_CLASS_ARM7, 240 CPU_CLASS_ARM7TDMI, 241 CPU_CLASS_ARM8, 242 CPU_CLASS_ARM9TDMI, 243 CPU_CLASS_ARM9ES, 244 CPU_CLASS_ARM9EJS, 245 CPU_CLASS_ARM10E, 246 CPU_CLASS_ARM10EJ, 247 CPU_CLASS_SA1, 248 CPU_CLASS_XSCALE, 249 CPU_CLASS_ARM11J, 250 CPU_CLASS_ARMV4, 251 CPU_CLASS_CORTEX, 252 CPU_CLASS_PJ4B, 253 }; 254 255 static const char * const generic_steppings[16] = { 256 "rev 0", "rev 1", "rev 2", "rev 3", 257 "rev 4", "rev 5", "rev 6", "rev 7", 258 "rev 8", "rev 9", "rev 10", "rev 11", 259 "rev 12", "rev 13", "rev 14", "rev 15", 260 }; 261 262 static const char * const pN_steppings[16] = { 263 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7", 264 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15", 265 }; 266 267 static const char * const sa110_steppings[16] = { 268 "rev 0", "step J", "step K", "step S", 269 "step T", "rev 5", "rev 6", "rev 7", 270 "rev 8", "rev 9", "rev 10", "rev 11", 271 "rev 12", "rev 13", "rev 14", "rev 15", 272 }; 273 274 static const char * const sa1100_steppings[16] = { 275 "rev 0", "step B", "step C", "rev 3", 276 "rev 4", "rev 5", "rev 6", "rev 7", 277 "step D", "step E", "rev 10" "step G", 278 "rev 12", "rev 13", "rev 14", "rev 15", 279 }; 280 281 static const char * const sa1110_steppings[16] = { 282 "step A-0", "rev 1", "rev 2", "rev 3", 283 "step B-0", "step B-1", "step B-2", "step B-3", 284 "step B-4", "step B-5", "rev 10", "rev 11", 285 "rev 12", "rev 13", "rev 14", "rev 15", 286 }; 287 288 static const char * const ixp12x0_steppings[16] = { 289 "(IXP1200 step A)", "(IXP1200 step B)", 290 "rev 2", "(IXP1200 step C)", 291 "(IXP1200 step D)", "(IXP1240/1250 step A)", 292 "(IXP1240 step B)", "(IXP1250 step B)", 293 "rev 8", "rev 9", "rev 10", "rev 11", 294 "rev 12", "rev 13", "rev 14", "rev 15", 295 }; 296 297 static const char * const xscale_steppings[16] = { 298 "step A-0", "step A-1", "step B-0", "step C-0", 299 "step D-0", "rev 5", "rev 6", "rev 7", 300 "rev 8", "rev 9", "rev 10", "rev 11", 301 "rev 12", "rev 13", "rev 14", "rev 15", 302 }; 303 304 static const char * const i80321_steppings[16] = { 305 "step A-0", "step B-0", "rev 2", "rev 3", 306 "rev 4", "rev 5", "rev 6", "rev 7", 307 "rev 8", "rev 9", "rev 10", "rev 11", 308 "rev 12", "rev 13", "rev 14", "rev 15", 309 }; 310 311 static const char * const i80219_steppings[16] = { 312 "step A-0", "rev 1", "rev 2", "rev 3", 313 "rev 4", "rev 5", "rev 6", "rev 7", 314 "rev 8", "rev 9", "rev 10", "rev 11", 315 "rev 12", "rev 13", "rev 14", "rev 15", 316 }; 317 318 /* Steppings for PXA2[15]0 */ 319 static const char * const pxa2x0_steppings[16] = { 320 "step A-0", "step A-1", "step B-0", "step B-1", 321 "step B-2", "step C-0", "rev 6", "rev 7", 322 "rev 8", "rev 9", "rev 10", "rev 11", 323 "rev 12", "rev 13", "rev 14", "rev 15", 324 }; 325 326 /* Steppings for PXA255/26x. 327 * rev 5: PXA26x B0, rev 6: PXA255 A0 328 */ 329 static const char * const pxa255_steppings[16] = { 330 "rev 0", "rev 1", "rev 2", "step A-0", 331 "rev 4", "step B-0", "step A-0", "rev 7", 332 "rev 8", "rev 9", "rev 10", "rev 11", 333 "rev 12", "rev 13", "rev 14", "rev 15", 334 }; 335 336 /* Stepping for PXA27x */ 337 static const char * const pxa27x_steppings[16] = { 338 "step A-0", "step A-1", "step B-0", "step B-1", 339 "step C-0", "rev 5", "rev 6", "rev 7", 340 "rev 8", "rev 9", "rev 10", "rev 11", 341 "rev 12", "rev 13", "rev 14", "rev 15", 342 }; 343 344 static const char * const ixp425_steppings[16] = { 345 "step 0", "rev 1", "rev 2", "rev 3", 346 "rev 4", "rev 5", "rev 6", "rev 7", 347 "rev 8", "rev 9", "rev 10", "rev 11", 348 "rev 12", "rev 13", "rev 14", "rev 15", 349 }; 350 351 struct cpuidtab { 352 uint32_t cpuid; 353 enum cpu_class cpu_class; 354 const char *cpu_classname; 355 const char * const *cpu_steppings; 356 char cpu_arch[8]; 357 }; 358 359 const struct cpuidtab cpuids[] = { 360 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2", 361 generic_steppings, "2" }, 362 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250", 363 generic_steppings, "2" }, 364 365 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3", 366 generic_steppings, "2A" }, 367 368 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600", 369 generic_steppings, "3" }, 