xref: /netbsd-src/sys/arch/arm/arm32/cpu.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: cpu.c,v 1.76 2010/06/19 20:42:43 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Mark Brinicombe.
5  * Copyright (c) 1995 Brini.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Brini.
19  * 4. The name of the company nor the name of the author may be used to
20  *    endorse or promote products derived from this software without specific
21  *    prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * RiscBSD kernel project
36  *
37  * cpu.c
38  *
39  * Probing and configuration for the master CPU
40  *
41  * Created      : 10/10/95
42  */
43 
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
46 
47 #include <sys/param.h>
48 
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.76 2010/06/19 20:42:43 matt Exp $");
50 
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
54 #include <sys/proc.h>
55 #include <sys/conf.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
58 
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
61 
62 #ifdef ARMFPE
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
65 #endif
66 
67 #ifdef FPU_VFP
68 #include <arm/vfpvar.h>
69 #endif
70 
71 char cpu_model[256];
72 
73 /* Prototypes */
74 void identify_arm_cpu(struct device *dv, struct cpu_info *);
75 
76 /*
77  * Identify the master (boot) CPU
78  */
79 
80 void
81 cpu_attach(struct device *dv)
82 {
83 	int usearmfpe;
84 
85 	usearmfpe = 1;	/* when compiled in, its enabled by default */
86 
87 	curcpu()->ci_dev = dv;
88 
89 	evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount, EVCNT_TYPE_MISC,
90 	    NULL, dv->dv_xname, "arm700swibug");
91 
92 	/* Get the CPU ID from coprocessor 15 */
93 
94 	curcpu()->ci_arm_cpuid = cpu_id();
95 	curcpu()->ci_arm_cputype = curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK;
96 	curcpu()->ci_arm_cpurev =
97 	    curcpu()->ci_arm_cpuid & CPU_ID_REVISION_MASK;
98 
99 	identify_arm_cpu(dv, curcpu());
100 
101 	if (curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
102 	    curcpu()->ci_arm_cpurev < 3) {
103 		aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
104 		       dv->dv_xname);
105 	}
106 
107 #ifdef CPU_ARM8
108 	if ((curcpu()->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
109 		int clock = arm8_clock_config(0, 0);
110 		char *fclk;
111 		aprint_normal("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
112 		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
113 		aprint_normal("%s", (clock & 2) ? " sync" : "");
114 		switch ((clock >> 2) & 3) {
115 		case 0:
116 			fclk = "bus clock";
117 			break;
118 		case 1:
119 			fclk = "ref clock";
120 			break;
121 		case 3:
122 			fclk = "pll";
123 			break;
124 		default:
125 			fclk = "illegal";
126 			break;
127 		}
128 		aprint_normal(" fclk source=%s\n", fclk);
129  	}
130 #endif
131 
132 #ifdef ARMFPE
133 	/*
134 	 * Ok now we test for an FPA
135 	 * At this point no floating point emulator has been installed.
136 	 * This means any FP instruction will cause undefined exception.
137 	 * We install a temporay coproc 1 handler which will modify
138 	 * undefined_test if it is called.
139 	 * We then try to read the FP status register. If undefined_test
140 	 * has been decremented then the instruction was not handled by
141 	 * an FPA so we know the FPA is missing. If undefined_test is
142 	 * still 1 then we know the instruction was handled by an FPA.
143 	 * We then remove our test handler and look at the
144 	 * FP status register for identification.
145 	 */
146 
147 	/*
148 	 * Ok if ARMFPE is defined and the boot options request the
149 	 * ARM FPE then it will be installed as the FPE.
150 	 * This is just while I work on integrating the new FPE.
151 	 * It means the new FPE gets installed if compiled int (ARMFPE
152 	 * defined) and also gives me a on/off option when I boot in
153 	 * case the new FPE is causing panics.
