1 /* $NetBSD: cpu.c,v 1.113 2016/03/03 17:01:31 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 1995 Mark Brinicombe. 5 * Copyright (c) 1995 Brini. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Brini. 19 * 4. The name of the company nor the name of the author may be used to 20 * endorse or promote products derived from this software without specific 21 * prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * RiscBSD kernel project 36 * 37 * cpu.c 38 * 39 * Probing and configuration for the master CPU 40 * 41 * Created : 10/10/95 42 */ 43 44 #include "opt_armfpe.h" 45 #include "opt_multiprocessor.h" 46 47 #include <sys/param.h> 48 49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.113 2016/03/03 17:01:31 skrll Exp $"); 50 51 #include <sys/systm.h> 52 #include <sys/conf.h> 53 #include <sys/cpu.h> 54 #include <sys/device.h> 55 #include <sys/kmem.h> 56 #include <sys/proc.h> 57 58 #include <uvm/uvm_extern.h> 59 60 #include <arm/locore.h> 61 #include <arm/undefined.h> 62 63 extern const char *cpu_arch; 64 65 #ifdef MULTIPROCESSOR 66 volatile u_int arm_cpu_hatched = 0; 67 volatile uint32_t arm_cpu_mbox __cacheline_aligned = 0; 68 uint32_t arm_cpu_marker[2] __cacheline_aligned = { 0, 0 }; 69 u_int arm_cpu_max = 1; 70 #endif 71 72 /* Prototypes */ 73 void identify_arm_cpu(device_t, struct cpu_info *); 74 void identify_cortex_caches(device_t); 75 void identify_features(device_t); 76 77 /* 78 * Identify the master (boot) CPU 79 */ 80 81 void 82 cpu_attach(device_t dv, cpuid_t id) 83 { 84 const char * const xname = device_xname(dv); 85 struct cpu_info *ci; 86 87 if (id == 0) { 88 ci = curcpu(); 89 90 /* Get the CPU ID from coprocessor 15 */ 91 92 ci->ci_arm_cpuid = cpu_idnum(); 93 ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK; 94 ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK; 95 } else { 96 #ifdef MULTIPROCESSOR 97 KASSERT(cpu_info[id] == NULL); 98 ci = kmem_zalloc(sizeof(*ci), KM_SLEEP); 99 KASSERT(ci != NULL); 100 ci->ci_cpl = IPL_HIGH; 101 ci->ci_cpuid = id; 102 uint32_t mpidr = armreg_mpidr_read(); 103 if (mpidr & MPIDR_MT) { 104 ci->ci_data.cpu_smt_id = mpidr & MPIDR_AFF0; 105 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF1; 106 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF2; 107 } else { 108 ci->ci_data.cpu_core_id = mpidr & MPIDR_AFF0; 109 ci->ci_data.cpu_package_id = mpidr & MPIDR_AFF1; 110 } 111 ci->ci_data.cpu_core_id = id; 112 ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq; 113 ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid; 114 ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype; 115 ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev; 116 ci->ci_ctrl = cpu_info_store.ci_ctrl; 117 ci->ci_undefsave[2] = cpu_info_store.ci_undefsave[2]; 118 cpu_info[ci->ci_cpuid] = ci; 119 if ((arm_cpu_hatched & (1 << id)) == 0) { 120 ci->ci_dev = dv; 121 dv->dv_private = ci; 122 aprint_naive(": disabled\n"); 123 aprint_normal(": disabled (unresponsive)\n"); 124 return; 125 } 126 #else 127 aprint_naive(": disabled\n"); 128 aprint_normal(": disabled (uniprocessor kernel)\n"); 129 return; 130 #endif 131 } 132 133 ci->ci_dev = dv; 134 dv->dv_private = ci; 135 136 evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC, 137 NULL, xname, "arm700swibug"); 138 139 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP, 140 NULL, xname, "vector abort"); 141 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP, 142 NULL, xname, "terminal abort"); 143 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP, 