370 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610", 371 generic_steppings, "3" }, 372 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620", 373 generic_steppings, "3" }, 374 375 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700", 376 generic_steppings, "3" }, 377 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710", 378 generic_steppings, "3" }, 379 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500", 380 generic_steppings, "3" }, 381 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a", 382 generic_steppings, "3" }, 383 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE", 384 generic_steppings, "3" }, 385 386 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810", 387 generic_steppings, "4" }, 388 389 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110", 390 sa110_steppings, "4" }, 391 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100", 392 sa1100_steppings, "4" }, 393 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110", 394 sa1110_steppings, "4" }, 395 396 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526", 397 generic_steppings, "4" }, 398 399 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200", 400 ixp12x0_steppings, "4" }, 401 402 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T", 403 generic_steppings, "4T" }, 404 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T", 405 generic_steppings, "4T" }, 406 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)", 407 generic_steppings, "4T" }, 408 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)", 409 generic_steppings, "4T" }, 410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T", 411 generic_steppings, "4T" }, 412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T", 413 generic_steppings, "4T" }, 414 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T", 415 generic_steppings, "4T" }, 416 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T", 417 generic_steppings, "4T" }, 418 419 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S", 420 generic_steppings, "5TE" }, 421 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S", 422 generic_steppings, "5TE" }, 423 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S", 424 generic_steppings, "5TE" }, 425 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131", 426 generic_steppings, "5TE" }, 427 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd", 428 generic_steppings, "5TE" }, 429 430 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200", 431 xscale_steppings, "5TE" }, 432 433 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz", 434 i80321_steppings, "5TE" }, 435 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz", 436 i80321_steppings, "5TE" }, 437 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz", 438 i80321_steppings, "5TE" }, 439 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz", 440 i80321_steppings, "5TE" }, 441 442 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz", 443 i80219_steppings, "5TE" }, 444 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz", 445 i80219_steppings, "5TE" }, 446 447 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x", 448 pxa27x_steppings, "5TE" }, 449 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250", 450 pxa2x0_steppings, "5TE" }, 451 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210", 452 pxa2x0_steppings, "5TE" }, 453 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250", 454 pxa2x0_steppings, "5TE" }, 455 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210", 456 pxa2x0_steppings, "5TE" }, 457 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x", 458 pxa255_steppings, "5TE" }, 459 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210", 460 pxa2x0_steppings, "5TE" }, 461 462 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz", 463 ixp425_steppings, "5TE" }, 464 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz", 465 ixp425_steppings, "5TE" }, 466 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz", 467 ixp425_steppings, "5TE" }, 468 469 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E", 470 generic_steppings, "5TE" }, 471 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S", 