154 	 */
155 
156 
157 	if (boot_args)
158 		get_bootconf_option(boot_args, "armfpe",
159 		    BOOTOPT_TYPE_BOOLEAN, &usearmfpe);
160 	if (usearmfpe)
161 		initialise_arm_fpe();
162 #endif
163 
164 #ifdef FPU_VFP
165 	vfp_attach();
166 #endif
167 }
168 
169 enum cpu_class {
170 	CPU_CLASS_NONE,
171 	CPU_CLASS_ARM2,
172 	CPU_CLASS_ARM2AS,
173 	CPU_CLASS_ARM3,
174 	CPU_CLASS_ARM6,
175 	CPU_CLASS_ARM7,
176 	CPU_CLASS_ARM7TDMI,
177 	CPU_CLASS_ARM8,
178 	CPU_CLASS_ARM9TDMI,
179 	CPU_CLASS_ARM9ES,
180 	CPU_CLASS_ARM9EJS,
181 	CPU_CLASS_ARM10E,
182 	CPU_CLASS_ARM10EJ,
183 	CPU_CLASS_SA1,
184 	CPU_CLASS_XSCALE,
185 	CPU_CLASS_ARM11J,
186 	CPU_CLASS_ARMV4,
187 	CPU_CLASS_CORTEX,
188 };
189 
190 static const char * const generic_steppings[16] = {
191 	"rev 0",	"rev 1",	"rev 2",	"rev 3",
192 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
193 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
194 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
195 };
196 
197 static const char * const pN_steppings[16] = {
198 	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
199 	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
200 };
201 
202 static const char * const sa110_steppings[16] = {
203 	"rev 0",	"step J",	"step K",	"step S",
204 	"step T",	"rev 5",	"rev 6",	"rev 7",
205 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
206 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
207 };
208 
209 static const char * const sa1100_steppings[16] = {
210 	"rev 0",	"step B",	"step C",	"rev 3",
211 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
212 	"step D",	"step E",	"rev 10"	"step G",
213 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
214 };
215 
216 static const char * const sa1110_steppings[16] = {
217 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
218 	"step B-0",	"step B-1",	"step B-2",	"step B-3",
219 	"step B-4",	"step B-5",	"rev 10",	"rev 11",
220 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
221 };
222 
223 static const char * const ixp12x0_steppings[16] = {
224 	"(IXP1200 step A)",		"(IXP1200 step B)",
225 	"rev 2",			"(IXP1200 step C)",
226 	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
227 	"(IXP1240 step B)",		"(IXP1250 step B)",
228 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
229 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
230 };
231 
232 static const char * const xscale_steppings[16] = {
233 	"step A-0",	"step A-1",	"step B-0",	"step C-0",
234 	"step D-0",	"rev 5",	"rev 6",	"rev 7",
235 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
236 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
237 };
238 
239 static const char * const i80321_steppings[16] = {
240 	"step A-0",	"step B-0",	"rev 2",	"rev 3",
241 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
242 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
243 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
244 };
245 
246 static const char * const i80219_steppings[16] = {
247 	"step A-0",	"rev 1",	"rev 2",	"rev 3",
248 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
249 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
250 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
251 };
252 
253 /* Steppings for PXA2[15]0 */
254 static const char * const pxa2x0_steppings[16] = {
255 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
256 	"step B-2",	"step C-0",	"rev 6",	"rev 7",
257 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
258 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
259 };
260 
261 /* Steppings for PXA255/26x.
262  * rev 5: PXA26x B0, rev 6: PXA255 A0
263  */
264 static const char * const pxa255_steppings[16] = {
265 	"rev 0",	"rev 1",	"rev 2",	"step A-0",
266 	"rev 4",	"step B-0",	"step A-0",	"rev 7",
267 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
268 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
269 };
270 
271 /* Stepping for PXA27x */
272 static const char * const pxa27x_steppings[16] = {
273 	"step A-0",	"step A-1",	"step B-0",	"step B-1",
274 	"step C-0",	"rev 5",	"rev 6",	"rev 7",
275 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
276 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
277 };
278 
279 static const char * const ixp425_steppings[16] = {
280 	"step 0",	"rev 1",	"rev 2",	"rev 3",
281 	"rev 4",	"rev 5",	"rev 6",	"rev 7",
282 	"rev 8",	"rev 9",	"rev 10",	"rev 11",
283 	"rev 12",	"rev 13",	"rev 14",	"rev 15",
284 };
285 
286 struct cpuidtab {
287 	u_int32_t	cpuid;
288 	enum		cpu_class cpu_class;
289 	const char	*cpu_classname;
290 	const char * const *cpu_steppings;
291 };
292 
293 const struct cpuidtab cpuids[] = {
294 	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
295 	  generic_steppings },
296 	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
297 	  generic_steppings },
298 
299 	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
300 	  generic_steppings },
301 
302 	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
303 	  generic_steppings },
304 	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
305 	  generic_steppings },
306 	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
307 	  generic_steppings },
308 
309 	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
310 	  generic_steppings },
311 	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
312 	  generic_steppings },
313 	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
314 	  generic_steppings },
315 	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
316 	  generic_steppings },