144 NULL, xname, "external linefetch abort (S)"); 145 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP, 146 NULL, xname, "external linefetch abort (P)"); 147 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP, 148 NULL, xname, "external non-linefetch abort (S)"); 149 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP, 150 NULL, xname, "external non-linefetch abort (P)"); 151 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP, 152 NULL, xname, "external translation abort (L1)"); 153 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP, 154 NULL, xname, "external translation abort (L2)"); 155 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP, 156 NULL, xname, "alignment abort (0)"); 157 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP, 158 NULL, xname, "alignment abort (1)"); 159 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP, 160 NULL, xname, "translation abort (S)"); 161 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP, 162 NULL, xname, "translation abort (P)"); 163 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP, 164 NULL, xname, "domain abort (S)"); 165 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP, 166 NULL, xname, "domain abort (P)"); 167 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP, 168 NULL, xname, "permission abort (S)"); 169 evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP, 170 NULL, xname, "permission abort (P)"); 171 evcnt_attach_dynamic_nozero(&ci->ci_und_ev, EVCNT_TYPE_TRAP, 172 NULL, xname, "undefined insn traps"); 173 evcnt_attach_dynamic_nozero(&ci->ci_und_cp15_ev, EVCNT_TYPE_TRAP, 174 NULL, xname, "undefined cp15 insn traps"); 175 176 #ifdef MULTIPROCESSOR 177 /* 178 * and we are done if this is a secondary processor. 179 */ 180 if (id != 0) { 181 #if 1 182 aprint_naive("\n"); 183 aprint_normal("\n"); 184 #else 185 aprint_naive(": %s\n", cpu_getmodel()); 186 aprint_normal(": %s\n", cpu_getmodel()); 187 #endif 188 mi_cpu_attach(ci); 189 #ifdef ARM_MMU_EXTENDED 190 pmap_tlb_info_attach(&pmap_tlb0_info, ci); 191 #endif 192 return; 193 } 194 #endif 195 196 identify_arm_cpu(dv, ci); 197 198 #ifdef CPU_STRONGARM 199 if (ci->ci_arm_cputype == CPU_ID_SA110 && 200 ci->ci_arm_cpurev < 3) { 201 aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n"); 202 } 203 #endif 204 205 #ifdef CPU_ARM8 206 if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) { 207 int clock = arm8_clock_config(0, 0); 208 char *fclk; 209 aprint_normal_dev(dv, "ARM810 cp15=%02x", clock); 210 aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : ""); 211 aprint_normal("%s", (clock & 2) ? " sync" : ""); 212 switch ((clock >> 2) & 3) { 213 case 0: 214 fclk = "bus clock"; 215 break; 216 case 1: 217 fclk = "ref clock"; 218 break; 219 case 3: 220 fclk = "pll"; 221 break; 222 default: 223 fclk = "illegal"; 224 break; 225 } 226 aprint_normal(" fclk source=%s\n", fclk); 227 } 228 #endif 229 230 vfp_attach(ci); /* XXX SMP */ 231 } 232 233 enum cpu_class { 234 CPU_CLASS_NONE, 235 CPU_CLASS_ARM2, 236 CPU_CLASS_ARM2AS, 237 CPU_CLASS_ARM3, 238 CPU_CLASS_ARM6, 239 CPU_CLASS_ARM7, 240 CPU_CLASS_ARM7TDMI, 241 CPU_CLASS_ARM8, 242 CPU_CLASS_ARM9TDMI, 243 CPU_CLASS_ARM9ES, 244 CPU_CLASS_ARM9EJS, 245 CPU_CLASS_ARM10E, 246 CPU_CLASS_ARM10EJ, 247 CPU_CLASS_SA1, 248 CPU_CLASS_XSCALE, 249 CPU_CLASS_ARM11J, 250 CPU_CLASS_ARMV4, 251 CPU_CLASS_CORTEX, 252 CPU_CLASS_PJ4B, 253 }; 254 255 static const char * const generic_steppings[16] = { 256 "rev 0", "rev 1", "rev 2", "rev 3", 257 "rev 4", "rev 5", "rev 6", "rev 7", 258 "rev 8", "rev 9", "rev 10", "rev 11", 259 "rev 12", "rev 13", "rev 14", "rev 15", 260 }; 261 262 static const char * const pN_steppings[16] = { 263 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7", 264 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15", 265 }; 266 267 static const char * const sa110_steppings[16] = { 268 "rev 0", "step J", "step K", "step S", 269 "step T", "rev 5", "rev 6", "rev 7", 270 "rev 8", "rev 9", "rev 10", "rev 11", 271 "rev 12", "rev 13", "rev 14", "rev 15", 272 }; 273 274 static const char * const sa1100_steppings[16] = { 275 "rev 0", "step B", "step C", "rev 3", 276 "rev 4", "rev 5", "rev 6", "rev 7", 277 "step D", "step E", "rev 10" "step G", 278 "rev 12", "rev 13", "rev 14", "rev 15", 279 }; 280 281 static const char * const sa1110_steppings[16] = { 282 "step A-0", "rev 1", "rev 2", "rev 3", 283 "step B-0", "step B-1", "step B-2", "step B-3", 284 "step B-4", "step B-5", "rev 10", "rev 11", 285 "rev 12", "rev 13", "rev 14", "rev 15", 286 }; 287 288 static const char * const ixp12x0_steppings[16] = { 289 "(IXP1200 step A)", "(IXP1200 step B)", 290 "rev 2", "(IXP1200 step C)", 291 "(IXP1200 step D)", "(IXP1240/1250 step A)", 292 "(IXP1240 step B)", "(IXP1250 step B)", 293 "rev 8", "rev 9", "rev 10", "rev 11", 294 "rev 12", "rev 13", "rev 14", "rev 15", 295 }; 296 297 static const char * const xscale_steppings[16] = { 298 "step A-0", "step A-1", "step B-0", "step C-0", 299 "step D-0", "rev 5", "rev 6", "rev 7", 300 "rev 8", "rev 9", "rev 10", "rev 11", 301 "rev 12", "rev 13", "rev 14", "rev 15", 302 }; 303 304 static const char * const i80321_steppings[16] = { 305 "step A-0", "step B-0", "rev 2", "rev 3", 306 "rev 4", "rev 5", "rev 6", "rev 7", 307 "rev 8", "rev 9", "rev 10", "rev 11", 308 "rev 12", "rev 13", "rev 14", "rev 15", 309 }; 310 311 static const char * const i80219_steppings[16] = { 312 "step A-0", "rev 1", "rev 2", "rev 3", 313 "rev 4", "rev 5", "rev 6", "rev 7", 314 "rev 8", "rev 9", "rev 10", "rev 11", 315 "rev 12", "rev 13", "rev 14", "rev 15", 316 }; 317 318 /* Steppings for PXA2[15]0 */ 319 static const char * const pxa2x0_steppings[16] = { 320 "step A-0", "step A-1", "step B-0", "step B-1", 321 "step B-2", "step C-0", "rev 6", "rev 7", 322 "rev 8", "rev 9", "rev 10", "rev 11", 323 "rev 12", "rev 13", "rev 14", "rev 15", 324 }; 325 326 /* Steppings for PXA255/26x. 327 * rev 5: PXA26x B0, rev 6: PXA255 A0 328 */ 329 static const char * const pxa255_steppings[16] = { 330 "rev 0", "rev 1", "rev 2", "step A-0", 331 "rev 4", "step B-0", "step A-0", "rev 7", 332 "rev 8", "rev 9", "rev 10", "rev 11", 333 "rev 12", "rev 13", "rev 14", "rev 15", 334 }; 335 336 /* Stepping for PXA27x */ 337 static const char * const pxa27x_steppings[16] = { 338 "step A-0", "step A-1", "step B-0", "step B-1", 339 "step C-0", "rev 5", "rev 6", "rev 7", 340 "rev 8", "rev 9", "rev 10", "rev 11", 341 "rev 12", "rev 13", "rev 14", "rev 15", 342 }; 343 344 static const char * const ixp425_steppings[16] = { 345 "step 0", "rev 1", "rev 2", "rev 3", 346 "rev 4", "rev 5", "rev 6", "rev 7", 347 "rev 8", "rev 9", "rev 10", "rev 11", 348 "rev 12", "rev 13", "rev 14", "rev 15", 349 }; 350 351 struct cpuidtab { 352 uint32_t cpuid; 353 enum cpu_class cpu_class; 354 const char *cpu_classname; 355 const char * const *cpu_steppings; 356 char cpu_arch[8]; 357 }; 358 359 const struct cpuidtab cpuids[] = { 360 { CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2", 361 generic_steppings, "2" }, 362 { CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250", 