472 generic_steppings, "5TE" }, 473 474 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S", 475 generic_steppings, "5TEJ" }, 476 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S", 477 generic_steppings, "5TEJ" }, 478 479 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0", 480 pN_steppings, "6J" }, 481 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1", 482 pN_steppings, "6J" }, 483 #if 0 484 /* The ARM1156T2-S only has a memory protection unit */ 485 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0", 486 pN_steppings, "6T2" }, 487 #endif 488 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0", 489 pN_steppings, "6ZK" }, 490 491 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore", 492 generic_steppings, "6K" }, 493 494 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0", 495 pN_steppings, "7A" }, 496 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0", 497 pN_steppings, "7A" }, 498 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1", 499 pN_steppings, "7A" }, 500 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2", 501 pN_steppings, "7A" }, 502 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3", 503 pN_steppings, "7A" }, 504 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2", 505 pN_steppings, "7A" }, 506 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3", 507 pN_steppings, "7A" }, 508 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4", 509 pN_steppings, "7A" }, 510 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2", 511 pN_steppings, "7A" }, 512 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3", 513 pN_steppings, "7A" }, 514 515 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 516 generic_steppings }, 517 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 518 generic_steppings }, 519 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 520 generic_steppings }, 521 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 522 generic_steppings }, 523 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 524 generic_steppings }, 525 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 526 generic_steppings }, 527 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 528 generic_steppings }, 529 530 531 { 0, CPU_CLASS_NONE, NULL, NULL, "" } 532 }; 533 534 struct cpu_classtab { 535 const char *class_name; 536 const char *class_option; 537 }; 538 539 const struct cpu_classtab cpu_classes[] = { 540 [CPU_CLASS_NONE] = { "unknown", NULL }, 541 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" }, 542 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" }, 543 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" }, 544 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" }, 545 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" }, 546 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" }, 547 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" }, 548 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL }, 549 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" }, 550 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" }, 551 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" }, 552 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" }, 553 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" }, 554 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." }, 555 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" }, 556 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" }, 557 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" }, 558 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" }, 559 }; 560 561 /* 562 * Report the type of the specified arm processor. This uses the generic and 563 * arm specific information in the CPU structure to identify the processor. 564 * The remaining fields in the CPU structure are filled in appropriately. 