317 	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
318 	  generic_steppings },
319 	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
320 	  generic_steppings },
321 	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
322 	  generic_steppings },
323 	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
324 	  generic_steppings },
325 	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
326 	  generic_steppings },
327 
328 	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
329 	  generic_steppings },
330 
331 	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
332 	  generic_steppings },
333 	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
334 	  generic_steppings },
335 	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
336 	  generic_steppings },
337 	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
338 	  generic_steppings },
339 	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
340 	  generic_steppings },
341 	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
342 	  generic_steppings },
343 	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
344 	  generic_steppings },
345 	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
346 	  generic_steppings },
347 
348 	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
349 	  generic_steppings },
350 	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
351 	  generic_steppings },
352 	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
353 	  generic_steppings },
354 
355 	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
356 	  sa110_steppings },
357 	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
358 	  sa1100_steppings },
359 	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
360 	  sa1110_steppings },
361 
362 	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
363 	  ixp12x0_steppings },
364 
365 	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
366 	  xscale_steppings },
367 
368 	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
369 	  i80321_steppings },
370 	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
371 	  i80321_steppings },
372 	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
373 	  i80321_steppings },
374 	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
375 	  i80321_steppings },
376 
377 	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
378 	  i80219_steppings },
379 	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
380 	  i80219_steppings },
381 
382 	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
383 	  pxa27x_steppings },
384 	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
385 	  pxa2x0_steppings },
386 	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
387 	  pxa2x0_steppings },
388 	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
389 	  pxa2x0_steppings },
390 	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
391 	  pxa2x0_steppings },
392 	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
393 	  pxa255_steppings },
394 	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
395 	  pxa2x0_steppings },
396 
397 	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
398 	  ixp425_steppings },
399 	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
400 	  ixp425_steppings },
401 	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
402 	  ixp425_steppings },
403 
404 	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
405 	  pN_steppings },
406 	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
407 	  pN_steppings },
408 	{ CPU_ID_ARM1176JS,	CPU_CLASS_ARM11J,	"ARM1176J-S r0",
409 	  pN_steppings },
410 
411 	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
412 	  pN_steppings },
413 	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
414 	  pN_steppings },
415 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
416 	  pN_steppings },
417 	{ CPU_ID_CORTEXA9R1,	CPU_CLASS_CORTEX,	"Cortex-A9 r1",
418 	  pN_steppings },
419 	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_ARM11J,	"Cortex-A8 r3",
420 	  pN_steppings },
421 
422 	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
423 	  generic_steppings },
424 
425 	{ 0, CPU_CLASS_NONE, NULL, NULL }
426 };
427 
428 struct cpu_classtab {
429 	const char	*class_name;
430 	const char	*class_option;
431 };
432 
433 const struct cpu_classtab cpu_classes[] = {
434 	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
435 	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
436 	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
437 	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
438 	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
439 	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
440 	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
441 	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
442 	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
443 	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
444 	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
445 	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
446 	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
447 	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
448 	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
449 	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
450 	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
451 	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
452 };
453 
454 /*
455  * Report the type of the specified arm processor. This uses the generic and