363 generic_steppings, "2" }, 364 365 { CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3", 366 generic_steppings, "2A" }, 367 368 { CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600", 369 generic_steppings, "3" }, 370 { CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610", 371 generic_steppings, "3" }, 372 { CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620", 373 generic_steppings, "3" }, 374 375 { CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700", 376 generic_steppings, "3" }, 377 { CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710", 378 generic_steppings, "3" }, 379 { CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500", 380 generic_steppings, "3" }, 381 { CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a", 382 generic_steppings, "3" }, 383 { CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE", 384 generic_steppings, "3" }, 385 386 { CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810", 387 generic_steppings, "4" }, 388 389 { CPU_ID_SA110, CPU_CLASS_SA1, "SA-110", 390 sa110_steppings, "4" }, 391 { CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100", 392 sa1100_steppings, "4" }, 393 { CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110", 394 sa1110_steppings, "4" }, 395 396 { CPU_ID_FA526, CPU_CLASS_ARMV4, "FA526", 397 generic_steppings, "4" }, 398 399 { CPU_ID_IXP1200, CPU_CLASS_SA1, "IXP1200", 400 ixp12x0_steppings, "4" }, 401 402 { CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T", 403 generic_steppings, "4T" }, 404 { CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T", 405 generic_steppings, "4T" }, 406 { CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)", 407 generic_steppings, "4T" }, 408 { CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)", 409 generic_steppings, "4T" }, 410 { CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T", 411 generic_steppings, "4T" }, 412 { CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T", 413 generic_steppings, "4T" }, 414 { CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T", 415 generic_steppings, "4T" }, 416 { CPU_ID_TI925T, CPU_CLASS_ARM9TDMI, "TI ARM925T", 417 generic_steppings, "4T" }, 418 419 { CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S", 420 generic_steppings, "5TE" }, 421 { CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S", 422 generic_steppings, "5TE" }, 423 { CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S", 424 generic_steppings, "5TE" }, 425 { CPU_ID_MV88SV131, CPU_CLASS_ARM9ES, "Sheeva 88SV131", 426 generic_steppings, "5TE" }, 427 { CPU_ID_MV88FR571_VD, CPU_CLASS_ARM9ES, "Sheeva 88FR571-vd", 428 generic_steppings, "5TE" }, 429 430 { CPU_ID_80200, CPU_CLASS_XSCALE, "i80200", 431 xscale_steppings, "5TE" }, 432 433 { CPU_ID_80321_400, CPU_CLASS_XSCALE, "i80321 400MHz", 434 i80321_steppings, "5TE" }, 435 { CPU_ID_80321_600, CPU_CLASS_XSCALE, "i80321 600MHz", 436 i80321_steppings, "5TE" }, 437 { CPU_ID_80321_400_B0, CPU_CLASS_XSCALE, "i80321 400MHz", 438 i80321_steppings, "5TE" }, 439 { CPU_ID_80321_600_B0, CPU_CLASS_XSCALE, "i80321 600MHz", 440 i80321_steppings, "5TE" }, 441 442 { CPU_ID_80219_400, CPU_CLASS_XSCALE, "i80219 400MHz", 443 i80219_steppings, "5TE" }, 444 { CPU_ID_80219_600, CPU_CLASS_XSCALE, "i80219 600MHz", 445 i80219_steppings, "5TE" }, 446 447 { CPU_ID_PXA27X, CPU_CLASS_XSCALE, "PXA27x", 448 pxa27x_steppings, "5TE" }, 449 { CPU_ID_PXA250A, CPU_CLASS_XSCALE, "PXA250", 450 pxa2x0_steppings, "5TE" }, 451 { CPU_ID_PXA210A, CPU_CLASS_XSCALE, "PXA210", 