565 */ 566 567 static const char * const wtnames[] = { 568 "write-through", 569 "write-back", 570 "write-back", 571 "**unknown 3**", 572 "**unknown 4**", 573 "write-back-locking", /* XXX XScale-specific? */ 574 "write-back-locking-A", 575 "write-back-locking-B", 576 "**unknown 8**", 577 "**unknown 9**", 578 "**unknown 10**", 579 "**unknown 11**", 580 "**unknown 12**", 581 "write-back-locking-line", 582 "write-back-locking-C", 583 "write-back-locking-D", 584 }; 585 586 static void 587 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level) 588 { 589 if (info->cache_unified) { 590 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n", 591 info->dcache_size / 1024, 592 info->dcache_line_size, info->dcache_ways, 593 wtnames[info->cache_type], level + 1, 594 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 595 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 596 } else { 597 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n", 598 info->icache_size / 1024, 599 info->icache_line_size, info->icache_ways, level + 1, 600 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 601 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 602 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n", 603 info->dcache_size / 1024, 604 info->dcache_line_size, info->dcache_ways, 605 wtnames[info->cache_type], level + 1, 606 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 607 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 608 } 609 } 610 611 static enum cpu_class 612 identify_arm_model(uint32_t cpuid, char *buf, size_t len) 613 { 614 enum cpu_class cpu_class = CPU_CLASS_NONE; 615 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) { 616 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) { 617 const char *steppingstr = 618 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK]; 619 cpu_arch = id->cpu_arch; 620 cpu_class = id->cpu_class; 621 snprintf(buf, len, "%s%s%s (%s V%s core)", 622 id->cpu_classname, 623 steppingstr[0] == '*' ? "" : " ", 624 &steppingstr[steppingstr[0] == '*'], 625 cpu_classes[cpu_class].class_name, 626 cpu_arch); 627 return cpu_class; 628 } 629 } 630 631 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid); 632 return cpu_class; 633 } 634 635 void 636 identify_arm_cpu(device_t dv, struct cpu_info *ci) 637 { 638 const uint32_t arm_cpuid = ci->ci_arm_cpuid; 639 const char * const xname = device_xname(dv); 640 char model[128]; 641 642 if (arm_cpuid == 0) { 643 aprint_error("Processor failed probe - no CPU ID\n"); 644 return; 645 } 646 647 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid, 648 model, sizeof(model)); 649 if (ci->ci_cpuid == 0) { 650 cpu_setmodel("%s", model); 651 } 652 653 if (ci->ci_data.cpu_cc_freq != 0) { 654 char freqbuf[8]; 655 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq, 656 "Hz", 1000); 657 658 aprint_naive(": %s %s\n", freqbuf, model); 659 aprint_normal(": %s %s\n", freqbuf, model); 660 } else { 661 aprint_naive(": %s\n", model); 662 aprint_normal(": %s\n", model); 663 } 664 665 aprint_normal("%s:", xname); 666 667 switch (cpu_class) { 668 case CPU_CLASS_ARM6: 669 case CPU_CLASS_ARM7: 670 case CPU_CLASS_ARM7TDMI: 671 case CPU_CLASS_ARM8: 672 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0) 673 aprint_normal(" IDC disabled"); 674 else 675 aprint_normal(" IDC enabled"); 676 break; 677 case CPU_CLASS_ARM9TDMI: 678 case CPU_CLASS_ARM9ES: 679 case CPU_CLASS_ARM9EJS: 680 case CPU_CLASS_ARM10E: 681 case CPU_CLASS_ARM10EJ: 682 case CPU_CLASS_SA1: 683 case CPU_CLASS_XSCALE: 684 case CPU_CLASS_ARM11J: 685 case CPU_CLASS_ARMV4: 686 case CPU_CLASS_CORTEX: 687 case CPU_CLASS_PJ4B: 688 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0) 689 aprint_normal(" DC disabled"); 690 else 691 aprint_normal(" DC enabled"); 692 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0) 693 aprint_normal(" IC disabled"); 694 else 695 aprint_normal(" IC enabled"); 696 break; 697 default: 698 break; 699 } 700 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0) 701 aprint_normal(" WB disabled"); 702 else 703 aprint_normal(" WB enabled"); 704 705 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE) 706 aprint_normal(" LABT"); 707 else 708 aprint_normal(" EABT"); 709 710 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE) 711 aprint_normal(" branch prediction enabled"); 712 713 aprint_normal("\n"); 714 715 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) { 716 identify_features(dv); 717 } 718 719 /* Print cache info. */ 720 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) { 