456  * arm specific information in the CPU structure to identify the processor.
457  * The remaining fields in the CPU structure are filled in appropriately.
458  */
459 
460 static const char * const wtnames[] = {
461 	"write-through",
462 	"write-back",
463 	"write-back",
464 	"**unknown 3**",
465 	"**unknown 4**",
466 	"write-back-locking",		/* XXX XScale-specific? */
467 	"write-back-locking-A",
468 	"write-back-locking-B",
469 	"**unknown 8**",
470 	"**unknown 9**",
471 	"**unknown 10**",
472 	"**unknown 11**",
473 	"**unknown 12**",
474 	"**unknown 13**",
475 	"write-back-locking-C",
476 	"**unknown 15**",
477 };
478 
479 void
480 identify_arm_cpu(struct device *dv, struct cpu_info *ci)
481 {
482 	u_int cpuid;
483 	enum cpu_class cpu_class = CPU_CLASS_NONE;
484 	int i;
485 	const char *steppingstr;
486 
487 	cpuid = ci->ci_arm_cpuid;
488 
489 	if (cpuid == 0) {
490 		aprint_error("Processor failed probe - no CPU ID\n");
491 		return;
492 	}
493 
494 	for (i = 0; cpuids[i].cpuid != 0; i++)
495 		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
496 			cpu_class = cpuids[i].cpu_class;
497 			steppingstr = cpuids[i].cpu_steppings[cpuid &
498 			    CPU_ID_REVISION_MASK],
499 			sprintf(cpu_model, "%s%s%s (%s core)",
500 			    cpuids[i].cpu_classname,
501 			    steppingstr[0] == '*' ? "" : " ",
502 			    &steppingstr[steppingstr[0] == '*'],
503 			    cpu_classes[cpu_class].class_name);
504 			break;
505 		}
506 
507 	if (cpuids[i].cpuid == 0)
508 		sprintf(cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
509 
510 	aprint_naive(": %s\n", cpu_model);
511 	aprint_normal(": %s\n", cpu_model);
512 
513 	aprint_normal("%s:", dv->dv_xname);
514 
515 	switch (cpu_class) {
516 	case CPU_CLASS_ARM6:
517 	case CPU_CLASS_ARM7:
518 	case CPU_CLASS_ARM7TDMI:
519 	case CPU_CLASS_ARM8:
520 		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
521 			aprint_normal(" IDC disabled");
522 		else
523 			aprint_normal(" IDC enabled");
524 		break;
525 	case CPU_CLASS_ARM9TDMI:
526 	case CPU_CLASS_ARM9ES:
527 	case CPU_CLASS_ARM9EJS:
528 	case CPU_CLASS_ARM10E:
529 	case CPU_CLASS_ARM10EJ:
530 	case CPU_CLASS_SA1:
531 	case CPU_CLASS_XSCALE:
532 	case CPU_CLASS_ARM11J:
533 	case CPU_CLASS_ARMV4:
534 	case CPU_CLASS_CORTEX:
535 		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
536 			aprint_normal(" DC disabled");
537 		else
538 			aprint_normal(" DC enabled");
539 		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
540 			aprint_normal(" IC disabled");
541 		else
542 			aprint_normal(" IC enabled");
543 		break;
544 	default:
545 		break;
546 	}
547 	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
548 		aprint_normal(" WB disabled");
549 	else
550 		aprint_normal(" WB enabled");
551 
552 	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
553 		aprint_normal(" LABT");
554 	else
555 		aprint_normal(" EABT");
556 
557 	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
558 		aprint_normal(" branch prediction enabled");
559 
560 	aprint_normal("\n");
561 
562 	/* Print cache info. */
563 	if (arm_picache_line_size == 0 && arm_pdcache_line_size == 0)
564 		goto skip_pcache;
565 
566 	if (arm_pcache_unified) {
567 		aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
568 		    dv->dv_xname, arm_pdcache_size / 1024,
569 		    arm_pdcache_line_size, arm_pdcache_ways,
570 		    wtnames[arm_pcache_type]);
571 	} else {
572 		aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
573 		    dv->dv_xname, arm_picache_size / 1024,
574 		    arm_picache_line_size, arm_picache_ways);
575 		aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
576 		    dv->dv_xname, arm_pdcache_size / 1024,
577 		    arm_pdcache_line_size, arm_pdcache_ways,
578 		    wtnames[arm_pcache_type]);
579 	}
580 
581  skip_pcache:
582 
583 	switch (cpu_class) {
584 #ifdef CPU_ARM2
585 	case CPU_CLASS_ARM2:
586 #endif
587 #ifdef CPU_ARM250
588 	case CPU_CLASS_ARM2AS:
589 #endif
590 #ifdef CPU_ARM3
591 	case CPU_CLASS_ARM3:
592 #endif
593 #ifdef CPU_ARM6
594 	case CPU_CLASS_ARM6:
595 #endif
596 #ifdef CPU_ARM7
597 	case CPU_CLASS_ARM7:
598 #endif
599 #ifdef CPU_ARM7TDMI
600 	case CPU_CLASS_ARM7TDMI:
601 #endif
602 #ifdef CPU_ARM8
603 	case CPU_CLASS_ARM8:
604 #endif
605 #ifdef CPU_ARM9
606 	case CPU_CLASS_ARM9TDMI:
607 #endif
608 #ifdef CPU_ARM9E
609 	case CPU_CLASS_ARM9ES:
610 	case CPU_CLASS_ARM9EJS:
611 #endif
612 #ifdef CPU_ARM10
613 	case CPU_CLASS_ARM10E:
614 	case CPU_CLASS_ARM10EJ:
615 #endif
616 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
617     defined(CPU_SA1110) || defined(CPU_IXP12X0)
618 	case CPU_CLASS_SA1:
619 #endif
620 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
621     defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
622 	case CPU_CLASS_XSCALE:
623 #endif
624 #if defined(CPU_ARM11)
625 	case CPU_CLASS_ARM11J:
626 #endif
627 #if defined(CPU_CORTEX)
628 	case CPU_CLASS_CORTEX:
629 #endif
630 #if defined(CPU_FA526)
631 	case CPU_CLASS_ARMV4:
632 #endif
633 		break;
634 	default:
635 		if (cpu_classes[cpu_class].class_option == NULL)
636 			aprint_error("%s: %s does not fully support this CPU."
637 			       "\n", dv->dv_xname, ostype);
638 		else {
639 			aprint_error("%s: This kernel does not fully support "
640 			       "this CPU.\n", dv->dv_xname);
641 			aprint_normal("%s: Recompile with \"options %s\" to "
642 			       "correct this.\n", dv->dv_xname,
643 			       cpu_classes[cpu_class].class_option);
644 		}
645 		break;
646 	}
647 
648 }
649 
650 /* End of cpu.c */
651