452 pxa2x0_steppings, "5TE" }, 453 { CPU_ID_PXA250B, CPU_CLASS_XSCALE, "PXA250", 454 pxa2x0_steppings, "5TE" }, 455 { CPU_ID_PXA210B, CPU_CLASS_XSCALE, "PXA210", 456 pxa2x0_steppings, "5TE" }, 457 { CPU_ID_PXA250C, CPU_CLASS_XSCALE, "PXA255/26x", 458 pxa255_steppings, "5TE" }, 459 { CPU_ID_PXA210C, CPU_CLASS_XSCALE, "PXA210", 460 pxa2x0_steppings, "5TE" }, 461 462 { CPU_ID_IXP425_533, CPU_CLASS_XSCALE, "IXP425 533MHz", 463 ixp425_steppings, "5TE" }, 464 { CPU_ID_IXP425_400, CPU_CLASS_XSCALE, "IXP425 400MHz", 465 ixp425_steppings, "5TE" }, 466 { CPU_ID_IXP425_266, CPU_CLASS_XSCALE, "IXP425 266MHz", 467 ixp425_steppings, "5TE" }, 468 469 { CPU_ID_ARM1020E, CPU_CLASS_ARM10E, "ARM1020E", 470 generic_steppings, "5TE" }, 471 { CPU_ID_ARM1022ES, CPU_CLASS_ARM10E, "ARM1022E-S", 472 generic_steppings, "5TE" }, 473 474 { CPU_ID_ARM1026EJS, CPU_CLASS_ARM10EJ, "ARM1026EJ-S", 475 generic_steppings, "5TEJ" }, 476 { CPU_ID_ARM926EJS, CPU_CLASS_ARM9EJS, "ARM926EJ-S", 477 generic_steppings, "5TEJ" }, 478 479 { CPU_ID_ARM1136JS, CPU_CLASS_ARM11J, "ARM1136J-S r0", 480 pN_steppings, "6J" }, 481 { CPU_ID_ARM1136JSR1, CPU_CLASS_ARM11J, "ARM1136J-S r1", 482 pN_steppings, "6J" }, 483 #if 0 484 /* The ARM1156T2-S only has a memory protection unit */ 485 { CPU_ID_ARM1156T2S, CPU_CLASS_ARM11J, "ARM1156T2-S r0", 486 pN_steppings, "6T2" }, 487 #endif 488 { CPU_ID_ARM1176JZS, CPU_CLASS_ARM11J, "ARM1176JZ-S r0", 489 pN_steppings, "6ZK" }, 490 491 { CPU_ID_ARM11MPCORE, CPU_CLASS_ARM11J, "ARM11 MPCore", 492 generic_steppings, "6K" }, 493 494 { CPU_ID_CORTEXA5R0, CPU_CLASS_CORTEX, "Cortex-A5 r0", 495 pN_steppings, "7A" }, 496 { CPU_ID_CORTEXA7R0, CPU_CLASS_CORTEX, "Cortex-A7 r0", 497 pN_steppings, "7A" }, 498 { CPU_ID_CORTEXA8R1, CPU_CLASS_CORTEX, "Cortex-A8 r1", 499 pN_steppings, "7A" }, 500 { CPU_ID_CORTEXA8R2, CPU_CLASS_CORTEX, "Cortex-A8 r2", 501 pN_steppings, "7A" }, 502 { CPU_ID_CORTEXA8R3, CPU_CLASS_CORTEX, "Cortex-A8 r3", 503 pN_steppings, "7A" }, 504 { CPU_ID_CORTEXA9R2, CPU_CLASS_CORTEX, "Cortex-A9 r2", 505 pN_steppings, "7A" }, 506 { CPU_ID_CORTEXA9R3, CPU_CLASS_CORTEX, "Cortex-A9 r3", 507 pN_steppings, "7A" }, 508 { CPU_ID_CORTEXA9R4, CPU_CLASS_CORTEX, "Cortex-A9 r4", 509 pN_steppings, "7A" }, 510 { CPU_ID_CORTEXA15R2, CPU_CLASS_CORTEX, "Cortex-A15 r2", 511 pN_steppings, "7A" }, 512 { CPU_ID_CORTEXA15R3, CPU_CLASS_CORTEX, "Cortex-A15 r3", 513 pN_steppings, "7A" }, 514 { CPU_ID_CORTEXA17R1, CPU_CLASS_CORTEX, "Cortex-A17 r1", 515 pN_steppings, "7A" }, 516 { CPU_ID_CORTEXA53R0, CPU_CLASS_CORTEX, "Cortex-A53 r0", 517 pN_steppings, "8A" }, 518 { CPU_ID_CORTEXA57R0, CPU_CLASS_CORTEX, "Cortex-A57 r0", 519 pN_steppings, "8A" }, 520 { CPU_ID_CORTEXA57R1, CPU_CLASS_CORTEX, "Cortex-A57 r1", 521 pN_steppings, "8A" }, 522 { CPU_ID_CORTEXA72R0, CPU_CLASS_CORTEX, "Cortex-A72 r0", 523 pN_steppings, "8A" }, 524 525 { CPU_ID_MV88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 526 generic_steppings }, 527 { CPU_ID_ARM_88SV581X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 528 generic_steppings }, 529 { CPU_ID_MV88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 530 generic_steppings }, 531 { CPU_ID_ARM_88SV581X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV581x", 532 generic_steppings }, 533 { CPU_ID_MV88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 534 generic_steppings }, 535 { CPU_ID_ARM_88SV584X_V6, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 536 generic_steppings }, 537 { CPU_ID_MV88SV584X_V7, CPU_CLASS_PJ4B, "Sheeva 88SV584x", 538 