721 print_cache_info(dv, &arm_pcache, 0); 722 } 723 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) { 724 print_cache_info(dv, &arm_scache, 1); 725 } 726 727 728 switch (cpu_class) { 729 #ifdef CPU_ARM2 730 case CPU_CLASS_ARM2: 731 #endif 732 #ifdef CPU_ARM250 733 case CPU_CLASS_ARM2AS: 734 #endif 735 #ifdef CPU_ARM3 736 case CPU_CLASS_ARM3: 737 #endif 738 #ifdef CPU_ARM6 739 case CPU_CLASS_ARM6: 740 #endif 741 #ifdef CPU_ARM7 742 case CPU_CLASS_ARM7: 743 #endif 744 #ifdef CPU_ARM7TDMI 745 case CPU_CLASS_ARM7TDMI: 746 #endif 747 #ifdef CPU_ARM8 748 case CPU_CLASS_ARM8: 749 #endif 750 #ifdef CPU_ARM9 751 case CPU_CLASS_ARM9TDMI: 752 #endif 753 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA) 754 case CPU_CLASS_ARM9ES: 755 case CPU_CLASS_ARM9EJS: 756 #endif 757 #ifdef CPU_ARM10 758 case CPU_CLASS_ARM10E: 759 case CPU_CLASS_ARM10EJ: 760 #endif 761 #if defined(CPU_SA110) || defined(CPU_SA1100) || \ 762 defined(CPU_SA1110) || defined(CPU_IXP12X0) 763 case CPU_CLASS_SA1: 764 #endif 765 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ 766 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425) 767 case CPU_CLASS_XSCALE: 768 #endif 769 #if defined(CPU_ARM11) 770 case CPU_CLASS_ARM11J: 771 #endif 772 #if defined(CPU_CORTEX) 773 case CPU_CLASS_CORTEX: 774 #endif 775 #if defined(CPU_PJ4B) 776 case CPU_CLASS_PJ4B: 777 #endif 778 #if defined(CPU_FA526) 779 case CPU_CLASS_ARMV4: 780 #endif 781 break; 782 default: 783 if (cpu_classes[cpu_class].class_option == NULL) { 784 aprint_error_dev(dv, "%s does not fully support this CPU.\n", 785 ostype); 786 } else { 787 aprint_error_dev(dv, "This kernel does not fully support " 788 "this CPU.\n"); 789 aprint_normal_dev(dv, "Recompile with \"options %s\" to " 790 "correct this.\n", cpu_classes[cpu_class].class_option); 791 } 792 break; 793 } 794 } 795 796 extern int cpu_instruction_set_attributes[6]; 797 extern int cpu_memory_model_features[4]; 798 extern int cpu_processor_features[2]; 799 extern int cpu_simd_present; 800 extern int cpu_simdex_present; 801 802 void 803 identify_features(device_t dv) 804 { 805 cpu_instruction_set_attributes[0] = armreg_isar0_read(); 806 cpu_instruction_set_attributes[1] = armreg_isar1_read(); 807 cpu_instruction_set_attributes[2] = armreg_isar2_read(); 808 cpu_instruction_set_attributes[3] = armreg_isar3_read(); 809 cpu_instruction_set_attributes[4] = armreg_isar4_read(); 810 cpu_instruction_set_attributes[5] = armreg_isar5_read(); 811 812 cpu_hwdiv_present = 813 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2; 814 cpu_simd_present = 815 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3; 816 cpu_simdex_present = cpu_simd_present 817 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2; 818 cpu_synchprim_present = 819 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0) 820 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f); 821 822 cpu_memory_model_features[0] = armreg_mmfr0_read(); 823 cpu_memory_model_features[1] = armreg_mmfr1_read(); 824 cpu_memory_model_features[2] = armreg_mmfr2_read(); 825 cpu_memory_model_features[3] = armreg_mmfr3_read(); 826 827 #if 0 828 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) { 829 /* 830 * Updates to the translation tables do not require a clean 831 * to the point of unification to ensure visibility by 832 * subsequent translation table walks. 833 */ 834 pmap_needs_pte_sync = 0; 835 } 836 #endif 837 838 cpu_processor_features[0] = armreg_pfr0_read(); 839 cpu_processor_features[1] = armreg_pfr1_read(); 840 841 aprint_verbose_dev(dv, 842 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n", 843 cpu_instruction_set_attributes[0], 844 cpu_instruction_set_attributes[1], 845 cpu_instruction_set_attributes[2], 846 cpu_instruction_set_attributes[3], 847 cpu_instruction_set_attributes[4], 848 cpu_instruction_set_attributes[5]); 849 aprint_verbose_dev(dv, 850 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n", 851 cpu_memory_model_features[0], cpu_memory_model_features[1], 852 cpu_memory_model_features[2], cpu_memory_model_features[3]); 853 aprint_verbose_dev(dv, 854 "pfr: [0]=%#x [1]=%#x\n", 855 cpu_processor_features[0], cpu_processor_features[1]); 856 } 857