generic_steppings }, 539 540 541 { 0, CPU_CLASS_NONE, NULL, NULL, "" } 542 }; 543 544 struct cpu_classtab { 545 const char *class_name; 546 const char *class_option; 547 }; 548 549 const struct cpu_classtab cpu_classes[] = { 550 [CPU_CLASS_NONE] = { "unknown", NULL }, 551 [CPU_CLASS_ARM2] = { "ARM2", "CPU_ARM2" }, 552 [CPU_CLASS_ARM2AS] = { "ARM2as", "CPU_ARM250" }, 553 [CPU_CLASS_ARM3] = { "ARM3", "CPU_ARM3" }, 554 [CPU_CLASS_ARM6] = { "ARM6", "CPU_ARM6" }, 555 [CPU_CLASS_ARM7] = { "ARM7", "CPU_ARM7" }, 556 [CPU_CLASS_ARM7TDMI] = { "ARM7TDMI", "CPU_ARM7TDMI" }, 557 [CPU_CLASS_ARM8] = { "ARM8", "CPU_ARM8" }, 558 [CPU_CLASS_ARM9TDMI] = { "ARM9TDMI", NULL }, 559 [CPU_CLASS_ARM9ES] = { "ARM9E-S", "CPU_ARM9E" }, 560 [CPU_CLASS_ARM9EJS] = { "ARM9EJ-S", "CPU_ARM9E" }, 561 [CPU_CLASS_ARM10E] = { "ARM10E", "CPU_ARM10" }, 562 [CPU_CLASS_ARM10EJ] = { "ARM10EJ", "CPU_ARM10" }, 563 [CPU_CLASS_SA1] = { "SA-1", "CPU_SA110" }, 564 [CPU_CLASS_XSCALE] = { "XScale", "CPU_XSCALE_..." }, 565 [CPU_CLASS_ARM11J] = { "ARM11J", "CPU_ARM11" }, 566 [CPU_CLASS_ARMV4] = { "ARMv4", "CPU_ARMV4" }, 567 [CPU_CLASS_CORTEX] = { "Cortex", "CPU_CORTEX" }, 568 [CPU_CLASS_PJ4B] = { "Marvell", "CPU_PJ4B" }, 569 }; 570 571 /* 572 * Report the type of the specified arm processor. This uses the generic and 573 * arm specific information in the CPU structure to identify the processor. 574 * The remaining fields in the CPU structure are filled in appropriately. 575 */ 576 577 static const char * const wtnames[] = { 578 "write-through", 579 "write-back", 580 "write-back", 581 "**unknown 3**", 582 "**unknown 4**", 583 "write-back-locking", /* XXX XScale-specific? */ 584 "write-back-locking-A", 585 "write-back-locking-B", 586 "**unknown 8**", 587 "**unknown 9**", 588 "**unknown 10**", 589 "**unknown 11**", 590 "write-back", 591 "write-back-locking-line", 592 "write-back-locking-C", 593 "write-back-locking-D", 594 }; 595 596 static void 597 print_cache_info(device_t dv, struct arm_cache_info *info, u_int level) 598 { 599 if (info->cache_unified) { 600 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Unified cache\n", 601 info->dcache_size / 1024, 602 info->dcache_line_size, info->dcache_ways, 603 wtnames[info->cache_type], level + 1, 604 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 605 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 606 } else { 607 aprint_normal_dev(dv, "%dKB/%dB %d-way L%u %cI%cT Instruction cache\n", 608 info->icache_size / 1024, 609 info->icache_line_size, info->icache_ways, level + 1, 610 info->icache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 611 info->icache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 612 aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u %cI%cT Data cache\n", 613 info->dcache_size / 1024, 614 info->dcache_line_size, info->dcache_ways, 615 wtnames[info->cache_type], level + 1, 616 info->dcache_type & CACHE_TYPE_PIxx ? 'P' : 'V', 617 info->dcache_type & CACHE_TYPE_xxPT ? 'P' : 'V'); 618 } 619 } 620 621 static enum cpu_class 622 identify_arm_model(uint32_t cpuid, char *buf, size_t len) 623 { 624 enum cpu_class cpu_class = CPU_CLASS_NONE; 625 for (const struct cpuidtab *id = cpuids; id->cpuid != 0; id++) { 626 if (id->cpuid == (cpuid & CPU_ID_CPU_MASK)) { 627 const char *steppingstr = 628 id->cpu_steppings[cpuid & CPU_ID_REVISION_MASK]; 629 cpu_arch = id->cpu_arch; 630 cpu_class = id->cpu_class; 631 snprintf(buf, len, "%s%s%s (%s V%s core)", 632 id->cpu_classname, 633 steppingstr[0] == '*' ? "" : " ", 634 &steppingstr[steppingstr[0] == '*'], 635 cpu_classes[cpu_class].class_name, 636 cpu_arch); 637 return cpu_class; 638 } 639 } 640 641 snprintf(buf, len, "unknown CPU (ID = 0x%x)", cpuid); 642 return cpu_class; 643 } 644 645 void 646 identify_arm_cpu(device_t dv, struct cpu_info *ci) 647 { 648 const uint32_t arm_cpuid = ci->ci_arm_cpuid; 649 const char * const xname = device_xname(dv); 650 char model[128]; 651 652 if (arm_cpuid == 0) { 653 aprint_error("Processor failed probe - no CPU ID\n"); 654 return; 655 } 656 657 const enum cpu_class cpu_class = identify_arm_model(arm_cpuid, 658 model, sizeof(model)); 659 if (ci->ci_cpuid == 0) { 660 cpu_setmodel("%s", model); 661 } 662 663 if (ci->ci_data.cpu_cc_freq != 0) { 664 char freqbuf[10]; 665 humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq, 666 "Hz", 1000); 667 668 aprint_naive(": %s %s\n", freqbuf, model); 669 aprint_normal(": %s %s\n", freqbuf, model); 670 } else { 671 aprint_naive(": %s\n", model); 672 aprint_normal(": %s\n", model); 673 } 674 675 aprint_normal("%s:", xname); 676 677 switch (cpu_class) { 678 case CPU_CLASS_ARM6: 679 case CPU_CLASS_ARM7: 680 case CPU_CLASS_ARM7TDMI: 681 case CPU_CLASS_ARM8: 682 if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0) 683 aprint_normal(" IDC disabled"); 684 else 685 aprint_normal(" IDC enabled"); 686 break; 687 case CPU_CLASS_ARM9TDMI: 688 case CPU_CLASS_ARM9ES: 689 case CPU_CLASS_ARM9EJS: 690 case CPU_CLASS_ARM10E: 691 case CPU_CLASS_ARM10EJ: 692 case CPU_CLASS_SA1: 693 case CPU_CLASS_XSCALE: 694 case CPU_CLASS_ARM11J: 695 case CPU_CLASS_ARMV4: 696 case CPU_CLASS_CORTEX: 697 case CPU_CLASS_PJ4B: 698 if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0) 699 aprint_normal(" DC disabled"); 700 else 701 aprint_normal(" DC enabled"); 702 if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0) 703 aprint_normal(" IC disabled"); 704 else 705 aprint_normal(" IC enabled"); 706 break; 707 default: 708 break; 709 } 710 if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0) 711 aprint_normal(" WB disabled"); 712 else 713 aprint_normal(" WB enabled"); 714 715 if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE) 716 aprint_normal(" LABT"); 717 else 718 aprint_normal(" EABT"); 719 720 if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE) 721 aprint_normal(" branch prediction enabled"); 722 723 aprint_normal("\n"); 724 725 if (CPU_ID_CORTEX_P(arm_cpuid) || CPU_ID_ARM11_P(arm_cpuid) || CPU_ID_MV88SV58XX_P(arm_cpuid)) { 726 identify_features(dv); 727 } 728 729 /* Print cache info. */ 730 if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) { 731 print_cache_info(dv, &arm_pcache, 0); 732 } 733 if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) { 734 print_cache_info(dv, &arm_scache, 1); 735 } 736 737 738 switch (cpu_class) { 739 #ifdef CPU_ARM2 740 case CPU_CLASS_ARM2: 741 #endif 742 #ifdef CPU_ARM250 743 case CPU_CLASS_ARM2AS: 744 #endif 745 #ifdef CPU_ARM3 746 case CPU_CLASS_ARM3: 747 #endif 748 #ifdef CPU_ARM6 749 case CPU_CLASS_ARM6: 750 #endif 751 #ifdef CPU_ARM7 752 case CPU_CLASS_ARM7: 753 #endif 754 #ifdef CPU_ARM7TDMI 755 case CPU_CLASS_ARM7TDMI: 756 #endif 757 #ifdef CPU_ARM8 758 case CPU_CLASS_ARM8: 759 #endif 760 #ifdef CPU_ARM9 761 case CPU_CLASS_ARM9TDMI: 762 #endif 763 #if defined(CPU_ARM9E) || defined(CPU_SHEEVA) 764 case CPU_CLASS_ARM9ES: 765 case CPU_CLASS_ARM9EJS: 766 #endif 767 #ifdef CPU_ARM10 768 case CPU_CLASS_ARM10E: 769 case CPU_CLASS_ARM10EJ: 770 #endif 771 #if defined(CPU_SA110) || defined(CPU_SA1100) || \ 772 defined(CPU_SA1110) || defined(CPU_IXP12X0) 773 case CPU_CLASS_SA1: 774 #endif 775 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \ 776 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425) 777 case CPU_CLASS_XSCALE: 778 #endif 779 #if defined(CPU_ARM11) 780 case CPU_CLASS_ARM11J: 781 #endif 782 #if defined(CPU_CORTEX) 783 case CPU_CLASS_CORTEX: 784 #endif 785 #if defined(CPU_PJ4B) 786 case CPU_CLASS_PJ4B: 787 #endif 788 #if defined(CPU_FA526) 789 case CPU_CLASS_ARMV4: 790 #endif 791 break; 792 default: 793 if (cpu_classes[cpu_class].class_option == NULL) { 794 aprint_error_dev(dv, "%s does not fully support this CPU.\n", 795 ostype); 796 } else { 797 aprint_error_dev(dv, "This kernel does not fully support " 798 "this CPU.\n"); 799 aprint_normal_dev(dv, "Recompile with \"options %s\" to " 800 "correct this.\n", cpu_classes[cpu_class].class_option); 801 } 802 break; 803 } 804 } 805 806 extern int cpu_instruction_set_attributes[6]; 807 extern int cpu_memory_model_features[4]; 808 extern int cpu_processor_features[2]; 809 extern int cpu_simd_present; 810 extern int cpu_simdex_present; 811 812 void 813 identify_features(device_t dv) 814 { 815 cpu_instruction_set_attributes[0] = armreg_isar0_read(); 816 cpu_instruction_set_attributes[1] = armreg_isar1_read(); 817 cpu_instruction_set_attributes[2] = armreg_isar2_read(); 818 cpu_instruction_set_attributes[3] = armreg_isar3_read(); 819 cpu_instruction_set_attributes[4] = armreg_isar4_read(); 820 cpu_instruction_set_attributes[5] = armreg_isar5_read(); 821 822 cpu_hwdiv_present = 823 ((cpu_instruction_set_attributes[0] >> 24) & 0x0f) >= 2; 824 cpu_simd_present = 825 ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3; 826 cpu_simdex_present = cpu_simd_present 827 && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2; 828 cpu_synchprim_present = 829 ((cpu_instruction_set_attributes[3] >> 8) & 0xf0) 830 | ((cpu_instruction_set_attributes[4] >> 20) & 0x0f); 831 832 cpu_memory_model_features[0] = armreg_mmfr0_read(); 833 cpu_memory_model_features[1] = armreg_mmfr1_read(); 834 cpu_memory_model_features[2] = armreg_mmfr2_read(); 835 cpu_memory_model_features[3] = armreg_mmfr3_read(); 836 837 #if 0 838 if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) { 839 /* 840 * Updates to the translation tables do not require a clean 841 * to the point of unification to ensure visibility by 842 * subsequent translation table walks. 843 */ 844 pmap_needs_pte_sync = 0; 845 } 846 #endif 847 848 cpu_processor_features[0] = armreg_pfr0_read(); 849 cpu_processor_features[1] = armreg_pfr1_read(); 850 851 aprint_debug_dev(dv, "sctlr: %#x\n", armreg_sctlr_read()); 852 aprint_debug_dev(dv, "actlr: %#x\n", armreg_auxctl_read()); 853 aprint_debug_dev(dv, "revidr: %#x\n", armreg_revidr_read()); 854 #ifdef MULTIPROCESSOR 855 aprint_debug_dev(dv, "mpidr: %#x\n", armreg_mpidr_read()); 856 #endif 857 aprint_debug_dev(dv, 858 "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n", 859 cpu_instruction_set_attributes[0], 860 cpu_instruction_set_attributes[1], 861 cpu_instruction_set_attributes[2], 862 cpu_instruction_set_attributes[3], 863 cpu_instruction_set_attributes[4], 864 cpu_instruction_set_attributes[5]); 865 aprint_debug_dev(dv, 866 "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n", 867 cpu_memory_model_features[0], cpu_memory_model_features[1], 868 cpu_memory_model_features[2], cpu_memory_model_features[3]); 869 aprint_debug_dev(dv, 870 "pfr: [0]=%#x [1]=%#x\n", 871 cpu_processor_features[0], cpu_processor_features[1]); 872 } 873